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Abstract: The recognition performance of visual recognition systems is highly dependent on
extracting and representing the discriminative characteristics of image data. Convolutional neural
networks (CNNs) have shown unprecedented success in a variety of visual recognition tasks
due to their capability to provide in-depth representations exploiting visual image features of
appearance, color, and texture. This paper presents a novel system for ear recognition based on
ensembles of deep CNN-based models and more specifically the Visual Geometry Group (VGG)-like
network architectures for extracting discriminative deep features from ear images. We began by
training different networks of increasing depth on ear images with random weight initialization.
Then, we examined pretrained models as feature extractors as well as fine-tuning them on ear
images. After that, we built ensembles of the best models to further improve the recognition
performance. We evaluated the proposed ensembles through identification experiments using ear
images acquired under controlled and uncontrolled conditions from mathematical analysis of images
(AMI), AMI cropped (AMIC) (introduced here), and West Pomeranian University of Technology
(WPUT) ear datasets. The experimental results indicate that our ensembles of models yield the
best performance with significant improvements over the recently published results. Moreover,
we provide visual explanations of the learned features by highlighting the relevant image regions
utilized by the models for making decisions or predictions.

Keywords: ear recognition; deep features; convolutional neural networks; transfer learning; ensemble
models; feature visualization

1. Introduction

Automated identity recognition based on physical characteristics of humans (i.e., biometrics),
such as the face, iris, fingerprints etc., has attracted a considerable amount of attention in the biometric
community due to increasing security requirements. In order to be a valid biometric modality,
these characteristics should be distinctive, universal, permanent, quantifiable, and convenient to
measure [1]. Out of all biometric characteristics, the human face has been extensively studied. However,
recognition systems based on faces have to cope with sensitivity to various image distortions including
illumination changes, different poses, occlusions, aging, and facial expressions. The human ear is an
emerging biometric modality which offers immense potential by being relatively invulnerable to these
variations due to its stable structure.

Figure 1 illustrates the outer and inner parts of the ear structure. The outer shape contains a set
of important morphological features like the tragus, anti-tragus, outer helix, anti-helix, and lobule;
while the inner structure is formed by numerous valleys and ridges, all together forming a complex
structure and providing discriminatory power. In addition, some other advantages of ear images
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include ease of acquisition, lower level of intrusiveness, and high immunity to privacy and hygienic
issues. These characteristics indicate the potential of using the ear modality in personal identification.
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Figure 1. Morphological parts of the human ear.

The first large-scale study on using ear characteristics to uniquely recognize individuals was
conducted by Iannarelli [2], in which he manually measured the distances between 12 discriminative
biological characteristics of the ear and provided a collection of more than 10,000 ear images.
The conclusion of his experiments was that no two ears were found to be identical. Since then,
many researchers have been interested in exploring this emerging biometric modality and finding
robust ways to represent ear images and extract their distinguishable features for constructing personal
identification systems. For chronological developments of ear recognition techniques, several surveys
and reviews exist, summarizing the achievements, limitations, and challenges encountered [3–6].

The vast majority of existing ear recognition systems have been constructed by employing
handcrafted feature extraction methods (i.e., descriptors) to represent the ear images and a traditional
classifier to match and classify the resulting feature vectors. Descriptor-based recognition techniques
still offer acceptable performance for small-sized datasets acquired under controlled conditions
although these descriptors can only handle specific image variations. In earlier studies, multiple ear
image characteristics including texture, edges, shape contours, and gradient information were utilized
to better describe the ear features. For instance, texture descriptors have been extensively studied in
ear recognition, justifying the importance of texture cues when featuring ear images [7–9]. On the
other hand, methods exploiting gradient magnitude and orientation are also considered for a better
description of the ear shape and contour [10–12]. The color information is also explored for ear
recognition as discussed in [13] and by fusing features extracted at different color spaces in [14].
However, these methods are still limited in their ability to leverage multiple characteristics of ear
images. More important is the performance degradation of these techniques when the images are
taken under uncontrolled conditions with a wide range of pose and illumination variations as well as
occlusions which are common in real-world applications [15].

Nowadays, deep learning [16], a type of machine learning techniques in which the models
learn discriminative features at multiple levels of abstractions and perform recognition tasks directly
from raw data, has influenced the field of computer vision significantly. At the core of deep learning
techniques are convolutional neural networks (CNNs) which have achieved astonishing breakthroughs
in a variety of visual recognition tasks including image classification [17–19], object detection [20–22],
face recognition [23–26], and the like. The key factors behind the success of these methods are
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the large-scale and publicly available image databases such as ImageNet [27] and the advances in
high-performance hardware devices such as GPUs for training such models in a reasonable time.
For some application domains, such as image classification and face recognition where decent
amount of data is available, CNN-based systems have advanced the state-of-the-art performance
to extraordinary levels. However, in other applications or domains where data is limited or expensive
to collect, the benefits of deep models and powerful CNN-based representations are not fully
utilized. Among these domains is ear recognition, which has potential usage in forensics and security
applications. As a consequence, ear recognition technology is lacking behind other biometric-based
technologies such as face recognition due to the imposed restrictions of insufficient large-scale labeled
ear databases.

A first step towards building CNN-based ear recognition models is introduced in [28]. The authors
considered three CNN architectures, AlexNet [17], VGG-16 [18], and SqueezeNet [29], and explored
different training strategies using extensive techniques of data augmentation to overcome the lack
of abundant training data. Two learning strategies were applied: full model learning and selective
model learning. In the first approach, the models are trained from scratch with increasing levels of
data augmentation; while in the second approach, the models are initialized from pretrained models
learned on the ImageNet dataset and then are fine-tuned using the training part of the ear dataset.
The best results came from the model based on fine-tuning a pretrained SqueezeNet model which
achieved a recognition rate of 62%. Ying et al. [30] proposed a deep CNN model for ear recognition
considering various aspects, such as network size, regularization methods, and activation functions,
in order to improve the model performance. The model was tested under occlusion and rotation
and showed a satisfactory recognition rate when the degree of distortions was small. The authors
in [6] proposed a standard CNN-based ear recognition system and several models were trained
using ear images acquired under controlled conditions of lighting, quality, size, and viewing angles.
Their system obtained good results when recognizing ear images similar to what the model was trained
on. The authors in [31] proposed an ear recognition system by designing a deep convolutional network
that has three convolutional layers each followed by a max pooling layer and two fully connected
layers. To test their model, they used the University of Science and Technology Beijing III (USTB III)
ear dataset [32] which has 79 subjects. Even though their model showed a good performance using
a small-sized dataset, they emphasized that ear recognition under unconstrained conditions such as
pose variations and occlusion is a challenging task especially when there is insufficient ear data.

An effective solution to address ear recognition when training data is limited is to use transfer
learning [33–35]. For instance, an ear recognition system was constructed based on transfer learning
from pretrained AlexNet [36]. The training and testing of their model were performed on ear
images acquired under controlled lighting conditions by a smart-phone for 10 subjects and only
300 images. Transfer learning is also extensively explored in addressing ear recognition challenges
under unconstrained imaging conditions in [37–40]. The authors in [41] investigated the impact of
fusing manually extracted features based on some well-known descriptors and CNN-based learned
features for improving ear recognition. Their experimental results suggested that handcrafted and
learned features are complementary as their combination resulted in the best performance [41].
A comparative analysis of several handcrafted features and three deep learning-based methods
is presented in [42]. The authors carried out identification experiments on the Annotated Web Ears
(AWE) database [5] to assess the sensitivity of both models to specific covariates. The obtained results
indicated the negative impact of severe head rotation and occlusions on the recognition performance
compared to other covariates such as gender and ethnicity.

In 2017, Emeršič et al. [43] announced the first unconstrained ear recognition challenge (UERC),
an effort to evaluate existing ear recognition techniques on an extended version of the AWE ear
dataset (also named UERC) gathered specifically for the challenge. The UERC dataset contains
11,804 ear images for 3706 subjects and all the images were collected from the web under unconstrained
conditions. In total, six techniques were submitted and two models were given by the organizers.
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Four recognition methods utilized VGG-based models but with different preprocessing pipelines
(i.e., flipping and alignment) and various ways of featuring (i.e., activations from a selected output
layer). They presented a comparative analysis of different covariates, such as occlusion, rotation, spatial
resolution, and gallery size, on the recognition performance, and the obtained results highlighted
insightful findings summarized in [43]. The second round of the challenge, UERC 2019 [44], evaluated
13 ear recognition techniques. The majority of the submitted approaches utilized deep learning
techniques. More interesting, around 50% of the approaches were based on multiple ear image
representations due to limitations of a single model representation to capture the wide and complex
appearance variability. Even though the obtained results show some improvements in the recognition
rate when using ensembles or multiple descriptor combinations, the problem of recognizing humans
from ear images under unconstrained conditions has not been solved and more research is needed [44].
The winner of the challenge was ScoreNet-5 [45] which utilizes a fusion learning approach.

Despite the rapid increase and wide adoption of deep learning models in various domains,
their internal functionality is not fully understood and hard to interpret because of the black-box nature
of deep networks [46]. Thus, to understand what deep networks have learned is of a great importance.
By doing so, the obtained results become more interpretable and also provide insights into their success.
Recently, some studies have been focused on visualizing and interpreting the learned features from
CNN-based models in order to build trust and reliability in their predictions as well as to obtain insights
to better design network architectures [47–49]. The first work on feature visualization was introduced
by Zeiler et al. [47] to understand the functionality of internal layers and what types of features they
learn. However, the visualization process is performed by employing a deconvolutional network
(DeconvNet) to project the activations back to the input pixel space and highlight the certain patterns
responsible for a given activation of interest in the feature maps. The visualization is provided only for
convolutional layers and ignores the fully connected ones. In [50], a generalization to the DeconvNet
approach is proposed which can be applied to visualize the activations of any layer rather than only
the convolutional ones. Zhou et al. [49] proposed another visualization approach called class activation
map (CAM) to produce a localization map for CNN-based models. CAM is mainly used to identify
the important image regions by projecting back the weights of the last layer onto the convolutional
feature maps. However, it cannot be used for networks with multiple fully connected layers before
the last layer. Gradient-weighted class activation mapping (Grad-CAM) [51] generalizes the CAM
approach to visualize any CNN-based network architecture. Grad-CAM provides visual explanations
to understand CNN-based models and makes them more transparent by highlighting the important
regions in the input image leading to certain predictions. In our experiments, we considered the
Grad-CAM approach for visualizing the learned features by the visual geometry group (VGG)-based
models and provide comprehensive analysis of the obtained results.

In this paper, we choose the VGG network as one of the top performers in both image classification
and object localization challenges [27], and introduce configurations to suit ear recognition on the used
datasets. We experimentally investigate selecting the optimal input image size and explore different
regularization techniques to help the models generalize and alleviate overfitting. Three learning
strategies, namely training from scratch with randomly initialized network weights and two transfer
learning strategies from pretrained VGG-based models, are investigated. When training our models,
we employed a set of different augmentation techniques to increase the number of training samples.
The best obtained models from these learning strategies were then utilized to build ensembles of
models with varying depth to improve performance. Moreover, we provide visual explanations of
the learned features by the models with the Grad-CAM visualization technique to better interpret the
obtained results. Overall, this paper exhibits the following contributions:

• We propose ensembles of VGG-based models that outperform other ear recognition techniques
on the considered mathematical analysis of images (AMI) and West Pomeranian University of
Technology (WPUT) ear datasets. Extensive experiments using different learning methodologies
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were carried out and a comprehensive analysis of their performance and computational complexity
is presented;

• We present a novel ear image set, known as AMI cropped (AMIC), based on the original
AMI dataset with substantial background and profile regions removed; this is intended to be
used to evaluate the performance of different ear identification and verification systems under
challenging conditions;

• We provide visualizations of the learned features to interpret the obtained results and increase
the confidence and reliability in the models’ predictions, which is useful when working with a
limited amount of training data.

The remainder of the paper is structured as follows. Section 2 describes the VGG network
architectures and presents our configurations to suit the target problem. In Section 3, we discuss the
learning strategies followed to find better deep ear image representations. The experimental setup is
explained in Section 4. The obtained results along with the Grad-CAM visualization are discussed in
Section 5. Finally, Section 6 concludes the paper and gives insights into future research directions.

2. VGG-Based Network Architectures

The VGG network [18] is a very successful CNN architecture in image recognition and object
localization challenges [52]. The architecture is inspired by conventional CNN architectures, such as
LeNet [53] and AlexNet [17], but has a substantially increased depth for to improve performance.
The VGG networks are designed by stacking five convolutional (conv) blocks interspersed by
max-pooling layers and a fully connected block with three layers. However, it introduced some
key design improvements to CNN architectures through the use of small 3 × 3 convolution kernels
and an increase in the network depth through adding more conv layers. The additional conv layers are
essential for covering an effective receptive field of the input image that leads to more discriminative
features. Furthermore, using a small filter size leads to a significant reduction in the number of
parameters per layer, especially in the first conv layers. Consequently, deep CNN architectures became
less prone to overfitting and much more feasible to train. These significant improvements introduced in
the VGG network architecture produced models that won first and second places in object localization
and ImageNet classification challenges, respectively.

The original VGG network [18] uses RGB images with a fixed size of 224 × 224 pixels as an
input size. The pixels are preprocessed by subtracting the mean RGB value computed over the
training images. Each image undergoes a series of conv layers. To preserve the spatial resolution after
convolution, a fixed stride of one pixel is used along with zero padding of one pixel. The max-pooling
layers which follow each conv block are used to reduce the feature maps after convolution and make the
resulting representations invariant to distortions and small translations. The max-pooling operations
are performed over a 2 × 2 window size with a stride of two. The stack of conv layers is followed by
three fully connected layers with 4096 neurons in the first two layers and 1000 neurons in the last layer
to match the 1000 classes of ImageNet dataset. Finally, a softmax layer is used. The hidden layers are
supplied with a Rectified Linear Unit (ReLU) [54] activation function to increase the non-linearity of
the network architecture.

In this paper, we introduce some changes to the VGG architecture and adapt the network to better
suit the ear recognition problem on the considered ear datasets. We explore four VGG-based models of
increasing network depth starting from 11 up to 19 layers, although they have a design similarity for
fair evaluation. We use the terminology VGG-<i> to refer to the different models, where i refers to
the total number of weighted layers in the network. Table 1 illustrates the detailed configurations of
the considered VGG-based models with respect to number of conv blocks, number of conv layers per
block, number of filters for each layer, position of pooling layers, output size of the feature maps after
each operation, and number of neurons in each fully connected layer. As a result of the variable spatial
resolution of images from each dataset, we place the images into a canvas, keep their aspect ratios and
scale the input images accordingly. We found that the optimal canvas sizes are 133 × 190 for both the
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AMI and AMIC datasets and 170 × 220 for the WPUT dataset. We use convolution kernels of size 3 × 3
with a stride of one for all conv layers. Our max-pooling operations have a kernel size of 2 × 2 and
a stride of two. The last max-pooling operation before the first fully connected layer is replaced by
adaptive average pooling, which reduces the feature map resolution to 5 × 5 and makes the model
applicable to various input sizes. Subsequently, we flatten the feature maps and use their activations
as input for the first fully connected layer. We regularize our models with 50% dropout [55] between
the three fully connected layers. To account for the effect of having only 100 and 474 classes instead of
1000 in the datasets, we shrink the first two fully connected layers to 2048 dimensions and adapt the
size of the last layer accordingly.

Table 1. Details of the visual geometry group (VGG)-based networks configurations with respect to
number and type of layers (depth), filter size, number of filters, and the output size after each operation.
The input image size and output size shown in the table are for the mathematical analysis of images
(AMI) and AMI cropped (AMIC) datasets. For the West Pomeranian University of Technology (WPUT)
dataset, the models use an input image size of 170 × 220 to preserve the aspect ratio and the output
after each operation is obtained similar to AMI and AMIC.

Block
Model

Filter Size Output Size
VGG-11 VGG-13 VGG-16 VGG-19

Input Input Image (133 × 190 RGB) - -

Block 1 Convolution Convolution Convolution Convolution 3 × 3 (64) 133 × 190
Convolution Convolution Convolution 3 × 3 (64) 133 × 190

Max-Pooling - 66 × 95

Block 2 Convolution Convolution Convolution Convolution 3 × 3 (128) 66 × 95
Convolution Convolution Convolution 3 × 3 (128) 66 × 95

Max-Pooling - 33 × 47

Block 3

Convolution Convolution Convolution Convolution 3 × 3 (256) 33 × 47
Convolution Convolution Convolution Convolution 3 × 3 (256) 33 × 47

Convolution Convolution 3 × 3 (256) 33 × 47
Convolution 3 × 3 (256) 33 × 47

Max-Pooling - 16 × 23

Block 4

Convolution Convolution Convolution Convolution 3 × 3 (512) 16 × 23
Convolution Convolution Convolution Convolution 3 × 3 (512) 16 × 23

Convolution Convolution 3 × 3 (512) 16 × 23
Convolution 3 × 3 (512) 16 × 23

Max-Pooling - 8 × 11

Block 5

Convolution Convolution Convolution Convolution 3 × 3 (512) 8 × 11
Convolution Convolution Convolution Convolution 3 × 3 (512) 8 × 11

Convolution Convolution 3 × 3 (512) 8 × 11
Convolution 3 × 3 (512) 8 × 11

Adaptive Average Pooling - 5 × 5

Fully Connected

Fully Connected, 2048 Neurons
Dropout Chance 50%

Fully Connected, 2048 Neurons
Dropout Chance 50%

Fully Connected, 100 Neurons
Log-Soft-Max

3. Learning Ear Image Representations

The performance of recognition systems is highly dependent on the robustness and discriminative
ability to represent image information. Over recent years, deep CNNs have shown a powerful
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capability to learn discriminative representations from images that summarize their essential factors
of variations. However, learning these rich representations by deep CNN models requires a massive
amount of labeled training data and powerful computational resources to train these models and
optimize the large space of hyperparameters. If these requirements represent an issue for any
specific application or domain, learning these representations from scratch would be unfeasible [56].
One effective solution for these limitations is to transfer the learned representations by deep models
from similar visual recognition tasks building on the hypothesis that CNN-based features are
transferable [21,34,35,57,58]. Nevertheless, the ideal method of feature transfer has not yet been found
because the high-level layers of most deep CNN-based models tend to learn data and task specific
features. This paper considers CNN-based representations and specifically VGG-based networks of
different depth to construct ear recognition systems. To this end, we explore three representation
learning methodologies discussed in the following subsections and select the best representation
method to build ensemble models to further improve the recognition performance.

3.1. Training with Random Weight Initialization

One particular advantage of deep learning methods is learning hierarchical data representations to
form certain levels of abstractions. In the scope of image classification problems, lower layers process
rather basic relations between pixels and basic textures, while deeper layers consider high-level
information including semantic relationships. Despite the advantages and performance gain obtained
by deeper network designs, increasing the network depth increases the number of trainable parameters
that need to be optimized during training. The latter problem becomes more obvious in the
case of dealing with smaller datasets, and more specifically, when these parameters are randomly
initialized. In this paper, we use ‘training with random weight initialization’ and ‘training from
scratch’ interchangeably. In order to enhance the generalization ability of the models and alleviate
the overfitting problem, we adopt several regularization strategies, including dropout [55] and data
augmentation. These regularization techniques help the models to generalize well with unseen data
and improve the overall recognition performance.

3.2. Pretrained Models as Feature Extractors

Another effective strategy of using deep models to overcome the limitation of small-sized
datasets is initializing the network with weights from a pretrained model instead of random
weight initialization. By doing so, we benefit from the robust and discriminative filters learned
by top-performing CNNs on large-scale datasets such as the ImageNet dataset [27]. These pretrained
models can be used to perform feature extraction tasks considering that CNNs are composed of a
convolutional feature extraction part and a fully connected network for classification. Consequently,
these models can be utilized as generic feature extractors [59,60]. Similarly, the VGG networks consist
of a feature extracting convolutional part followed by a classification block with three fully connected
layers. The first layers of the convolutional part tend to extract low-level features such as edges,
color, and texture, whereas the high-level layers tend to capture more abstract high-level features.
Transferring the learned features across different recognition tasks is achieved by freezing specific parts
of the learned models and feeding the extracted features into a fully connected network or traditional
classifiers [21,34,35,57]. In this work, we follow a similar approach to investigate whether the learned
ImageNet features actually suit the ear recognition task. We freeze the weights of all convolutional
layers and retrain only the classifier on top (i.e., the fully connected layers) using the training part of
each ear dataset.

3.3. Fine-Tuning Pretrained Models

Using the fixed representations learned on ImageNet dataset for general object recognition might
not be the optimal choice for the specific task of ear recognition. Hence, in our third learning strategy,
we adjust all layers, including the convolutional ones and further train the models using the training set
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of each dataset. This fine-tuning or adaptation of pretrained models helps them to see and understand
the ear’s shape and structure, thus leading to better and more discriminative features and increased
overall recognition performance. Indeed, it is one of the most widely used approaches of transfer
learning from CNN-based models and has the advantage of accelerating the training process.

3.4. Ensembles of Deep Models

Ensemble models are powerful machine learning techniques which improve the overall
performance by combining the decisions from multiple models. As a result of the stochastic nature
of deep neural networks where each model learns specific filters and patterns, building ensembles
of deep models is an effective solution to boost the recognition accuracy. Ensembles have been
adopted to compete in many recognition challenges [17,18,44,61,62]. Herein, we propose ensembles
of deep models based on VGG-like network architectures of various network depths to improve ear
recognition accuracy. Figure 2 displays a complete overview of the ensemble construction process.
There are two essential stages. First, we use 60% of each dataset for training or fine-tuning the different
networks separately to obtain the trained models. Second, we select the best performing models and
construct ensembles of these models to classify the remaining 40% of the dataset. On the basis of
our experimental results, which indicate the superiority of fine-tuned models over other learning
methods investigated in this work, fine-tuned models are considered for building ensembles through
the formation of voting committees. Each test image is passed through the considered models and
each model provides a class membership score in terms of posterior probabilities. The individual votes
are combined by averaging the posterior probabilities and the final prediction is considered as the
class with the highest probability in the averaged vector (see Figure 2). While building ensembles is an
effective way for boosting the overall prediction accuracy, it comes at a computational cost, as instead
of training a single network, we must train multiple networks.

Train Set
60%

Test Set
40%

Network that was
pre-trained on

ImageNet

Only train weights 
in dashed modules

Initialize Weights

A
ug

m
e

nt
at

io
n

Train 
Separatedly

Convolutions Fully Connected Layer(s)

Average

Prediction

Posterior 
Probabilities

...

...

Infer 
Separatedly

Trained Models

Figure 2. A schematic diagram showing the process of constructing an ensemble of deep models for
improving ear recognition. The models are trained separately and the best performing ones are chosen
for the different combinations.
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4. Experimental Setup

In order to analyze the performance characteristics of the suggested VGG-based network
architectures in ear recognition, we conducted a series of identification experiments on three benchmark
datasets. Four VGG-like network variants with increasing depth (11, 13, 16, and 19 layers) were
implemented and compared to each other using three different learning strategies. Thereafter,
we selected the best performing models to build ensembles to boost the recognition performance.

For the AMI and AMIC datasets, the learning rate was scheduled to have an initial value of 0.01
and to decrease depending on the learning strategy. In the case of training the networks with random
weight initialization, the learning rate was divided by 2 every 100 training epochs. In the other two
strategies, the learning rate was halved every 50 epochs due to their fast convergence. For the WPUT
dataset, the learning rate was set initially to 0.02 and was divided by 5 every 300 epochs when training
the networks from scratch and divided by 5 every 100 epochs for the other two strategies. To improve
the models convergence during training, we applied batch normalization after each convolution layer.
The networks were trained using back-propagation [63] and optimized by applying stochastic gradient
descent with a momentum of 0.9 on a cross-entropy loss.

The models were trained on a PC with Intel(R) Core(TM) i7-3770 CPU, 8 MB RAM and Nvidia
GTX 1080 for 500 epochs (random weight initialization), 200 epochs (training only fully connected
layers), and 150 epochs (fine-tuning all weights) until convergence. However, the number of training
epochs for the WPUT dataset was 900 for scratch training and 300 for the other two strategies.

The following subsections give more details about the ear image datasets used and the data
augmentation methods followed in this work to improve recognition accuracy and avoid overfitting
of the training data by the deeper models. Furthermore, the experimental protocol and performance
metrics and curves used to evaluate the models’ performance are explained.

4.1. Ear Datasets

The AMI ear database [64] was collected from 100 students and teaching staff from the Computer
Science department at University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain.
It contains ear images acquired from both males and females of different ages, ranging from 19
to 65 years. In total, the database contains 700 images, whereby each subject has exactly seven images.
Out of the seven images, six show the right ear and one image shows the left ear. For each subject,
the right ear is captured with the head facing forward, looking up and down, and looking left and
right. The sixth image of the right profile is taken with the subject facing forward with a different
focal length. The last image is a left side profile where the subject is facing forward. All images were
acquired in an indoor environment and under the same lighting conditions. The images have a spatial
resolution of 492 × 702 pixels and are available in JPEG format. Sample images from the AMI database
are illustrated in Figure 3a. Although the AMI dataset contains good quality ear images and exhibits
different pose variations, other parts of the profile images such as the hair, and parts of neck and
face are visible. In order to alleviate the influence of these parts on the ear recognition performance,
we tightly cropped all profile images from the AMI dataset and prepared a new image set named
AMIC where only the ear structure is visible, as can be seen from Figure 3b. Because the images in the
original AMI dataset are taken with different head poses, the cropped images have various spatial
resolutions. In order to introduce more variability to the AMIC dataset, the images are not aligned.

The third dataset considered in our study is the WPUT ear database [65]. Its images were acquired
from both genders for the right and left ears. The available dataset has 3348 ear images for 474 subjects
with 1388 duplicated images. For our experiments, we used a cleaned version of the dataset which
has in total 1960 images for 474 subjects, each individual having between four to eight ear images.
All images have a spatial resolution of 380× 500 pixels and exhibit a wide range of image deformations.
The images were taken under different lighting conditions and various viewing angles. Occlusions
by hair, headdresses, ear-pads, earrings, and other accessories represent real challenges related to
the WPUT dataset. These significant deformations make the WPUT database prominent to evaluate
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biometric recognition models under unconstrained conditions. Figure 3c shows sample images from
the WPUT ear dataset.

(a)AMI dataset.

(b)AMIC dataset.

(c)WPUT dataset.

Figure 3. Sample images for two distinct subjects from the AMI and AMIC ear datasets, where images
in the bottom (b) are tightly cropped from the profile images shown at the top (a); while images in (c)
show ear images of selected individuals to illustrate the wide variability of image distortions that exist
in the WPUT ear dataset.

4.2. Data Augmentation

Since the process of training deep CNNs requires a huge amount of labeled training samples to
reduce overfitting, and given the fact that existing ear datasets are still limited (i.e., a few hundred
to a few thousand images), profound data augmentation is a crucial measure to effectively increase
the number of training samples. Appearance variations are artificially introduced without any extra
labeling costs by using label-preserving transformations [66–68]. We combined various forms of data
augmentation into a single preprocessing pipeline to transform the original images to generate variants.
The augmented images were generated on the spot before being fed into the models. In this work,
we optimized our dataset augmentation to improve the accuracy of the VGG network-based models;
the following is a list of image transformations applied on each training image in the ear datasets:

• Random scaling to fill 70–100% of the canvas area;
• Random rotation from −45 to +45 degrees;
• Random horizontal shearing in the range of −5% to 5% of the image width;
• Random cropping, removing up to 10% of the image, keeping the aspect ratio;
• Resizing to fit the canvas;
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• Gaussian blur with radius of 3 and 50% chance;
• Blending Gaussian noise of random amount;
• Random change of brightness from −20% to +20%;
• Random change of contrast from −40% to +40%;
• Random change of saturation from −20% to +20%;
• Random change of hue from −5% to +5% of the color range;
• Horizontal flipping with 50% chance;
• Normalization by subtracting the mean pixel and division by its standard deviation.

4.3. Evaluation Metrics and Protocols

In order to evaluate performance for all identification experiments, we plotted and computed the
following performance curves and metrics: (i) Cumulative match characteristic (CMC) curves for each
identification experiment to visualize the fine performance differences between the different models;
(ii) rank-one (R1) and rank-five (R5) recognition rates; and (iii) area under the CMC curve (AUC).

We followed the same experimental protocol for splitting each dataset into two disjointed sets:
a training set, and a test set covering 60% and 40%, respectively. We trained or fine-tuned the models
on the training set and evaluated their performance on the test set.

5. Results and Analysis

This section reports the results of our identification experiments using the different models and
strategies on the aforementioned ear datasets. Table 2 summarizes the obtained results using the three
quantitative metrics of R1, R5, and AUC, where the highest performance metrics for each strategy on
each dataset are shown in bold. We also report the values of the evaluation metrics when building
ensembles of models and compare our results with state-of-the-art methods in the literature, as given
in Table 2. Additionally, to visualize the performance differences of the different models, the CMC
curves generated for each identification experiment are presented in Figures 4–6.

Table 2. A comparison of rank-one (R1), rank-five (R5), and area under cumulative match characteristic
(AUC) for the different VGG-based models on the AMI, its cropped version AMIC, and WPUT ear
datasets. The results are given in percentages and the top three metrics for each learning method on
each dataset are highlighted in bold. The reported results from our ensembles on the AMI and WPUT
datasets indicate significant improvements of recognition rates over recent studies in the literature.

Methods Model
AMI AMIC WPUT

R1 R5 AUC R1 R5 AUC R1 R5 AUC

Scratch Training

VGG-11 83.21 97.14 98.57 69.28 87.14 96.61 47.83 71.68 96.40
VGG-13 84.28 96.07 98.51 70.35 87.86 96.70 46.56 69.26 96.24
VGG-16 86.07 96.79 98.54 70.35 84.29 96.34 46.17 68.75 96.20
VGG-19 84.28 95.00 98.45 68.92 83.21 95.65 44.13 66.07 95.96

Feature Extraction

VGG-11 76.07 93.92 98.24 80.35 93.21 97.96 59.44 81.12 98.19
VGG-13 81.78 97.50 98.61 71.78 89.64 97.01 51.53 76.15 97.56
VGG-16 83.21 93.92 98.22 74.64 88.21 96.46 50.13 73.72 97.54
VGG-19 68.92 91.42 97.53 62.85 81.79 95.76 44.26 69.52 97.10

Fine-Tuning

VGG-11 94.29 98.93 98.83 89.64 95.36 98.28 71.05 86.61 98.56
VGG-13 94.64 98.57 98.86 90.36 96.79 98.67 73.98 88.78 98.71
VGG-16 96.07 99.29 98.87 89.29 97.50 98.42 73.98 89.16 98.70
VGG-19 96.78 99.29 98.92 92.14 97.86 98.60 74.36 88.65 98.69

Our Ensembles
VGG-13-16 97.14 99.64 98.91 92.85 96.42 98.57 76.40 90.69 98.87

VGG-13-16-19 97.50 99.64 98.41 92.85 97.85 98.67 78.19 91.07 98.89
VGG-11-13-16-19 97.14 99.64 98.91 93.21 96.78 98.63 79.08 90.43 98.92

Previous Work

Chowdhury et al. [69] 67.26 - - - - - 65.15 - -
63.53 - - - - - 67.00 - -

Hassaballah et al. [9] 72.86 - - - - - 38.76 - -
73.71 - - - - - 37.13 - -

Alshazly et al. [10] 70.20 - - - - - - - -
Raghavendra et al. [70] 86.36 - - - - - - - -

Sultana et al. [71] - - - - - - 73.00 86.00 -
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In the following subsections, we first present the obtained results under the different learning
strategies using the original AMI dataset. Then, we discuss the obtained results on the AMIC
dataset and assess the effect of cropping auxiliary parts from the profile images on the recognition
performance. Thereafter, we evaluate the models in real-world scenarios associated with ear
recognition (i.e., in unconstrained conditions or in the wild) using the WPUT dataset. On the basis of
the obtained results, we select the best performing models and explore various model combinations
to build ensembles and analyze the impact on the performance metrics. Finally, with the help of
Grad-CAM visualization, we present visualizations of the discriminative image regions learned by the
models for inferring predictions.

5.1. Identification Experiments on the AMI Dataset

Our objective in this section is to measure the influence of increasing the network depth on the
recognition performance when using the AMI dataset in a closed-set identification scenario. Here,
we discuss the experimental results attained with our three feature learning strategies.

Scratch Training: The identification experiments when training a network with randomly
initialized weights suggest that the VGG-16 is the top performer with R1 of 86%, while the VGG-13
and VGG-19 models perform in a similar manner. However, for the other performance metrics of R5
and AUC, the leader is the shallower model VGG-11, indicating its competitive performance in the
higher ranks. Figure 4a illustrates the CMC curves for the obtained models. We can see that VGG-16
has the highest performance although the difference in performance between the models is relatively
small. In addition, the VGG-16 model is able to identify above 99% of the test images within the top
10 ranks.

Feature Extraction: When freezing the weights of all convolutional layers and tuning only the
fully connected layers of the pretrained models, we observe a worsening in the learning process
compared to the above-mentioned strategy. Here, the VGG-16 network performs the best with respect
to R1, exceeding 83%, while the VGG-13 model becomes more competitive and outperforms all
other models with respect to the other two metrics (R5 and AUC) due to its enhanced performance
in the higher ranks. Figure 4b shows the CMC curves when utilizing the pretrained models as
feature extractors, we observe a noticeable difference in the recognition curves compared to the
previous strategy. Surprisingly, the competitive performance of the VGG-13 in the higher ranks
increases from 81.78% for R1 to above 96% for R2, continuing to lead the performance within the top
20 ranks. The CMC curves in Figure 4b indicate the superiority of the shallower models over deeper
ones when using small-sized datasets and when using these methods of transfer learning from the
CNN-based models.

Fine-Tuning Pretrained Models: Giving all layers of the pretrained models a chance to optimize
their weights using the training part of the AMI dataset, we observe a noticeable improvement in
recognition performance and convergence time for all models. In particular, the deeper models exhibit
improvements with a large jump of above 10% in R1 recognition rates. This consistent phenomenon
only holds if both the weights of the fully connected layers and the convolutional feature extraction part
are adjusted to the problem, making the best performing model (i.e., VGG-19) achieve R1 recognition
rate of nearly 97%. In almost all cases, the performance is the highest for this learning strategy with
respect to the other two metrics of R5 and AUC. When considering the CMC curves presented in
Figure 4c, we notice that the performance curves for the fine-tuned models are much better compared
to the other two strategies regarding the starting point of the accuracy curves and in terms of how
many ranks from identifying 100% of the test images.
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Figure 4. The cumulative match characteristic (CMC) curves generated in the identification experiments
summarizing the recognition performance of the different models under (a) scratch training, (b) feature
extraction, and (c) fine-tuning on the test set of the AMI ear dataset.

Overall, the obtained models achieve a similar performance in terms of R1 when trained from
scratch, with a noticeable advantage over when the training was only for the fully connected layers
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of the pretrained models. It is also observed that when learning only specific parts of the pretrained
models, the deeper networks do not improve the recognition performance and the best model under
this learning strategy, the VGG-16 network, achieves 83% for R1, which is considered as good as the
worst model of the first learning strategy, the VGG-11 model. Intuitively, when the network depth
increases, the models can learn more complex features incorporating more semantic information. As a
result, the recognition rate should increase as soon as overfitting is taken care of. However, the obtained
results indicate an exception for the VGG-19 model and make us believe that VGG-19 features from
ImageNet do not suit the ear recognition task well. This is noticeable when using the ImageNet
features and training a stack of fully connected layers upon the convolutional layers, the performance
decreases for the VGG-19 architecture, suggesting that the convolutional layers of the deeper VGG-19
architecture already show high-level characteristics which are not generic for ear recognition purposes.
Nevertheless, when we include the convolutional layers in the training process we observe a great
improvement in nearly all performance metrics. In particular, the deeper models benefit from the
pretrained model weights to alleviate overfitting, while being allowed to adjust deep convolutional
layers and to form less ImageNet specific filters.

Ensembles of Models: On the basis of the experimental results which indicate that models
obtained using the fine-tuning strategy attain the highest recognition performance, we choose these
models for constructing different ensembles. We have experimentally examined several combinations
and checked their impact on the performance metrics. Table 2 presents the best three ensembles of
models and their obtained results in terms of the R1, R5, and AUC metrics. We start by adding the
VGG-16 to the VGG-13 model and observed an improvement of above 2% in R1. Similarly, adding the
deeper model VGG-19 to both VGG-13 and VGG-16 yields the best overall performance with a result
of 97.5% for R1. However, adding the shallower model VGG-11 to this triplet did not increase the
recognition rate but rather cancelled the advantage of adding VGG-19 to the ensemble.

5.2. Identification Experiments on the AMIC Dataset

The main objective of the experiments conducted in this section was to ascertain the impact of
removing auxiliary information from the profile images on training and tuning the considered deep
models. The presented results in Table 2 and Figure 5 indicate lower performance metrics from the
identification experiments compared with results obtained on the AMI dataset.

Scratch Training: When using the tightly cropped images from the AMIC dataset, training with
randomly initialized weights suffers from a noticeable drop in the recognition rates compared to
the AMI dataset with a margin of more than 10%. Just like before with AMI, the different models
perform approximately on the same level with a minimal performance difference. The VGG-13 model
achieves the highest recognition rates of above 70% for R1. Figure 5a visualizes a complete view of the
recognition rates achieved by the models and emphasizes the negative effect of removing other profile
parts from the images. Even though the difference between models is constrained within 1%, the CMC
curves indicate an improved performance for the shallower models at higher ranks compared with the
deeper models.

Feature Extraction: On the AMIC dataset, the VGG-11 network achieves an R1 recognition rate of
above 80%, outperforming all other models with respect to the three performance metrics. The CMC
curves in Figure 5b indicate the superior performance of the shallower models over the deeper ones.
This emphasizes the importance of adjusting the weights from the convolutional part as retraining
only a few fully connected layers is not sufficient.

Fine-Tuning Pretrained Models: Compared to the above-mentioned strategies, tuning all
parameters of a pretrained network yields a much better performance and avoids the overfitting
problem reasonably well. Even though all models are influenced by the cropping process,
the improvement in recognition rates is with the large margin of nearly 22%. Herein, the VGG-19
model leads the performance in all metrics with a rate of 92.14% for R1, while the other models have
similar performance for R1 of nearly 90%. Fine-tuning the convolutional block in addition to the
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classification block of the pretrained models leads to a superior performance. The CMC curves in
Figure 5c, show an improvement in all recognition curves with higher rates for the VGG-19 in the first
five ranks, then an improved performance for the VGG-16 followed by VGG-13 in the higher ranks.
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Figure 5. The CMC curves generated in the identification experiments summarizing the recognition
performance of the different models under (a) scratch training, (b) feature extraction, and (c) fine-tuning
on the test set of the AMIC ear dataset.
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Ensembles of Models: We also consider different combinations of models obtained on the AMIC
dataset for making ensembles and measure the gain in performance metrics. We start by combining
two fine-tuned models of VGG-13 and VGG-16, and we observe a slight improvement over using any
of the other models separately. Surprisingly, when adding VGG-19 to the ensemble, we notice a slight
improvement in the R5 and AUC metrics while getting an identical R1 recognition rate, which means
that the VGG-19 model helps the ensemble to improve recognition in the higher ranks. On the other
hand, adding the shallower model VGG-11 to the triplet leads to a performance gain of above 1% with
an R1 recognition rate of 93.21%, which is the highest performance achieved on the AMIC dataset.

In general, learning deep representations of tightly cropped ear images seems to be more
challenging, especially when the cropped images introduce variable sizes and pose variations.
One logical reason for the performance drop, which will be explained in more details with the
help of visualizations in Section 5.4, is that the profile images of the AMI dataset contain additional
textural information, such as hair color, haircut, skin from the neck or cheek, and other visible parts,
that the models are allowed to utilize to infer a prediction. Thus, removing these extra parts from the
profile images yields information loss and performance degradation. In order to check whether the
consistent drop originates from the AMI and AMIC image sets using the same hyperparameters for
training, we did an extensive hyperparameter search for the AMIC. However, this did not lead to any
significant change in the performance metrics, substantiating our hypothesis.

We also examined the model performance with respect to the network depth. For the AMIC
dataset, we found that shallower models perform as well as the deeper ones as they are less prone to
overfitting and have fewer parameters to optimize. Another possible interpretation for this behavior
can be attributed to two things: First, on the AMI dataset, the additional information related to hair,
skin, and other details increase the variance of the data and offers an incentive for learning higher level
filters, which have to distinguish between haircuts, skin textures, and other details. The additional
variance requires a deep network structure that is capable of learning more nonlinear and more
complex filters; second, a smaller parameter space seems to be enough for this low-variance image set
and should be chosen in accordance to Occam’s razor [72].

5.3. Identification Experiments on the WPUT Dataset

This section reports the recognition results obtained using ear images acquired under difficult or
unconstrained imaging conditions. The experiments were conducted under a similar experimental
protocol. Table 2 presents the results for the quantitative metrics; the CMC curves summarizing the
overall recognition performance of the different models are shown in Figure 6. We start by briefly
discussing the obtained results under each learning strategy.

Scratch Training: When training deep models from scratch on the unconstrained WPUT dataset,
a significant drop in recognition rates is observed with respect to the other datasets. A logical reason
for this is the lack of sufficient training data and the difficulty introduced by the wide range of image
variations. Furthermore, the WPUT dataset has approximately an equal number of images for the
left and right ears, each with different viewing angles which could impel the models to learn these
variations and not focus on the important features. This problem emphasizes the importance of having
abundant training samples for each individual to help the models learn and generalize to the level of
intraclass variations. A general observation from Table 2 is that shallower models tend to learn more
robust features than deeper ones due to the lower number of learnable parameters. Here, the VGG-11
model obtains the highest values for all metrics while the other models have a similar performance.
Figure 6a presents the CMC curves which show the improved accuracy for VGG-11 followed by
VGG-13 across all ranks. The results indicate that learning ear image features from scratch under
unconstrained scenarios is difficult and using more training data is critical to learning useful features.

Feature Extraction: The performance of feature extraction through the pretrained models under
uncontrolled conditions is better than training from scratch. One reason for this is the benefit from the
learned filters in the low-level layers which extract more generic features. Additionally, the limited
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training images are used to tune only the classification block on top. Again, VGG-11 is the top performer
with a R1 recognition rate of nearly 60%, whereas VGG-19 has the worst performance between the
tested models. Therefore, under this learning representation strategy, shallower models show a clear
advantage over deeper ones due to the lower number of parameters to optimize. As reported in
Table 2, the obtained results show some improvements which indicate the benefit of transferring the
learned filters across the recognition tasks. Figure 6b shows the superiority of performance for the
shallower models across all ranks.

Fine-Tuning Pretrained Models: The obtained results suggest that fine-tuning pretrained
networks on the target task is a preferable option. As expected, the evaluation metrics are higher
under this learning strategy. Despite the improvement in all metrics for all models, deeper models
maximize their benefit and achieve a better performance. The models achieve R1 rates of above 71%
and the best performance is obtained by the VGG-19 which indicates a significant improvement of
above 74% in the R1 rate. Therefore, adjusting the convolutional kernels in the feature extraction block
along with the classification part leads to more discriminative features and superior performance.
To better visualize the performance variations across the different models, the CMC curves are plotted
in Figure 6c. We notice an improvement in all performance curves with a higher recognition rate for
the VGG-19 in the first five ranks followed by VGG-16 and VGG-13 in the higher ranks.
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Figure 6. The CMC curves generated in the identification experiments summarizing the recognition
performance of the different models under (a) scratch training, (b) feature extraction, and (c) fine-tuning
on the test set of the WPUT ear dataset.

Ensembles of Models: We start our ensembles by combining the VGG-13 and VGG-16 as both
have an identical performance of nearly 74% for R1. The result is an improved R1 recognition rate
above 2%. In addition, adding the VGG-19 model to the ensemble, leads to a further improvement in
the R1 and R5 recognition rates of 2% and 1%, respectively. Furthermore, adding the VGG-11 to the
triplet of models enhances the performance and yields the best R1 recognition rate, which exceeds
79%. The obtained results from these ensembles indicate the advantage of having multiple image
representations learned by different models to address the unconstrained ear recognition problem and
improve the overall performance.

5.4. Visualization of the Obtained Models

Although deep learning techniques achieve state-of-the-art results, understanding and
interpreting the obtained results and the reason behind network decisions are of paramount importance.
In this section, we seek to better interpret what deep models have learned after training using the
Grad-CAM visualization technique. We illustrate the representation learned by highlighting the
regions of interest (areas where the models focus) when making a prediction decision. Even though
similar conclusions are obtained for the other models, for ease of exploration, we choose the VGG-16
models obtained after training on both the AMI and AMIC datasets and visualize all the correctly
classified subjects as well as the misclassified ones from both datasets, as shown in Tables 3 and 4.

The Grad-CAM approach finds and highlights spatial image regions that strongly contribute to
making a specific decision, by providing a heatmap. Thus, in Table 3, we present both the original
image and the heatmap extracted by Grad-CAM, with black pixels indicating the least relevant regions
and white pixels indicating the most relevant regions. In addition, the original image is combined
with the heatmap to form one comprehensive image using the Hue, Saturation, Value (HSV) colormap,
where red-yellow denotes regions of low relevance and purple-red denotes regions of high relevance.
It appears to be a convenient phenomenon that models are able to make a correct prediction when they
focus on the geometric structure of the ear, although they are free to utilize some other features as well.
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Table 3. Qualitative examples of gradient-weighted class activation map (Grad-CAM) visualization
results for four correctly classified and four misclassified ear images from each ear dataset. The results
were generated using the VGG-16 model trained with random weight initialization. For a correct
classification, the model considers some discriminative regions and more specifically the geometric
structure of the ear shape, while misclassification seems to be the result of utilizing misleading regions
such as the auxiliary parts of the hair and neck.

Dataset Correctly Classified Misclassified
Original Grad-CAM Heatmap Original Grad-CAM Heatmap

AMI

AMIC
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In order to get an insight into the process of wrong ear identification, misclassified samples and
their Grad-CAM visualizations are also added to Table 3. The network predominantly focuses on
textures at the ear boundary when making wrong decisions and seems to overstate the importance
of certain ear parts, the haircut, or skin texture. Nevertheless, this kind of auxiliary information is
successfully utilized for other samples, as illustrated in Table 4. These manually chosen images unravel
how the networks actually include features that are not part of the ear for their correct predictions.

Table 4. Grad-CAM visualization of correctly classified subjects from the AMI dataset. The model
looks at various places around the ear structure, exploiting these auxiliary parts to make predictions.
This is justifying the drop in recognition rate on the AMIC dataset where these extra parts are removed
from the profile images.

Dataset Original Grad-CAM Heatmap Original Grad-CAM Heatmap

AMI

5.5. Why Is the Recognition Rate Lower on the AMIC Dataset?

Our results in Table 2 clearly show that the shift from the original AMI dataset to its cropped
counterpart is accompanied by a noticeable drop in performance. In this section, we try to interpret
this phenomenon with the help of the Grad-CAM visualization technique. In the previous section,
we found that models successfully consider other parts of the profile image, such as hair and neck,
in making their predictions. A plausible reason for the performance drop is the cropping of the profile
images, which may result in losing certain valuable information or some specific region that helps the
models obtain a correct prediction. Table 3 presents visualizations of some correctly identified samples
that were drawn from the AMIC image set, and for the purpose of direct comparison we also present
some misclassified images. One can observe that models have no other choice than to focus on the
shape and texture of the ear.

Nevertheless, wrong decisions seem to be somewhat correlated to a stronger focus on regions
close to the image boundary. It is possible that filter outputs located at the border of a spacial feature
map suffer more from incomplete convolution (padding) than filter outputs corresponding to the
center of a feature map. As a result, the receptive field needs more layers to actually cover some
relevant part of the ear. Thus, relying on far-from-center regions might be somewhat less robust
leading to a higher chance of misclassification. However, conducting the experiments with no padding
actually did not further increase the performance metrics.
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5.6. Computational Complexity

As a result of the fact that error back-propagation requires a massive amount of numerical
operations, model optimizations need to be taken into considerations as the small memory footprint
and high speed of the obtained models are of paramount importance, especially if one intends to
deploy the algorithm on devices with limited computational resources. As an additional step to
reduce the computation time, we reduce the input image size to 133 × 190 = 25,270 for both AMI
and AMIC and 170 × 220 for the WPUT, which is much smaller than the 224 × 224 pixels required for
training on ImageNet dataset. Making the images even smaller leads to a decrease in the performance
metrics. As a result, we found these image sizes to be the optimal ones in combination with our data
augmentation methodology and the VGG architecture.

Table 5 shows important factors of the different VGG network-based models including model size,
number of trainable parameters, size of the feature maps of the fully connected layers, training time,
and batch size. The training time is measured in seconds per batch. We notice from Table 5 that the
number of trainable parameters is smaller compared to the original VGG architectures for two main
reasons. First, the VGG network was proposed to tackle the ImageNet classification task which has
1000 classes; however, our datasets have only 100 and 474 classes and consequently less parameters in
the fully connected layers. Second, we perform adjustments to the original VGG architectures to suit
our recognition task and further reduce the number of trainable parameters.

Table 5. A comparison of time and memory consumption by the various VGG models along with other
distinguishing characteristics. The analysis is conducted using the AMI dataset.

Model Model Size (MB) Trainable Parameters Feature Size Training Time (Seconds Per Batch) Batch Size

VGG-11 151.99 39,843,684 2048 3.6 25
VGG-13 152.70 40,028,580 2048 3.7 25
VGG-16 172.96 45,340,836 2048 3.7 25
VGG-19 193.23 50,653,092 2048 3.8 25

6. Conclusions and Future Work

The aim of this work was to address the ear identification problem under constrained and
unconstrained conditions using deep learning models of increasing depth and ensembles of the best
models as well as to improve the recognition performance. We considered four VGG-like network
architectures and three ear image representation learning strategies including: training networks
with randomly initialized weights, feature extraction using pretrained networks, and fine-tuning
models which were pretrained on image classification tasks. The experimental results indicate
the supremacy of the fine-tuned networks on ear images compared to the other learning methods.
Furthermore, the recognition performance was further improved, independent of the dataset size,
when constructing ensembles of the fine-tuned networks. Despite the improved performance on all
datasets with the ensembles, the improvement under uncontrolled conditions was higher due to the
wide variations in images, meaning that the different models could learn more distinguishing features.
Therefore, it is of a crucial importance to utilize multiple representations for ear images acquired under
uncontrolled settings. Experimentally, the proposed ensembles achieved the best recognition accuracy
on all datasets with a large margin of at least 11% and 6% under constrained and unconstrained
conditions, respectively.

In order to understand what the deep models have learned and attempting to interpret the
obtained results and improve ear recognition understanding, we provide visualizations of the most
discriminative regions in the ear image which lead to correct or false predictions. With the Grad-CAM
visualization technique, we were able to see where the models focus when making their predictions.
On the basis of the results from the visualization experiments, we found that focusing on the ear shape
is frequently associated with correct predictions; while considering other parts of the profile image
can result in misleading predictions. On the other hand, utilizing auxiliary parts of profile images
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could help in distinguishing certain high-level features like gender or haircut based on visible parts
of the hair or neck. Therefore, we introduced a cropped ear image set (AMIC) based on the existing
profile images from the AMI dataset. The main purpose of the introduced dataset was: (i) to make the
networks process only the ear shape and structure so that they can learn only the relevant ear features;
(ii) to build trust in the obtained results based on exclusively seeing the ear which is the main aim of
the ear recognition study; and (iii) to evaluate the performance of newly proposed ear recognition
systems in the future.

Even though the obtained results are promising and significantly improve the recognition
performance on the considered datasets, there is still room for improvement, such as overcoming
the limitations of small-scale ear datasets, and efficiently learning features that exhibit robustness to
various image transformations. In future work, we plan to extend our experiments to explore various
deep CNNs architectures and suitable learning strategies, whilst focusing more on the problem of
unconstrained ear recognition. On the other hand, we will extend our study as regards different CNN
feature visualization techniques to understand what the network or certain layers learn in order to find
the most relevant regions of the human ear. A very interesting point for future study is the exploration
of ways to control the attention of CNNs, allowing the networks focus only on certain discriminative
regions in the input image in order to improve their learning ability.
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5. Emeršič, Ž.; Štruc, V.; Peer, P. Ear recognition: More than a survey. Neurocomputing 2017, 255, 26–39.
[CrossRef]

6. Galdámez, P.L.; Raveane, W.; Arrieta, A.G. A brief review of the ear recognition process using deep neural
networks. J. Appl. Log. 2017, 24, 62–70. [CrossRef]

7. Benzaoui, A.; Hadid, A.; Boukrouche, A. Ear biometric recognition using local texture descriptors. J. Electron.
Imaging 2014, 23, 053008. [CrossRef]

8. Omara, I.; Wu, X.; Zhang, H.; Du, Y.; Zuo, W. Learning pairwise SVM on hierarchical deep features for ear
recognition. IET Biom. 2018, 7, 557–566. [CrossRef]

9. Hassaballah, M.; Alshazly, H.A.; Ali, A.A. Ear recognition using local binary patterns: A comparative
experimental study. Expert Syst. Appl. 2019, 118, 182–200. [CrossRef]

10. Alshazly, H.A.; Hassaballah, M.; Ahmed, M.; Ali, A.A. Ear Biometric Recognition Using Gradient-Based
Feature Descriptors. In Proceedings of the International Conference on Advanced Intelligent Systems and
Informatics, Cairo, Egypt, 1–3 September 2018; pp. 435–445.

11. Pflug, A.; Paul, P.N.; Busch, C. A comparative study on texture and surface descriptors for ear biometrics.
In Proceedings of the International Carnahan Conference on Security Technology, Rome, Italy, 13–16 October
2014; pp. 1–6.
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