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Abstract: Ear recognition is an active research area in the biometrics community with the ultimate
goal to recognize individuals effectively from ear images. Traditional ear recognition methods
based on handcrafted features and conventional machine learning classifiers were the prominent
techniques during the last two decades. Arguably, feature extraction is the crucial phase for the
success of these methods due to the difficulty in designing robust features to cope with the variations
in the given images. Currently, ear recognition research is shifting towards features extracted by
Convolutional Neural Networks (CNNs), which have the ability to learn more specific features robust
to the wide image variations and achieving state-of-the-art recognition performance. This paper
presents and compares ear recognition models built with handcrafted and CNN features. First,
we experiment with seven top performing handcrafted descriptors to extract the discriminating ear
image features and then train Support Vector Machines (SVMs) on the extracted features to learn
a suitable model. Second, we introduce four CNN based models using a variant of the AlexNet
architecture. The experimental results on three ear datasets show the superior performance of the
CNN based models by 22%. To further substantiate the comparison, we perform visualization of the
handcrafted and CNN features using the t-distributed Stochastic Neighboring Embedding (t-SNE)
visualization technique and the characteristics of features are discussed. Moreover, we conduct
experiments to investigate the symmetry of the left and right ears and the obtained results on two
datasets indicate the existence of a high degree of symmetry between the ears, while a fair degree of
asymmetry also exists.

Keywords: ear recognition; handcrafted features; CNN features; convolutional neural networks;
transfer learning; feature visualization

1. Introduction

The human ear provides a robust source of biometric information with several desirable
characteristic features that could be exploited in personal identification, overcoming the drawbacks
of other biometric modalities and enriching the biometric technology. These characteristic features
are categorized into three levels based on the type of features recognized by either human experts
or machines [2]. The first level of features is concerned with the general description of the ear
appearance such as ear shape and skin color. These features could be extracted from ear images at low
resolution. Even though these features are useful for classification or in the early process of subject
elimination due to a totally different appearance, they are not adequate to recognize a person over
a large number of candidates with similar looking ear images. The second level of features, which
is essential for recognition, describes the geometric ear structure with localized ear characteristics
such as ear curvature, edges, folds, ridges, and the relative distance between specific ear parts. In fact,
these features are spatially distinct among individuals and give the ear its uniqueness to distinguish
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even identical twins [3]. These types of features are extracted locally by applying a feature extraction
method over sub-regions of the ear image and then concatenating them to obtain a global ear image
description. The third level of ear features represents the unstructured micro features such as moles,
piercings, and birthmarks, which provide supplementary information that could improve the matching
accuracy in ear based recognition systems. The personal identification is performed based on such
distinguishing ear characteristic features that are unique with respect to location, size, direction,
and angles for each individual. This is also consolidated given the stability of the anatomical features
of the ear, which do not change dramatically during human life.

In its beginnings, identity recognition with ear images was dominated by the combination of
pre-defined features and the subsequent use of traditional machine learning classifiers. The feature
extraction process is arguably the most important phase in the recognition process where the main
task is to describe the ear characteristics in a more distinctive way. The output of the feature extraction
process is a feature vector that encodes a particular image aspect such as texture, shape, color, etc.,
where the image pixels are only used as input to the feature extraction method. The feature vectors
are then used to train a classifier to learn the underlying patterns of the extracted feature vectors and
obtain a suitable model. The most successful and widely used hand designed features in the literature
are those that extract local patterns and count their distribution across the entire image. These methods
encode textural and gradient based information as discriminative features. In this work, we consider
the top performing representatives from both texture based and gradient based descriptors and explore
their discriminative power and robustness.

Currently, deep learning methods [4] have been developing at a fast pace and have become a
popular data driven learning strategy for various computer vision tasks. They combine both traditional
steps: feature extraction and classification are learned together in an end-to-end model. A typical deep
learning model for feature learning is Convolutional Neural Networks (CNNs), which are composed
of stacking multiple layers on top of each other and, when applied to images, automatically learn a set
of filters that provide discriminative features. The filters in the lower layers of the CNN learn more
generic features such as edges and corners, whereas the filters at higher layers utilize the low level
features to learn more complex and abstract features capable of differentiating between individuals or
different image classes. The CNNs have direct access to the raw image pixels and learn the features
automatically during the network training process. In this scenario, the CNN is free to use all levels of
features and learn more semantic information from the given ear images. Moreover, training a deep
CNN comes with the additional advantage of tuning the representation of the input data to suit the
particular problem. Furthermore, the benefits of training and learning the features lead to the high
adaptiveness of deep learning strategies.

In order to learn better visual representations and subsequently improve the recognition
performance, deep CNNs require large labeled datasets [5]. However, there are certain situations
when solving real-world problems where the available training data are limited and large datasets do
not exist. In these cases, applying deep learning methods is not a feasible option, and conventional
feature extraction and classification techniques could be a proper solution. One feasible solution for
recognition problems when the amount of data are insufficient is pretraining on a similar recognition
task using large scale datasets such as ImageNet [6], as conducted in [7–11]. This technique is referred
to as transfer learning and has proven to be effective in plenty of application domains including ear
recognition [12–14]. In the context of deep CNNs, two types of transfer learning are applicable. First,
the CNN is trained for a specific recognition task where the network learns a set of discriminating
filters. Then, the learned filters can be reused to extract discriminative features for a new recognition
task by treating the pretrained CNN as an arbitrary feature extractor. The extracted features can
then be used to train conventional classifiers such as support vector machines as explored in [15] or
a set of fully connected layers as conducted in [14]. Second, instead of using the pretrained CNN
as a feature extractor, fine tuning replaces the top layer(s) with new one(s) and allows the weights
of the pretrained network to be adapted using domain specific data. Another effective approach to
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improve the recognition performance is to combine multiple types of features or classifiers. The authors
in [16] employed a score based fusion of multiple CNNs and handcrafted features to improve the
classification accuracy. Similarly, in [17], handcrafted features were first extracted by representative
descriptors, and an SVM was trained individually for each descriptor. The different SVMs were
then combined with an ensemble of fine tuned CNNs. The obtained classification system indicated
discriminative power and generalization ability across various datasets. With respect to ear recognition,
Hansley et al. [18] achieved outstanding performance in unconstrained ear recognition by fusing
handcrafted and CNN learned features. The handcrafted and CNN descriptors appeared to learn
different, but complementary features when combined to improve the recognition performance. For a
summary of the different fusion techniques explored in ear recognition, the reader is referred to the
extensive review in [19].

In this paper, we study and compare the recognition performance of seven conventional and
four deep learning based ear recognition models on three ear datasets having a limited amount of
ear images acquired under controlled and uncontrolled settings. For the conventional approaches,
we explore the characteristics of seven top performing handcrafted descriptors to represent the ear
image in the form of a feature vector quantifying the image contents. Then, we train linear SVMs
on the extracted feature vectors to obtain a suitable model to recognize the identity of unseen ear
images (i.e., the test set). On the other hand, we introduce four ear recognition models based on a
variant of AlexNet [20] after specific hyperparameter optimization to suit the variable image sizes in the
considered ear datasets. We experiment with different feature learning strategies including: (1) training
the network from scratch to learn the most discriminative ear features, (2) using a pretrained network
as a feature extractor by freezing the weights for the feature extraction part (i.e., the convolutional
layers) while adjusting the classification part of the network (i.e., the fully connected layers), (3)
adding a specific batch normalization layer to normalize the input to the convolutional and fully
connected layers, and (4) performing domain adaptation or fine tuning of the pretrained network
weights along with the inserted batch normalization layers using the training data from each dataset
to learn more ear specific features. The experimental results indicate the supremacy of the CNN based
models compared to the traditional techniques on the three datasets. To better interpret the obtained
results, we employ the t-distributed Stochastic Neighboring Embedding (t-SNE) [21] dimensionality
reduction and visualization technique to visualize the features by mapping them onto a 2D space.
The visualization provides insights on the invariance property of the CNN features with respect to
some image transformations such as horizontal flipping.

The remainder of the paper is organized as follows. Section 2 discusses the related work from
the literature. In Section 3, we explain the best performing handcrafted descriptors to describe ear
images. Section 4 presents the AlexNet architecture along with the custom changes made to suit ear
recognition. In Section 5, we describe in detail the experimental setup, benchmark datasets, evaluation
protocols, and the obtained results. Finally, Section 6 derives our main conclusions and the future
research directions.

2. Related Work

For the ear recognition problem, several approaches have been proposed in the literature.
These techniques are classified into four main categories based on the employed feature extraction
method [22]. The first category includes geometric techniques that consider the geometrical parts
of the ear as discriminating features [23–25]. A common approach is to apply an edge detector
to describe edges from the ear image. The edges can be subsequently used to derive geometric
descriptors for recognition. Although geometric features could provide robustness against rotation,
scaling, and viewpoint changes, texture information is barely considered and potentially discriminative
information is ignored. The second category includes holistic approaches, which encode the global
appearance of the ear and compute representations that describe the entire ear image. However, these
techniques are very sensitive to changes in the image appearance such as head poses or illumination;
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thus, some normalization techniques should be applied before computing the features. Examples for
holistic approaches are given in [26–29]. The third category includes techniques that describe local
image regions as discriminative features for recognition. The description can be computed for some
salient points in the image or computed densely for every pixel in the entire image (as described
in Section 3). The local techniques that compute dense description of the input images are favored
due to their computational simplicity and superior recognition performance as reported in several
studies [18,30–33]. The last category includes hybrid methods, which combine geometric, holistic, local,
or various features in order to obtain even more discriminative descriptors. However, the increased
discriminative power comes at additional computational cost.

Pattern recognition is now shifting from conventional handcrafted features to learned or CNN
based image features [34–36]. Moreover, recent advancement has pushed the research area to study the
recognition performance under more challenging conditions commonly referred to as unconstrained
or in the wild. However, moving from controlled to unconstrained image conditions represents the
limitations for the existing ear recognition systems as reported by different evaluation groups [37,38].
Under the uncontrolled conditions, the recognition systems are confronted with real-world challenges
such as variations in viewing angles, low resolution images, illumination variations, and occlusions
caused by hair, earrings, and other objects. In order to tackle these challenges, a robust and more
discriminative description of ear image features is crucial. In this study, we explore and compare the
discriminative power of handcrafted and CNN descriptors to describe ear images.

Similar to our work, the authors in [39] compared the recognition performance of three local
texture descriptors. The conducted study considered only three handcrafted features, and no CNN
features were used. Furthermore, the experiments were conducted on ear images from three datasets
acquired under controlled conditions with slight variations in lighting.

Another comparative study was introduced in [30]. The authors evaluated and compared
the recognition performance of texture and surface descriptors. They tried different combinations
of textural features with subspace projection methods and using different distance measures.
The Mathematical Analysis of Images (AMI) ear dataset was used, but only 500 images out of the
700 ear images were selected. Thus, the reported results were based on a subset of the AMI dataset.
Further, neither CNN features nor images acquired under uncontrolled image conditions were used.

A similar study was conducted using eight handcrafted features in [31] and extended in [32] to
include three deep learning models based on pretrained networks. The authors re-trained the networks
using separate training images to fine tune their weights. Then, the fine tuned networks were used
as black-box feature extractors to obtain a feature vector for each ear image. The Annotated Web Ear
(AWE) dataset was used for evaluation and the cosine distance to match the extracted feature vectors.
The focus of the conducted study was to evaluate the impact of several ear image covariates such as
gender, ethnicity, accessories, and different head poses on the identification performance. The reported
analysis showed a significant drop in the recognition performance in the presence of accessories and
a high degree of pose variations, while the impact was less for other covariates such as gender and
ethnicity. On the contrary, our focus here is the exploration of handcrafted features against different
types of CNN features extracted from a variant of AlexNet for different ear datasets. Furthermore,
instead of relying on a distance metric for matching the extracted feature vectors, the features are
classified by training SVMs on the training set and the results are reported on the test set.

Almisreb et al. [40] introduced an ear recognition approach by fine tuning a pretrained AlexNet
model. The ear images were acquired with a smart phone for 10 subjects where each subject had
30 images. The images were for the left and right ear and exhibited easy degrees of rotation and scaling
effects. They used 25 images from each individual to fine tune their model and five images for testing
and reporting the recognition performance. In contrast, our study is more comprehensive and includes
various learning strategies. Furthermore, three datasets are used with more data, subjects, and more
challenging ear images. Moreover, seven top performing handcrafted features are included along with
visualization for the extracted features to substantiate the comparison.
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Recently, the authors in [41] conducted a comparative experimental study to evaluate the
recognition performance of several variants of the Local Binary Pattern (LBP) texture descriptor [42].
The authors used four ear datasets covering controlled and uncontrolled imaging conditions.
Their reported results indicated the success of texture descriptors under controlled conditions, while
the recognition accuracy dropped significantly when more variations were encountered in the given
images. Dissimilar from our work, no CNN features were included. Our study considers both
handcrafted and CNN features and provides visualization to understand the main characteristics of
the features.

3. Handcrafted Features

This section considers a set of representative handcrafted feature descriptors, which are frequently
used in image based representation tasks. The selection is based on their outstanding performance
in object recognition applications [30–32,41]. These descriptors mainly encode repeated patterns and
distinct image characteristics such as texture, gradient magnitudes and orientations, phase information,
and their distribution in a given image. We describe the encoding methodology, type of encoded
information, implementation details, and the distinguishing characteristics of each descriptor.

3.1. Local Binary Patterns

The Local Binary Pattern (LBP) is an effective texture descriptor proposed in [43], which
characterizes texture in local neighborhoods. LBP encodes image pixels using small image regions of
size 3× 3 pixels by thresholding the neighborhood pixels against the center pixel. Suppose the center
pixel has an intensity value gc and the neighborhood pixels have intensities gp(p = 0, 1, . . . , 7), then
the pixels are compared as follows:

s(gp − gc) =

{
1, if gp ≥ gc

0, if gp < gc.
(1)

Thus, for each pixel, an eight digit binary number is obtained. The number is then converted to a
decimal number by multiplying the binary values by a binomial factor of 2p and summing them up
(either in clockwise or counterclockwise direction keeping the order consistent) to get the LBP code
according to:

LBP =
7

∑
p=0

s(gp − gc)× 2p. (2)

The image descriptor is represented as the frequency of occurrence (i.e., histogram) for all obtained
patterns across the entire image. Given an input image with a spatial resolution of W × H pixels,
after computing the LBP for all pixels, a histogram representing their distribution over the entire image
is constructed as follows:

H =
W−1

∑
i=0

H−1

∑
j=0

f (LBP(i, j), p) , p ∈ [0, N], (3)

and,

f (x, y) =

{
1, if x = y

0, if x 6= y,
(4)

where N denotes the maximal value for an LBP pattern. For a square 3 × 3 image regions with
eight neighbors, there is a total of 28 = 256 distinct patterns represented by integer values within
within [0, 255]. The final histogram is a 256-dimensional vector, which can be used as an image
descriptor. One advantage of the original LBP operator is its ability to capture fine grained image
details. However, being restricted to a 3× 3 scale limits the descriptor to capture image details at
varying scales. Furthermore, it is sensitive to rotation and noise.
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Several variants of the LBP operator are proposed in the literature to address the limitations
of LBP and to improve its distinctiveness and robustness against image distortions. For instance,
Ojala et al. [42] introduced two key contributions to the original LBP operator. First is computing
the LBP operator for variable neighborhood sizes using a set of P pixels equally spaced on a circle
of variable radius R as depicted in Figure 1. Second, they defined certain patterns called “uniform”,
which are fundamental in local image texture. The pattern is considered uniform if it has at most two
transitions from 0→ 1 or 1→ 0. For example, 11001111 and 10000011 (two transitions) are uniform
patterns, whereas 11011101 and 1010111 (four transitions) are not. In general, there are (P(P− 1) + 3)
uniform patterns where P is the number of neighborhood pixels. As a result, the length of the
constructed histogram is reduced from 2P to (P(P− 1) + 3) dimensions, which increases efficiency
due to a smaller memory footprint and less computations.

g0

g1

g2

g3

g4

g5 gP-1

R 2π/P

gc

...

Figure 1. A schematic diagram of a center pixel with gray level gc and P neighbors equally spaced on a
circle of radius R.

3.2. Completed Local Binary Patterns

The Completed Local Binary Pattern (CLBP) [44] is a texture descriptor that characterizes local
image structures and addresses some of the limitations of the original LBP operator such as sensitivity
to noise and rotation. The authors proposed to encode small image regions by their central pixels and
a Local Difference Sign-Magnitude Transform (LDSMT).

Figure 1 illustrates a set of P neighboring pixels equally spaced on a circle of radius R around
a center pixel with intensity gc. Then, the local difference between the center pixel and neighbors
dp = gp − gc can be decomposed into two complementary components of signs sp and magnitudes mp

as follows:

dp = sp ·mp where

{
sp = sign(dp)

mp = |dp|.
(5)

In order to construct the feature histogram representing the entire image, the CLBP follows three
main steps.

First, the center pixel gc is converted into binary using a global value t as a threshold, which
represents the average gray level of the entire image:

CLBP_C = T(gc, t), and T(g, t) =

{
1, if g ≥ t

0, if g < t.
(6)

Second, the sSign (S) and Magnitude (M) components are encoded using two operators, CLBP-Sign
(CLBP_S) and CLBP-Magnitude (CLBP_M) as follows:

CLBP_S =
P−1

∑
p=0

s(gp − gc)× 2p, t(x) =

{
1, if x ≥ 0

0, if x < 0,
(7)
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since the sign components may have values of “1”, “0”, or “−1”, so “−1” is coded as “0”; while,

CLBP_M =
P−1

∑
p=0

t(mp, c)× 2p, t(i, j) =

{
1, if i ≥ j

0, if i < j,
(8)

where c is a threshold value specified adaptively as the mean magnitude value of the mp over the
entire image.

Finally, the three encoded maps, CLBP_C, CLBP_S, and CLBP_M, are fused to obtain the final
CLBP feature histogram.

3.3. Adjacent Evaluation Local Binary Patterns

The Adjacent Evaluation Local Binary Pattern (AELBP) [45] is a successful noise tolerant variant
of the LBP operator. The AELBP operator considers the neighboring pixels around a center pixel to
construct a set of adjacent evaluation windows that have the neighboring pixels as evaluation centers.
For a central pixel with intensity value gc and a neighborhood of P pixels evenly spaced on a circle of
radius R, a set of P evaluation windows of a predetermined size is constructed with the neighborhood
pixels (p = 0, . . . , P− 1) as evaluation centers. Then, for each window, the center pixel is replaced by
the average value of all pixels in the window excluding the center pixel. Thus, the AELBP code for the
central pixel gc is computed as follows:

AELBP =
P−1

∑
p=0

s(ap − gc)× 2p, s(x) =

{
1, if x ≥ 0

0, if x < 0,
(9)

where ap is the average value of the pth evaluation window.
The AELBP operator can be integrated with some LBP variants to provide more discriminative and

robust features. Here, we consider the integration with the CLBP operator discussed in Section 3.2 to
form the Adjacent Evaluation Completed Local Binary Patterns (AECLBP) texture descriptor. Therefore,
the complementary components of LDSMT of signs (sp) and magnitudes (mp) are computed as:

sp = s(ap − gc) and mp = |ap − gc|. (10)

Similarly, the AECLBP_S operator can be computed directly from Equation (9); while the
AECLBP_M operator is obtained by:

AELBP_M =
P−1

∑
p=0

t(mp, c)× 2p, t(x, c) =

{
1, if x ≥ c

0, if x < c,
(11)

where c is set as an average value of mp computed over the entire image. Furthermore, the center
operator AECLBP_C is encoded in a similar way to CLBP_C given in Equation (6). The three operators
are then combined jointly to construct the final feature histogram representing any given image.

3.4. Histograms of Oriented Gradients

The Histogram of Oriented Gradients (HOG) is a histogram based image descriptor that counts
the occurrence of gradient orientation in localized image regions [46]. HOG is proposed to characterize
visual objects in recognition tasks and more specifically pedestrian detection. The input image is
decomposed into small squared cells where the gradient orientation of each pixel in the cell is computed
and a histogram is constructed based on the contribution of every pixel in the cell. The histogram could
have nine or 18 bins depending on the range of orientation angles used either from 0◦ to 180◦ or 0◦ to
360◦, respectively. To improve the robustness of the feature histograms against illumination variations,
the local histograms are normalized over larger regions called blocks. The L2-norm is applied in a
block-wise manner where each block has an equal number of cells. Finally, the normalized histograms
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are then concatenated to form the final HOG feature vector describing the input image. HOG features
are powerful at describing and distinguishing objects, and they achieve outstanding performance in
object detection [46] and ear recognition [18].

3.5. Rotation Invariant Local Phase Quantization

The Local Phase Quantization (LPQ) is a histogram based image descriptor proposed to classify
and analyze image texture under blurring effects by utilizing the blur invariance property of the Fourier
phase spectrum [47]. The image is first transformed into the frequency domain using a short term
Fourier Transform. Then, the local phase information is extracted from local windows of a predefined
size around each image pixel. The phases of four complex low frequency coefficients are decorrelated
and quantized uniformly into an eight-dimensional space and encoded as integer values between 0
and 255. Subsequently, the image descriptor is constructed from a set of locally computed histograms
using a sliding window approach over the entire image. The LPQ features share similarity with the
LBP operator in encoding image texture, using uniform patterns, and building the final histogram.

A Rotation Invariant form of the LPQ (RILPQ) was introduced in [48] and is composed of two
main stages. First is estimating the local characteristic orientation from the quantized coefficients
using a complex moment. Second is rotating the neighborhood at every position to the characteristic
orientation. The feature descriptor is constructed in a similar manner to the original LPQ operator.
Thus, the resulting RILPQ descriptor is robust to centrally symmetric blur and is invariant to uniform
illumination variations as only phase information is used. Furthermore, it provides an acceptable
performance under certain degrees of image rotation. These characteristics make RILPQ a suitable
choice for our study to distinguish ear images under blur, rotation, and lighting variations.

3.6. Patterns of Oriented Edge Magnitudes

Patterns of Oriented Edge Magnitudes (POEM) [49] is an image descriptor that characterizes
local object appearance and shape by encoding each image pixel using gradient and local shape
information in surrounding regions. It builds upon the two well known features of HOG and LBP.
Similar to the first, it accumulates the gradient orientations in spatial regions called cells; while it
uses the LBP procedure to encode the spatial relation between accumulated gradient magnitudes in
the different directions. In order to compute the POEM features, the gradient image is computed
first. Then, the gradient orientation is evenly discretized over a set of orientations. Second, for each
pixel, a magnitude-weighted histogram of gradient orientations is accumulated from all pixels in
predefined spatial regions called cells. Thus, each pixel position is replaced by a vector of n values
where n is the number of orientations used to construct the histogram. The third step involves applying
the LBP procedure with a 3× 3 neighborhood on the accumulated gradient magnitudes for every
orientation. Finally, the POEM feature histogram is obtained by concatenating all POEMs features at
each of the n orientations. The POEM descriptor is an effective image representation technique that has
achieved remarkable performance, outperforming all competing methods in face recognition [49,50].
Moreover, it has several desirable features including: robustness to lighting and pose variations and
computational efficiency, which make POEM an appealing choice for extracting ear features.

3.7. Binarized Statistical Image Features

Binarized Statistical Image Features (BSIF) [51] is a texture encoding and histogram based image
representation technique inspired by the LBP and LPQ operators. However, in BSIF, the binary codes
are computed by first convolving the image using a set of linear filters, then binarizing the filter
responses at each pixel. Each bit in the code is associated with a specific filter, and the length of
the code is determined by the number of the applied filters. Subsequently, similar to LBP and LPQ,
the binary codes are mapped to integer values between zero and 2m−1, where m is the number of
filters. Finally, the image descriptor is represented as a global histogram constructed from a set of local
histograms of BSIF codes computed from a sequence of small image blocks. The BSIF is a powerful
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texture descriptor with one distinguishing characteristic of utilizing filters learned from statistics
of natural images instead of heuristic code computation. Moreover, it provides a competitive ear
recognition performance under different image variations as mentioned in [30,32] and confirmed by
our experiments.

4. CNN Features

Here, we present different ways to obtain image representation utilizing one of the seminal deep
CNN architectures known as AlexNet [20]. We begin by describing the original AlexNet architecture
and highlighting the custom changes made to suit ear recognition. Then, we describe the different
learning strategies to learn discriminative features from ear images.

4.1. AlexNet Architecture

Within the last couple of years, machine learning with artificial neural networks has been gaining
increasingly more attention in the computer vision community because of its high performance abilities
and its adaptivity to challenging visual recognition problems. Initial doubts related to the feasibility
of training deep neural networks were scattered, when Krizhevsky et al. [20] demonstrated training
a so-called deep CNN to solve a difficult image classification problem with 1000 different classes.
They implemented and trained their network design on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [6] and reached a top one error rate of 37.5%, significantly improving on the
state-of-the-art performance of traditional strategies using manual feature extraction by a significant
margin. Their architecture is commonly referred to as AlexNet.

AlexNet is a feed-forward network, which means that information propagates in a fixed direction
from the input layer to the output layer. The network consists of five convolutional layers, which
are arranged in a two branch layout, and three fully connected layers. The convolutional layer is the
most characteristic component of a CNN and imitates the modality of information processing in the
brain, thereby combining outstanding recognition performance with efficiency. The idea to utilize
convolution in artificial neural networks was inspired by the biological processing of information in the
visual cortex, which has been shaped by natural selection during evolution. A convolution operation
conserves the spacial information within the image by applying its filter kernel to each region in input
space, respectively. As the filter response is invariant to the location of the stimulus, the number of
trainable parameters is kept low because of weight sharing. A breakthrough in computer vision was
the automatized learning of convolutional kernels using back-propagation by LeCun et al. in [52].

In order to add non-linearity, an activation function is applied after each convolution operation.
While sigmoidal functions have been used for quite a long time due to their discriminative, switch-like
behavior, AlexNet utilizes a non-saturating non-linearity called the Rectified Linear Unit (ReLU) [53].
It clips all negative values, and for positive values, it is the identity function. The major advantage
of the ReLU is that its derivative does not decrease for high values and that gradient descent is
significantly faster for high value ranges.

Max-pooling is applied after the first, the second, and the fifth convolutional layer in order to
condense the resolution of the activation maps and to increase the receptive field of the subsequent
layers. The idea is to reduce a 2× 2 patch of an activation map to a 1× 1 patch with the maximal value.
When using a stride of two, the resolution of the activation map is halved during the process, and the
receptive field increases accordingly.

Another component of AlexNet is dropout regularization. Dropout was proposed in [1] and
is a measure to make layers less prone to over-fitting by reducing the effective number of trainable
parameters during each update step. Training with dropout might lead to more discriminating features
as it gives a neuron more incentive to develop a contributive response, which reduces co-adaptation
to the other neurons in the layer. However, when the model is evaluated, all neurons contribute in a
network-in-a-network fashion.
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4.2. Changes to the Architecture

Although the original AlexNet architecture is prominent in its original form, adaptations are
performed to improve performance and convergence during training. First, the two branch layout
is merged into a single branch, thus simplifying the overall network architecture. Since we use a
single GPU to train the networks, there is no necessity of having a two branch network design, and it
seems reasonable to modify the original AlexNet architecture to have only one branch. The number
of filters is increased to leverage the cancellation of one branch as proposed in [54]. As an additional
modification, adaptive average pooling is applied to reduce the feature map resolution to 6× 6 after the
fifth convolutional layer. This change makes AlexNet independent of the fixed image size of 224× 224.
Another change to the architecture is the reduction of neurons in the second fully connected layer.
Since the original AlexNet was applied on the ImageNet dataset, which contains 1000 classes, but the
AMI and AMIC datasets have only 100 individuals and 16 for the CVLE dataset, the number of neurons
in the second fully connected layer is halved to 2048. In addition, to speed up the convergence process,
batch normalization is applied between all layers. Batch normalization was introduced in [55] and
addresses the issue of poor convergence for deep models. Without batch normalization, the distribution
of the input of a convolutional layer changes during training, which is called covariate shift. As a
consequence, the layers have to adapt to the changed distribution, disturbing the distributions in the
other layers. By normalizing the input mini-batches to have a learned mean and standard deviation,
the learning rate can be increased, and the training is more robust to changes in weight initialization.

During initial experiments, we measured the minimal image size of each dataset that still gave the
best performance. Therefore, the input image was resized to 143× 191 pixels for the AMI and AMIC
datasets and to 127× 239 for the CVLE dataset, respectively. Then, 64 convolution kernels of size
11× 11 were applied with a stride of four to reduce the spatial resolution of the activation maps and to
increase their dimensionality. The ReLU non-linearity was applied, and max-pooling was performed
to increase the receptive field. Batch normalization was applied to adjust the distribution of the
activations for the subsequent 5× 5 convolutional layer using 192 kernels. After the fifth convolutional
operation, adaptive average pooling was performed to reduce the feature map size dynamically to
6× 6 with 256 channels. The output was flattened, and batch normalization was applied. Then,
dropout is performed with a 50% chance. Subsequently, a fully connected layer with 9216 neurons
processed the activations, followed by another ReLU, batch normalization, and another dropout layer.
Finally, a reduced fully connected layer with 2048 neurons, ReLU, batch normalization, and the last
fully connected layer were applied. Table 1 summarizes the resulting architecture in more detail.

4.3. Scratch Training

When applied for image classification, CNNs process information in a hierarchical manner, where
shallow layers process basic pixel-to-pixel relations and primitive textures. Semantic information and
high level relationships are considered by deep layers, which provide filters with a high degree of
non-linearity. Thus, deeper models have a greater potential for developing high recognition abilities.
However, choosing a deeper network design is bound to resutl in an increase in the amount of trainable
parameters. As a consequence, there is a risk of getting a high validation error, although the training
error decreases, which is a general over-fitting issue. Thus, training on the limited ear datasets poses
a challenge for learning CNN features, especially when the datasets have such a low amount of
training samples. The problem of poor generalization abilities is critical when the model parameters
are learned from scratch. However, training from scratch is included in this paper in order to study the
degree of over-fitting and the ability to learn distinguishing features from limited ear image datasets.
First, the training images from each dataset are used to adjust all the initialized weights including
both its convolutional part and its fully connected part. Subsequently, the test images are utilized
to validate the predictions made by the trained network. For this learning strategy, we used normal
Kaiming initialization [56] for our convolutional kernels and linear Kaiming initialization for the fully
connected layers.
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Table 1. A summary of the AlexNet architecture utilized in this work. The type of layer, number of
filters per layer, filter size, and the output volume of each specific layer are given when applicable.

Layer Type Filters Size, Stride Output Volume

AMI/AMIC CVLE

Input Image (RGB) - 143× 191× 3 127× 239× 3

Convolution 11× 11(64), 4 35× 47× 64 31× 59× 64

Max-pooling 3× 3, 2 17× 23× 64 15× 29× 64

Batch Normalization - 17× 23× 64 15× 29× 64

Convolution 5× 5(192), 1 17× 23× 192 15× 29× 192

Max-pooling 3× 3, 2 8× 11× 192 7× 14× 192

Batch Normalization - 8× 11× 192 7× 14× 192

Convolution 3× 3(384), 1 8× 11× 384 7× 14× 384

Batch Normalization - 8× 11× 384 7× 14× 384

Convolution 3× 3(256), 1 8× 11× 256 7× 14× 256

Batch Normalization - 8× 11× 256 7× 14× 256

Convolution 3× 3(256), 1 8× 11× 256 7× 14× 256

Adaptive Average Pooling 6× 6 6× 6× 256 6× 6× 256

Batch Normalization - 9216 9216

Dropout (50%) - 9216 9216

Fully Connected - 2048 2048

Batch Normalization - 2048 2048

Dropout (50%) - 2048 2048

Fully Connected - 2048 2048

Batch Normalization - 2048 2048

Fully Connected - 100 16

Softmax - 100 16

4.4. Feature Extraction

As the present datasets contain only up to 804 images, over-fitting was expected to affect the
training process. Even with elaborated data augmentation, it is difficult to achieve decent accuracies.
In the feature extraction strategy, this issue is completely circumvented by using pretrained models
on ImageNet [6] as fixed feature extractors. We divided the network into a convolutional feature
extraction part and a fully connected classification part, as shown in Figure 2. Since AlexNet is
composed of a convolutional feature extraction block of five convolutional layers and a classification
network on top with three fully connected layers, we froze all convolutional weights because their
filters might be generic enough for being transferred to similar recognition problems as reported
in [57,58]. We replaced the fully connected layers with new layers, where each of the first two layers
had 2048 neurons, and a final layer with a softmax classifier that had neurons equivalent to the number
of subjects in each ear dataset. We used linear Kaiming initialization [56] to initialize the newly added
layers. During the training process, we adjusted only the three fully connected layers and their batch
normalization layers until convergence.
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Figure 2. The workflow of deep learning based ear recognition systems. According to the strategy
used, the network weights are initialized first. Training the network is carried out on normalized input
images along with data augmentation to mitigate the overfitting effect. The network is trained in an
end-to-end manner for a predefined number of epochs according to the specific strategy to obtain the
suitable model. Finally, in the test phase, the test images are normalized and passed through the model
to infer the correct subjects.

4.5. Feature Extraction + Batch Normalization

We also considered a slight variation of the feature extraction strategy, where batch normalization
was applied only before each fully connected layer. To investigate the level of genericness of the
ImageNet features, we included batch normalization in the convolutional part and thereby lowered the
risk of having low performance due to normalization issues. This strategy is called feature extraction
+ batch normalization (feature extraction + BN). Hence, in this learning strategy, we applied batch
normalization before each layer, which included the convolutional ones. Only the fully connected
layers and all batch normalization layers were trained under this strategy.

4.6. Fine Tuning

Using the pretrained models as feature extractors is usually a first approach for transfer learning.
A more effective way of transferring the learned representations is to fine tune the entire pretrained
model on the new recognition task. When performing fine tuning, the network weights of the
convolutional part are initialized from the pretrained ImageNet model, while the new fully connected
layers are initialized in a similar manner to the feature extraction strategies. We then performed
domain adaptation or retraining the entire network with the limited ear images from the training set
until convergence.

5. Experiments and Results

In order to explore and compare the recognition performance of handcrafted and CNN features,
we selected seven top performing manually designed features and evaluated their performance against
four types of CNN features obtained from an AlexNet-like architecture. We report the results on
three ear datasets, which contain an increasing level of image variations reflecting constrained and
unconstrained (in the wild) imaging conditions.

We first provide a brief description of the ear datasets and then discuss our data augmentation
techniques to increase the number of training examples during training and fine tuning the deep
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models. Subsequently, the experimental setup for both handcrafted features and deep models is
presented. Finally, the obtained results of our experiments are discussed, and visualizations of the
features are performed and analyzed.

5.1. Ear Datasets

The first dataset was the Mathematical Analysis of Images (AMI) ear database [59]. It contains
700 ear images acquired from 100 subjects. The images were acquired for the right and left ears from
both males and females. Each subject had seven images, six for the right ear and one for the left.
All images were taken by the same source camera under similar lighting conditions. The images
were captured for the subjects with various poses like looking forward, up, down, left, and right.
Furthermore, one image was acquired under different scales. The images had a spatial resolution of
492× 702 pixels and were in JPEG format. Figure 3a shows sample images for two subjects from the
AMI dataset.

(a) AMI dataset

(b) AMIC dataset

(c) CVLE dataset

Figure 3. Sample images from the benchmark ear datasets.

The second dataset was the AMIC, which is a cropped version of the AMI dataset introduced
in [14]. It contains the same number of subjects and images, but after removing any unwanted
background such as hair and neck parts from the profile images. Cropping also helps to make the
geometric ear structure and shape visible to feature extraction methods and obtain their representations
based on the distinguishing ear characteristic features, but this makes it more challenging. As a result
of manually cropping the AMI ear images, all images in AMIC dataset have variable sized spatial
resolution ranging from 363× 224 pixels to 492× 702 pixels. Figure 3b illustrates the cropped images
for the same two subjects shown in Figure 3a.

The third dataset was the Computer Vision Laboratory Ear (CVLE) database introduced in [60].
It contains 804 ear images of 16 individuals where an individual had between 19 and 94 images.
All images were collected from the web for both genders of different ethnicities. The images were
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taken with different cameras and under different indoor and outdoor lighting conditions. The subjects
were photographed with different viewing angles between 0◦ to 90◦ and beyond. The images had
variable spatial resolution starting from 18× 27 pixels and under 200× 200 pixels. The images were
also occluded by hair and accessories like earrings and headphones and exhibited different contrast.
These image conditions represented the unconstrained or in the wild image settings. Example images
showing these variations present in the CVLE dataset, for two subjects, are shown in Figure 3c.

5.2. Data Augmentation

Training deep models with millions of parameters requires large scale datasets. In realistic settings
of ear recognition scenarios, the small amount of images does not leverage the large variability of
the dataset and the conditions under which the images have been taken. One effective solution for
addressing these limitations is to augment the existing training dataset by producing variants of the
same image through a pre-defined set of domain specific image transformations. Therefore, in order to
improve the robustness of the obtained models against a wide range of image variability, we showed
transformed images to the deep network. The synthetically generated samples added to the training
data and introduced some changes that enhanced the learning ability of the models and made them
robust against such variations. Since only limited amount of ear images was available for training,
different data augmentation techniques were performed in order to avoid over-fitting and enhance the
generalization ability of the models.

In our experiments, we combined several image manipulation operations into a comprehensive
augmentation pipeline, which was applied on the fly for each training image in every epoch. In order
to handle datasets with different aspect ratios, we randomly scaled the image to fit into a pre-defined
canvas. Subsequently, we rotated the image randomly and performed horizontal shearing. After that,
random cropping was performed while keeping the aspect ratio. After resizing the image to the fixed
canvas size, we further augmented the image using Gaussian blur, adding Gaussian noise, introducing
random changes of brightness, contrast, saturation, and hue. Finally, we applied a 50% chance of
flipping the image horizontally. The augmentation steps were performed on each training image
in each epoch in order to drastically increase the amount of training samples. We performed the
data augmentation on the CPU, and we did it in parallel with the network training on the GPU to
reduce computation time. Nevertheless, we found that preprocessing the images was a computational
bottleneck because it involved loading a large number of files and a long chain of serial augmentation
steps. However, it is worth mentioning that without augmenting the training sets, the obtained models
were susceptible to substantial over-fitting.

5.3. Experimental Setup

The experimental protocol followed in this work to evaluate the recognition performance of
handcrafted and CNN features was five-fold cross-validation. The results are reported with the mean
and standard deviation over the five folds. The Cumulative Match Characteristic (CMC) curves
for each recognition experiment on each dataset are also visualized. Besides, three quantitative
evaluation metrics of Rank-1 (R1) and Rank-5 (R5) recognition rates and the Area Under the CMC
(AUC) are provided.

For increased comparability, the handcrafted features shared a unified recognition pipeline to
obtain the final results similar to the setup mentioned in [22,41]. The input ear images underwent
several phases including, preprocessing, feature extraction, classification, and finally visualizing the
results. As preprocessing steps, images were converted into gray scale images, resized to 100× 100
pixels, and enhanced by applying the histogram equalization technique. Then, the preprocessed images
were subjected to the feature extraction phase where the underlying descriptor extracted relevant
image characteristics. The output of this phase was an image specific feature vector representing the
characteristics of the ear image. Subsequently, the feature vectors were used to train linear SVMs for
classification in a one-vs.-rest approach. The last phase comprised computing the performance metrics
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and plotting the CMC curves for visualization of the overall performance. The implementation details
and hyperparameters values of the considered feature descriptors are given in Table 2.

Table 2. The implementation details of the handcrafted features. The values of the hyperparameters
are chosen based on recommendations and experimental investigation in the original papers.

Descriptor # of Neighbors Block Size Overlap Window Radius # of Patterns # of Filters # Orientations

LBP [42] 8 25× 25 5× 5 2 59 - -
HOG [46] - 16× 16 8× 8 cell size = 8× 8 - - 9
RILPQ [48] - 16× 16 no overlap 6 59 - 12
POEM [49] 8 12× 12 no overlap 2 59 - 3
CLBP [44] 8 25× 25 5× 5 2 2× 59 - -
BSIF [51] - 18× 18 2× 2 - 256 8 (11× 11) -
AECLBP [45] 8 25× 25 5× 5 2 2× 59 - -

When training and fine tuning deep models, we used a slightly different experimental setup as
the feature extraction step and the classification step were combined. For feature extraction (with
and without) batch normalization and fine tuning, we exploited pretrained models trained on the
ImageNet dataset [6] with 1000 classes and performed adjustments on some layers to shrink down the
architecture and suit the number of classes in each ear dataset. We changed the architecture to suit the
ear recognition problem as described in Section 4.

In order to consider the variable image sizes in each dataset, we placed the images into a canvas of
size of 143× 191 pixels for the AMI and AMIC, while for the CVLE dataset, we found the optimal size
to be 127× 239 pixels, thereby keeping their aspect ratios. To investigate the effect of spatial resolution
on the recognition accuracy, we performed the experiments with different canvas sizes. We chose the
minimal canvas size for which the drop of the Rank-1 recognition rate was still insignificant and under
1%. We performed extensive data augmentation as described in Section 5.2.

On the AMI and AMIC datasets, training from scratch needed 600 epochs for convergence, and
the learning rate was divided by five after 200 and 400 epochs. However, the CVLE dataset to require
different sets of hyperparameters and training from scratch needed more epochs with 900 iterations,
and we divided the learning rate by five after 300 and 600 epochs. The feature extraction strategy
converged after 450 epochs, and we reduced the learning rate at 150 and 300 epochs. For the fine
tuning strategy on AMI and AMIC, the training converged after 150 epochs, and the learning rate was
scheduled to be divided by five after 50 and 100 epochs, respectively, whereas when fine tuning on the
CVLE, we trained for 300 epochs and reduced the learning rate after 100 and 200 epochs. For all the
mentioned strategies, we started by an initial learning rate of 0.02 and used a batch size of 50. The
networks were trained on a PC with Intel(R) Core(TM) i7-3770 CPU, 8 MB RAM and Nvidia GTX 1080
using stochastic gradient descent and the cross-entropy loss. We regularized training with dropout
and a momentum of 0.8 to alleviate over-fitting.

5.4. Results and Discussion

This section reports the experimental results for both handcrafted and CNN features. The obtained
results are summarized in Table 3 using performance metrics of R1, R5, and AUC. The relevant work
from the literature was also included for a direct comparison. To explore the comparability across the
different methods, the CMC curves are presented for each recognition experiment in Figures 4 and
5. We started our analysis by interpreting the recognition performance of the handcrafted features,
then continued with the CNN features.
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Table 3. A summary of the recognition results for both handcrafted and CNN features with respect to
R1, R5, and AUC on all three datasets. The highest value for each performance metric is highlighted in
bold. We also include the relevant work from the literature when applicable.

Method AMI AMIC CVLE

R1 R5 AUC R1 R5 AUC R1 R5 AUC

LBP [42] 72.50± 4.92 80.50± 5.00 89.93± 2.39 65.20± 5.27 77.40± 4.12 88.18± 1.79 72.39± 0.73 94.90± 1.94 89.03± 1.00
HOG [46] 66.30± 4.47 74.70± 5.78 86.58± 2.24 63.70± 5.13 72.50± 6.23 84.80± 3.20 82.97± 2.89 96.26± 0.40 90.55± 0.47

RILPQ [48] 71.70± 3.66 78.50± 4.73 90.18± 1.53 66.70± 4.02 76.10± 4.27 88.41± 2.07 77.32± 2.89 96.50± 1.78 89.93± 1.23
POEM [49] 70.90± 4.18 79.40± 4.32 89.12± 2.19 64.20± 5.11 74.90± 5.57 86.04± 2.42 80.99± 2.00 96.50± 0.88 90.12± 0.66
CLBP [44] 67.40± 3.20 77.40± 3.43 89.16± 2.47 62.80± 5.41 74.60± 3.67 87.10± 2.10 74.13± 2.44 95.76± 2.39 89.64± 1.22
BSIF [51] 72.10± 4.50 79.70± 3.12 88.99± 1.86 66.90± 5.89 76.10± 3.83 87.53± 2.21 84.35± 1.78 96.69± 2.49 90.73± 1.33

AECLBP [45] 68.60± 3.50 79.10± 3.75 88.92± 2.41 62.00± 7.80 74.50± 4.05 86.58± 2.07 73.88± 2.42 94.17± 1.32 89.19± 0.80

Scratch Training 90.60± 1.83 97.20± 0.40 98.60± 0.14 81.80± 3.76 92.70± 1.08 97.76± 0.29 82.10± 4.38 94.98± 1.94 90.27± 1.17
Feature Extraction 82.70± 2.04 95.70± 1.33 98.25± 0.28 76.00± 3.03 92.10± 1.28 97.62± 0.49 75.62± 2.43 94.42± 1.96 89.84± 0.81

Feature Extraction+BN 91.40± 1.02 99.00± 0.00 98.81± 0.04 86.10± 1.69 95.80± 1.03 98.38± 0.08 81.93± 2.43 96.15± 1.21 90.95± 0.65
Fine Tuning 94.50± 1.48 99.40± 0.37 98.90± 0.03 89.80± 2.04 97.70± 1.33 98.58± 0.19 87.05± 3.22 97.66± 1.00 91.65± 0.79

Chowdhury et al. [61] 70.14 - - - - - - - -
Hassaballah et al. [41] 73.57± 2.26 - - - - - - - -

Alshazly et al. [33] 70.20± 1.90 - - - - - - - -
Raghavendra et al. [62] 86.36 - - - - - - - -

Alshazly et al. [14] 97.50 99.64 98.41 93.21 96.78 98.63 - - -
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Figure 4. The CMC curves generated from the identification experiments comparing the performance of
ear recognition models using manually extracted features. The curves show competitive performance
of LBP features for AMI and AMIC; however, on the CVLE, the best performance is obtained by
BSIF features.
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Figure 5. The CMC curves for the identification experiments for different types of CNN features and
their performance in an end-to-end recognition model. The curves show superior performance of the
fine tuned features on all datasets.

5.4.1. Handcrafted Features

Our recognition experiments target evaluating and comparing the discriminative powers of the
feature extraction methods in describing ear images for recognition using an SVM. The recognition
results in Section 5.4 indicate the superior performance of the LBP descriptor over all other traditional
methods on the AMI dataset with R1 recognition rate of 72.5%. On the AMIC and CVLE datasets,
BSIF was the top performer with mean recognition rates of 67% an 84%, respectively. Additionally,
the AMIC dataset, which is the cropped version of AMI, reached significantly lower accuracies than
its uncropped counterpart. This indicated the benefits from the extra parts of profile images when
encoding ear images and showed that conventional feature extractors and traditional classifiers made
use of hair and skin to increase performance. Figure 3 illustrates the CMC curves, which summarize
the performance on the considered ear datasets. Considering the AMI and AMIC datasets, LBP and
RILPQ obtained approximately similar performance with slight improvement over other features.
Despite the diversity of image variations introduced under the unconstrained conditions reflected in
the CVLE dataset, the conventional features achieved higher recognition rates compared to AMI and
AMIC datasets due to having less subjects and more images per subject. Although the performance
differences among all competing manual descriptors were relatively small, the CMC curves showed
noticeable improvements for the gradient based descriptors BSIF, HOG, and POEM compared to the
texture encoding methods of LBP, CLBP, and AECLBP.

Even though the reported results in our experiments were based on the entire ear images from
each dataset for a fair comparison between the considered features, it is worth mentioning that the
conduced experiments assumed bilateral symmetry between left and right ears. However, when we
conducted the experiments on the AMI and AMIC datasets using 600 ear images for the right side only,
an improvement between 5% and 17% was achieved in recognition performance. The R1 recognition
rate for LBP rose from 72.5% to 82.6%, and the highest R1 rate was achieved by CLBP at 86.53% on the
AMI dataset. For the AMIC, the R1 recognition rate for BSIF rose from 66.9% to 77.0%, and the highest
recognition performance was obtained by RILPQ with R1 of 81.17%. These obtained results indicated
that the left and right ears shared some degree of symmetry, while not being identical. The reader is
referred to [63] for a detailed study on the anatomically symmetric and asymmetric substructures of
the ears.
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5.4.2. Scratch Training

Figure 5 summarizes the differences in recognition performance under each representation
learning strategy on the considered datasets. When training the network from scratch on the AMI
and AMIC dataset, significant improvements in the recognition rates were achieved compared to
the handcrafted features as reported in Section 5.4. On the AMI dataset, an R1 recognition rate
above 90% was achieved, which was 18% higher than the best performing texture descriptor, i.e., LBP.
Furthermore, we report a significant improvement for the other evaluation metrics of R5 and AUC
indicating the continuous learning of more discriminative features by the models. Despite the drop in
all metrics when using the AMIC dataset, still, the learned features achieved better performance than
handcrafted features with a large margin of at least 14% over the top traditional performer. The reason
behind the success of the learned features was their ability to learn complex and more discriminative
patterns from images such as edges, corners, and textures, while handcrafted features were specifically
designed to encode certain characteristics of the given images. Thus, the subsequent classification
technique was limited in the predetermined representation and could not leverage other important
features that were useful for distinguishing between the individuals as well. Furthermore, since
handcrafted representations are usually ad-hoc and specific, they were incapable of being generalized
to deal with various realistic scenarios. However, the BSIF descriptor still gave better results than the
scratch training strategy on the CVLE dataset. One logical reason for the success of the BSIF is its
nature in computing the binary code, which depends on a set of learned filters rather than manually
predetermined filters. Another possible reason for this observation was given by the huge intra-class
variance within CVLE, which could not be easily taught to a CNN with the few images it contained.

5.4.3. Feature Extraction

The second learning strategy involved transfer learning using a pretrained AlexNet network with
weights learned on the ImageNet dataset. We froze the convolutional part of the network and used
it as a fixed feature extractor. As can be seen in Section 5.4 and Figure 5, the results were lower than
training from scratch. However, these features still achieved a performance gain of 10% over the best
handcrafted features. The results from this learning strategy justified that the pretrained CNN was
capable of performing feature extraction better than any handcrafted feature descriptor on both AMI
and AMIC datasets. For the CVLE, the extracted features achieved an R1 of 75.62%, which was still
higher than the LBP features and their variants of CLBP and AECLBP features. Even though, on first
glance, it seemed that the extracted features from the ImageNet model did not suit the ear recognition
problem well. However, the discussion is continued in the following learning strategy.

5.4.4. Feature Extraction + BN

In an attempt to understand the drop in performance when allowing only the classification part
to be adjusted during training, we observed that adding batch normalization layers after the activation
functions yielded improved recognition rates for all datasets. More specifically, when training the
seven batch normalization layers along with the fully connected layers, this led to an improvement
over the feature extraction strategy by a margin of about 9% for AMI, 10% for AMIC, and 6% for CVLE.
For AMI and AMIC, this training strategy performed even better than training from scratch. Improving
the recognition performance by adding batch normalization means in general that using CNNs as
feature extractors can be bound to normalization problems. Here, normalization was conducted
with the mean pixel and standard deviation of the ImageNet database, which is a common choice.
However, this normalization step did not seem to be enough to attain good results for the second
training strategy feature extraction. By only learning the eight additional parameters of four batch
normalization operations, an improved recognition performance with an R1 of 86.10% was achieved
using the AMIC dataset, which was only about 4% less than for the top performing fine tuning strategy
discussed below. Considering the CMC curves in Figure 5, we observed the supremacy of feature



Symmetry 2019, 11, 1493 20 of 27

extraction combined with batch normalization over using either scratch training or feature extraction
on all datasets.

5.4.5. Fine Tuning

Instead of only training the classification part of the deep network and its batch normalization
parameters, we adjusted all parameters of the network to the ear recognition problem. This strategy
resulted in the best performance among all considered CNN features. Fine tuning the pretrained
model achieved an R1 of 94.5% for the AMI dataset, which was 21% higher than the best performing
handcrafted feature descriptor. These results made fine tuning deep CNNs the new state-of-the-art
method to solve the ear recognition problem on the AMI dataset. Consistent with the other training
strategies, the AMIC dataset proved to be more challenging than the AMI dataset. Nevertheless, fine
tuning gave the best results among all four training strategies and achieved a high accuracy with an R1
of 90%. With the fine tuning strategy, the previous top performing hand-engineered feature BSIF could
be superseded by a margin of about 3% on the challenging CVLE dataset. Out of the four strategies,
fine tuning proved to be the most effective, as can be clearly observed from the CMC plots shown in
Figure 5.

5.5. Visualization of Handcrafted and CNN Features Using t-SNE

After showing the superiority of the CNN features over the seven handcrafted ones on the given
datasets, it is desirable to find a meaningful explanation for this finding. Here, visualizations of the
different features are performed using t-SNE [21], which is a non-linear dimensionality reduction
technique. It maps multivariate data on 2D or 3D space in an unsupervised manner. It also allows
exploring and visualizing the data by maintaining relationships and preserving its local structure.

We started by extracting both handcrafted and CNN features from the CVLE ear dataset.
The features were mapped onto a 2D space using t-SNE visualization in order to learn about their
differences. However, the visualization was non-deterministic and t-SNE was applied multiple times
with different parameters in order to ensure consistency. Especially the perplexity parameter, which
sets the effective number of neighbors, had a significant impact on the mapping. At the end, three
visualizations were manually selected to be shown in order to present the most dominant structure
within the data. We did not show t-SNE visualizations on the AMI and AMIC datasets because
the number of samples per class was too low to analyze how the individuals clustered qualitatively.
This was why we focused on the CVLE dataset, which had more samples per class and was visually
easier to interpret.

First, the best performing handcrafted feature was visualized. The feature vectors were extracted
using the BSIF descriptor for all images in the dataset. Subsequently, t-SNE visualization was
performed. The Manhattan distance was used as a distance metric because it is widely used for
histogram data. However, the visualizations did not really change qualitatively when using the
Euclidean distance. Second, in order to compare the handcrafted features to the CNN features,
an AlexNet based model that was pretrained on the ImageNet database was used as a feature extractor.
The input images were normalized according to the ImageNet dataset and propagated through the
network. The input to the last fully connected layer was used as a feature vector. The Euclidean
distance was used for the t-SNE algorithm because other distance metrics did not lead to better
clustering of the individuals. Third, to investigate the features of the network, which were fine tuned
on the particular ear dataset, the test set was propagated through the network, and the feature vectors
were extracted. Again, the Euclidean distance was used for the t-SNE algorithm. We also applied the
t-SNE algorithm on the output of the last convolutional layer of the fine tuned model. However, no
clustering of the individuals could be observed as these feature vectors turned out to be too generic for
distinguishing the individuals.

Figure 6 illustrates the feature visualization for the CVLE ear dataset. The diagrams showed
the two-dimensional map of the multivariate feature vectors. Each symbol represented a unique
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individual. Symbols across different visualizations might not correspond to each other. To avoid clutter
and to improve the readability of the diagrams, the number of subjects was limited to 40. Usually,
the samples from one individual were spread across several small clusters. As observed in Figure 6a,
the handcrafted features consistently formed two global clusters, which even occurred among a wide
range of perplexity values. This observation applied to all datasets, though it was only shown for the
CVLE dataset. The two clusters refer to the image displaying the right or the left ear, which can be
concluded from counting the number of instances per individual. This made sense for the handcrafted
features, because the left ear and the right ear had different dominating gradient directions, which led
to different histogram characteristics. Thus, feature vectors of the opposite ear were very dissimilar
and were not likely to be neighbors. Consequently, the t-SNE algorithm placed them far away from
each other.

(a) Handcrafted features extracted by the BSIF descriptor (b) Features extracted from the ImageNet pretrained model

(c) Features extracted from a fine tuned model on ear images

Figure 6. Visualization by t-SNE for handcrafted and CNN features from the CVLE dataset. The CNN
features are extracted from the penultimate layer for both the pretrained and fine tuned models. Every
symbol with a different shape and/or specific color corresponds to a distinct individual. Best viewed
in color.
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The features that were extracted from the ImageNet model showed a similar phenomenon, but far
less pronounced, as shown in Figure 6b. The two clusters showed up; however, they were somehow
connected, and no perplexity could be found where the two clusters showed up as clearly as for the
handcrafted features. However, the fine tuned model did not show this behavior (Figure 6c), due to the
learning process and the insight from the profound data augmentation during fine tuning. Flipping
the images horizontally was one step in the image transformation pipeline and enhanced the model
generalization as it gave the model a chance to treat both left and right ears in the same way. Moreover,
fine tuning the network on the ear dataset considerably reduced the variance between the right and
left ear.

6. Conclusions

This paper presented several ear recognition models built using conventional descriptor-classifier
and deep learning based approaches. Experiments were conducted to compare the performance of
seven state-of-the-art handcrafted features and four types of CNN features extracted from a variant of
AlexNet. The features were investigated in their robustness to represent ear images acquired under
controlled and uncontrolled settings from three datasets.

The obtained results indicated that CNN features were superior in recognition accuracy,
outperforming all handcrafted features. The performance gain in recognition rates was above 22%
over the best performing descriptor on the AMI and AMIC datasets, where the number of images per
subjects was relatively small. However, the performance gain was within 3% for the CVLE dataset,
which had fewer subjects and more images per subject, but higher intra-class variability.

In order to find logical and meaningful interpretations for the superiority of the CNN features, we
applied t-SNE visualization and mapped the extracted features onto a 2D space to explore their internal
structure. We observed that handcrafted features consistently formed two clusters representing the
right and left ear, respectively. The feature vectors of the opposite ear were found to be very dissimilar,
and therefore, t-SNE visualization placed them far away. However, the feature vectors extracted by
the fine tuned model did not show this behavior, which indicated a better adaptation to the ear data
during the fine tuning process. The features of the fine tuned network turned out to be invariant to the
side of the ear and thus were more suitable for the present ear datasets.

To summarize, our main conclusions from the ear recognition experiments conducted here were:

• CNN features were superior to handcrafted features, which was consistent with the relative
performance of deep CNNs in other image recognition tasks.

• CNN features were invariant to choosing the left or the right ear, while traditional descriptors
were severely affected.

• For handcrafted features, we noticed an improvement between 5% and 17% in recognition
performance on the AMI and AMIC datasets when conducting the experiments using ear images
from the same side. That means the left and right ears shared similar features, but were not ideally
symmetric. These findings also matched the reported results from [3,64,65], which indicated a
noticeable drop in recognition accuracy when training on ear images from one side and testing
on ear images from the other side. That means for some individuals, the left and right ears did
not share the exact shape and a certain degree of asymmetry did exist.

• Using pretrained models as feature extractors on new data or for a new recognition task was not
sufficient due to the difference between the learned features for the different tasks. However,
adapting or fine tuning the pretrained model on new data related to the target task led to
significant improvements in performance. The models fine tuned on each ear dataset consistently
performed best.

• Batch normalization was crucial when using pretrained CNNs as feature extractors on new data.
We recommend adjusting the mean and the standard deviation of batch normalization layers.

• Since no recognition experiments were conducted on the AMIC dataset using handcrafted
descriptors in the literature, we carried out recognition experiments to investigate the impact of
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removing the auxiliary background parts. We observed that both handcrafted and CNN features
were affected by the cropping of AMI images to a similar degree with a superior performance of
CNN features at 22%.

Even though our main objectives in this study were to show that CNNs can be trained using
small datasets, it is possible to improve the performance further when more training data is available
to learn more specific ear features and when top performing and state-of-the-art CNN architectures are
employed. Therefore, our future work will include large scale ear datasets with a wider range of image
variations and more subjects. Moreover, we will also consider more recent CNN architectures such
as Inception [66–68], ResNet [69], SqueezeNet [70], ResNeXt [71], DenseNet [72], and MobileNet [73],
and explore different learning strategies. Of the same interest is to explore different combinations
between handcrafted and learned features to further improve the recognition accuracy. Another
interesting research direction is extending our study to include other visualization techniques to
enhance our understanding of the decisions behind the models’ predictions.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
t-SNE t-Distributed Stochastic Neighboring Embedding
SVM Support Vector Machine
LBP Local Binary Patterns
CLBP Completed Local Binary Patterns
LDSMT Local Difference Sign-Magnitude Transform
AECLBP Adjacent Evaluation Completed Local Binary Patterns
HOG Histograms of Oriented Gradients
LPQ Local Phase Quantization
RILPQ Rotation Invariant Local Phase Quantization
POEM Patterns of Oriented Edge Magnitudes
BSIF Binarized Statistical Image Features
AMI Mathematical Analysis of Images
AMIC AMI Cropped
CVLE Computer Vision Laboratory Ear dataset
CMC Cumulative Match Characteristic
R1 Rank-one
R5 Rank-five
AUC Area Under CMC
BN Batch Normalization
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31. Emeršič, Z.; Meden, B.; Peer, P.; Štruc, V. Covariate analysis of descriptor based ear recognition techniques.
In Proceedings of the International Conference and Workshop on Bioinspired Intelligence, Funchal, Portugal,
10–12 July 2017; pp. 1–9.

32. Emeršič, Ž.; Meden, B.; Peer, P.; Štruc, V. Evaluation and analysis of ear recognition models: performance,
complexity and resource requirements. Neural Comput. Appl. 2018, 1–16. doi:10.1007/s00521-018-3530-1.

33. Alshazly, H.A.; Hassaballah, M.; Ahmed, M.; Ali, A.A. Ear Biometric Recognition Using Gradient-Based
Feature Descriptors. In Proceedings of the 4th International Conference on Advanced Intelligent Systems
and Informatics, Cairo, Egypt, 1–3 September 2018; pp. 435–445.

34. Tian, L.; Mu, Z. Ear recognition based on deep convolutional network. In Proceedings of the
IEEE International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Datong, China, 15–17 October 2016; pp. 437–441.

35. Ying, T.; Shining, W.; Wanxiang, L. Human ear recognition based on deep convolutional neural network.
In Proceedings of the 30th Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June
2018; pp. 1830–1835.

36. Omara, I.; Wu, X.; Zhang, H.; Du, Y.; Zuo, W. Learning pairwise SVM on hierarchical deep features for ear
recognition. IET Biom. 2018, 7, 557–566.
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