Christoph Linse, M.Sc.

Raum 1.018
Institut für Neuro- und Bioinformatik
Ratzeburger Allee 160 (Geb. 64)
23562 Lübeck
Email: | c.linse(at)uni-luebeck.de |
Phone: | +49 451 3101 5514 |
Fax: | +49 451 3101 5504 |
Publikationen
2021
-
Christoph Linse and Hammam Alshazly and Thomas Martinetz: A walk in the black-box: 3D visualization of large neural networks in virtual reality. Neural Computing and Applications, aug, 2022
@article{LiAlMa22, author = {Christoph Linse and Hammam Alshazly and Thomas Martinetz}, title = {A walk in the black-box: {3D} visualization of large neural networks in virtual reality}, shorttitle = {A walk in the black-box}, issn = {0941-0643, 1433-3058}, language = {en}, journal = {Neural Computing and Applications}, month = {aug}, year = {2022}, urldate = {2022-08-19}, url = {https://link.springer.com/10.1007/s00521-022-07608-4}, doi = {10.1007/s00521-022-07608-4}, }
-
Hammam Alshazly and Christoph Linse and Mohamed Abdalla and Erhardt Barth and Thomas Martinetz: COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans. PeerJ Computer Science, no. 7, pp. e655, 2021
@article{AlLiAbBaMa21, author={Hammam Alshazly and Christoph Linse and Mohamed Abdalla and Erhardt Barth and Thomas Martinetz}, title = {{COVID-Nets}: deep {CNN} architectures for detecting {COVID-19} using chest {CT} scans}, journal = {PeerJ Computer Science}, volume={7}, pages={e655}, year={2021}, doi = {10.7717/peerj-cs.655}, url = {https://doi.org/10.7717/peerj-cs.655} }
-
Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz: Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning. Sensors, no. 21, pp. 455, Multidisciplinary Digital Publishing Institute, 2021
@article{AlLiBaMa21, author={Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz}, title = {Explainable {COVID-19} {D}etection {U}sing {C}hest {CT} {S}cans and {D}eep {L}earning}, journal = {Sensors}, volume={21}, number={2}, pages={455}, year={2021}, publisher={Multidisciplinary Digital Publishing Institute}, url = {https://www.mdpi.com/1424-8220/21/2/455}, url = {https://www.inb.uni-luebeck.de/fileadmin/files/publications/inb-publications/pdfs/AlLiBaMa21.pdf} }
-
Hammam Alshazly and Christoph Linse and Erhardt Barth and Sahar Ahmed Idris and Thomas Martinetz: Towards Explainable Ear Recognition Systems Using Deep Residual Networks. IEEE Access, pp. 1-1, 2021
@article{AlLiBaIdMa21, author = {Hammam Alshazly and Christoph Linse and Erhardt Barth and Sahar Ahmed Idris and Thomas Martinetz}, journal = {IEEE Access}, title = {{T}owards {E}xplainable {E}ar {R}ecognition {S}ystems {U}sing {D}eep {R}esidual {N}etworks}, year = {2021}, pages = {1-1}, doi = {10.1109/ACCESS.2021.3109441}, url = {https://doi.org/10.1109/ACCESS.2021.3109441} }
2020
-
Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz: Deep Convolutional Neural Networks for Unconstrained Ear Recognition. IEEE Access, no. 8, pp. 170295-170310, IEEE, 2020
@article{AlLiBaMa20, title={Deep {C}onvolutional {N}eural {N}etworks for {U}nconstrained {E}ar {R}ecognition}, author={Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz}, journal={IEEE Access}, publisher={IEEE}, volume={8}, pages={170295--170310}, year={2020}, url = {https://www.inb.uni-luebeck.de/fileadmin/files/publications/inb-publications/pdfs/AlLiBaMa20.pdf} }
2019
-
Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz: Ensembles of Deep Learning Models and Transfer Learning for Ear Recognition. sensors, no. 19, pp. 4139, Multidisciplinary Digital Publishing Institute, 2019
@article{AlLiBaMa19, author={Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz}, title = {Ensembles of {D}eep {L}earning {M}odels and {T}ransfer {L}earning for {E}ar {R}ecognition}, journal = {sensors}, volume={19}, number={19}, pages={4139}, year={2019}, publisher={Multidisciplinary Digital Publishing Institute}, url = {https://www.mdpi.com/1424-8220/19/19/4139}, url = {https://www.inb.uni-luebeck.de/fileadmin/files/publications/inb-publications/pdfs/AlLiBaMa19.pdf} }
-
Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz: Handcrafted versus CNN Features for Ear Recognition. Symmetry, no. 11, pp. 1493, 2019
@article{AlLiBaMa19a, title={{Handcrafted versus CNN Features for Ear Recognition}}, author={Hammam Alshazly and Christoph Linse and Erhardt Barth and Thomas Martinetz}, journal={Symmetry}, volume={11}, number={12}, pages={1493}, year={2019}, url = {https://www.inb.uni-luebeck.de/fileadmin/files/publications/inb-publications/pdfs/AlLiBaMa19a.pdf} }