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Abstract. A novel method for motion estimation from first order deriva-
tives is presented. First estimates are obtained by evaluating the minors
of the so-called structure tensor that contains blurred products of first
order derivatives. The minors yield four different estimates that are equal
in case of translation but differ for other spatio-temporal patterns. The
mean yields a robust motion estimate and the difference is used as an in-
dicator of discontinuous motions, occlusions, and noise. This procedure
leads to a flow field with small errors and low density. An additional
change detection is performed to obtain a mask that is filled with the
previously computed (correct but sparse) motion vectors. The superior
performance of the algorithm is demonstrated on synthetic and real se-
quences by comparison with other methods.
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1 Introduction

We consider image sequences defined by intensity f(z,y,t) and construct the
following matrix from the first-order derivatives of f:

fxg fmfy fxft
D(w,y,t) = (fzafyaft)T(fmafyaft) = fxfy fy2 fyft . (1)
fxft fyft ft2

Since this matrix obviously does not contain more information than the gradient
(fws fy, fr) itself, a different matrix, obtained from D by convolution with a
smoothing kernel h(z,y) (or h(z,y,t)), i.c.

I(@,y,t) = h(z,y) * D(z,y,1), (2)

can be used to characterize the structure of f(z,y,t). Accordingly, J has been
called “the structure tensor”. In the context of motion estimation, it has been
shown how the eigenvectors of J can be used to estimate the optical flow. The
benefit of using J is that useful measures, which indicate confidence in the motion
estimate, can be defined based on the eigenvalues of J - see [5, 6] for a review.
Related methods have been proposed that are based on the geometry of the
hypersurface S = (z,y,t, f(x,y,t)), e.g. for the purpose of motion detection [§].



Further, it has been shown that the Gaussian curvature of this hypersurface
can be used to detect motion discontinuities [14] and that the Riemann cur-
vature tensor R can be used to estimate motion parameters [2]. Four different
expressions, based on second order partial derivatives of f, for the motion vector
have been derived from R and differences among these vectors have been used
as confidence measures. The expressions derived for the components of R also
hold for the minors of the 3D Hessian of f. In this paper we will derive similar
expressions for the minors of the matrix J.

Covariance-based methods have been proposed as alternatives to differential
methods [4]. J approximates the covariance matrix C, of the gradient ( f,, fy, f;)
and it is argued that, in 2D, C, should be computed as the Hessian of the
autocovariance of f [10]. From this perspective, methods based on R versus J
differ in that they are based on the Hessian of f, and of the autocovariance of f,
respectively. Similarly, one could use the Hessian of local-energy band-pass filter
outputs or other representations of f. In [2] it had been suggested to estimate
motion from the 3D Hessian of a ratio-of-Gaussians filter output.

Various methods for motion estimation are known and comprehensive reviews
can be found, e.g. in [7, 6, 12]. The comparative analysis presented here, however,
is limited to the methods by Lukas and Kanade (L&K) [9], Uras et al. (Uras)
[13], the structure-tensor method (ST), the new method based on the minors of
the structure tensor (MST), and an extended version thereof (filled MST).

2 Theory

We now consider the minors of J, i.e. the matrix
M = Minors(J). (3)

The elements M;j, (1,7 = 1,2,3) of M are the determinants of the matrices
obtained from J by eliminating the row 4 — ¢ and the column 4 — j, e.g., My, =
(hx f22) (h f,°) = (h*(fu fy))?. The results presented in this section were obtained
with the following analytical expression for J:

N-1
J(xayat) = Z w”D(I +iay+ja t)a (4)
i,j=0

i.e., sums of functions D(z,y,t) shifted with integer (for simplicity) amounts in
x and y have been simplified. The results do not depend on the weights w;; (they
cancel out) and not on N (note, however, that for N = 1, i.e. J = D all the
minors are zero).

2.1 Translation with constant velocity

If the image sequence f(z,y,t) results from any spatial pattern moving with
constant velocity v = (vg,vy), f is supposed to satisfy the constraint

f(xayat) :f(vartayfvyt)' (5)



Under this constraint we obtain the following relations for the minors of J:

(Msy, —May)/ My = vy

(M23, —M22)/M12 = V2 (6)
(M33, —Mzs)/Mls = U3

(Msz, —Mas)/Myy = (v, v3,).

Indices ¢ = 1,...,4 simply denote the fact that we obtain different expressions
for w. All representations v; were obtained by assuming the constraint in Eq. 5
and by performing the simplification of all possible ratios of M components. *

Obviously, v4 can be computed as (sign(v14)v/Mas, sign(viy)v—Maz)/v/ M1
to account for the sign of motion. To summarize, we found four different com-
binations of minors that are equal and equal to the motion vector in case that
Eq. 5 holds (v = v; = v = v3 = vy).

2.2 Translation with time-dependent velocity

We now consider the more general case where the image shift contains higher-
order terms, i.e., the motion can be accelerated:

f(:v,y,t)=f(a:—d1(t),y—d2(t)). (7)

For the minors of J under the constraint (7) we obtain the same results as in
Eq. 6 with v; = (d}(t),d4(t)). This is an interesting result since it cannot be
obtained for the minors of the Hessian.

2.3 On- and offset of spatial patterns

Here we consider the cases: f(z,y,t) — f(z,y)y(t) and f(z,y,t) — f(z,y)6(t)
with the step function v(¢) and the Dirac-delta distribution §(¢). In these cases,
we do not obtain any meaningful simplifications. However, the results differ for
the four expressions v; obtained for the motion vector v in the previous sections.
Therefore the difference can be used as an indicator of pattern on- and offset
that typically occurs with occlusions - see Section 3.3.

3 Algorithms

3.1 Traditional differential methods

The algorithms by Uras et al. [13] and Lukas and Kanade [9] were implemented
by using the code provided by the authors of [7] and were applied with the
original parameter settings (temporal filtering with a sigma of 1.5 pixels in both
cases and spatial filtering with a sigma of 3 pixels and 1 pixel, respectively).

! These and the following simplifications have been performed with the aid of the
software Mathematica; a formal proof will be given in a forthcoming paper.



3.2 Structure tensor (ST algorithm)

Here we used our own implementation to enable a direct comparison with the
MST method (see below), i.e., the computation of J was a common block in
both the ST and the MST algorithm. The sequence was first low-pass filtered
with a spatio-temporal Gaussian filter (cutoff frequencies 0.33 in spatial fre-
quency and 0.75 in temporal frequency - both values given in fractions of the
maximal frequency). Subsequently, the components of J were computed by con-
volution with discrete kernels (-1,0,1), multiplication, and subsequent convolu-
tion with a Gaussian smoothing kernel h(z,y) (Eq. 2) with a sigma of 2 pixels.
The computation of J can be further optimized [6] but we were interested in
a simple implementation (that offers the possibility of a straightforward and
optimal multi-scale extension) and a performance analysis relative to the MST
algorithm. The following operations were performed only in regions were the
minor My; > Ty, with Ty, set to one percent of the maximum of M7, in each
frame (the MST algorithm uses this confidence measure to avoid division by
zero). We then computed the eigenvalues A; of J and sorted them Ay > Ay > As.
In cases where \; was larger than a threshold T,? and the confidence measure
ce = ((A1—=23)/(A14+23))%2—((A1—X2)/(A1+A2))? greater than T,., we computed
the eigenvector r3 = (rs 1,73,2,73,3) corresponding to As. In these cases, the mo-
tion vector was set to vsy = hy(z,y) * ((rs,1,rs3,2)/7s,3). The thresholds were
chosen Ty = 20 and T, = 0.4 such as to optimize the tradeoff between density
and noise behavior, and to obtain a comparable density for the two methods ST
and MST. The Gaussian smoothing kernel h, had a sigma of 2 pixels.

3.3 Minors of the structure tensor (MST algorithm)

Starting with J as defined above, the vectors v; were computed according to
Eq. 6 at those locations, where the respective denominators were larger than
one percent of their maximum value at that frame. If v;,2 + viy2 > T,,% and the
angular deviation among the four vectors v; less than Ty degrees, the spatially
blurred mean of the four was taken as the final result, i.e., vyrsr = hy(z,y) *
(v1 + v2 + v3 + v4)/4. Otherwise vargr was set to zero. The value of T, was
5 percent of the maximum length of the motion-vector vy (at each frame) in
case of the synthetic sequence and 1 percent for the traffic scene (this criterion
could not be used with the ST algorithm because it eliminated correct vectors
due to large maxima). The values of Ty were 4 and 15 degree, and the Gaussian
smoothing kernel h,, had a sigma of 2 (as for ST) and 4 pixels, respectively.

3.4 Change-detection and filling (filled-MST algorithm)

We used a change-detection algorithm based on a Bayesian decision criterion [1].
The absolute difference of two consecutive frames is summed in a 5 x 5 neigh-
borhood and normalized by the noise standard deviation in stationary regions.
Pixels where this normalized sum is above a threshold are set to one and indicate
the regions with temporal change. The other pixels are set to zero. In addition,

2 In the printed version, this erroneously read “[...] where A3 was larger [...]".



the threshold is changed adaptively such as to increase the probability for label
“1” by the number of spatial neighbors that have already been labeled “1”.

The above mask is then filled with the initially obtained motion vectors as
follows. If a pixel has (i) a mask value of one, (ii) a zero motion vector, and
(iii) neighbors with non-zero motion vectors, it is assigned the mean vector of
the (non-zero) neighbors. All other pixels remain unchanged. This procedure is
repeated until the mask is filled (the number of iterations was 30 for the square
and 22 for the taxi). Since all the displayed flow fields were sub sampled for
graphical reasons (by factors 6 in Fig. 2 and 4 in Fig. 3) after low-pass filtering
to avoid aliasing, they contain an additional smoothing (that introduces some
errors). The error analysis, however, was computed without smoothing.

4 Results

4.1 Synthetic sequence with noise

We used an image sequence of size 256 x 256 pixels that was 64 frames long.
In this sequence, a gray square (intensity 128) of size 64 x 64 pixels appears
against a darker background (intensity 64) at frame 23, moves 2 pixels right and
one pixel up in each frame and then disappears at frame 44. To this sequence,
uniformly distributed noise with a low variance of 7 was added. In addition, to
randomly chosen blocks of size 4 x 4 x 4 pixels in space and time the value of 54
was added or subtracted. This procedure is supposed to simulate the appearance
and disappearance of light and dark blobs. We have chosen this input to test the
algorithms with local discontinuities (occlusions) and aperture problems.
Comparative results obtained for this input are shown in Fig. 1. The top left
plot shows the angular errors (standard deviation of estimated motion direction
compared to the true motion evaluated for the pixels that belong to the moving
square) as a function of frame number. Note that the errors are lowest for the
MST algorithms (continuous lines). The top right plot illustrates the relative
number of pixels in the background for which motion vectors were estimated
(incorrectly since the background does not move). Note that in this plot the
continuous curve (MST) hardly deviates from zero and that the ST algorithm
produces similarly good results. The bottom left graph plots (on a log scale) the
density of the flow field (the relative number of pixels for which a motion vector
was estimated). A similar plot that shows the density obtained by counting only
the vectors with an angular error of less than 8 degree is shown bottom right.
Note that the ST and MST methods obtain the higher acuity at the expense of
a lower density. Also note, however, that for all methods other than filled MST
the density is low, reflecting the fact that reliable estimates can be obtained only
at the corners of the square. For the filled MST method the increased density
is obtained at the expense of a somewhat higher number of erroneous motion
vectors (due to filling a noisy mask). Sample flow fields of the synthetic sequence
are shown in Fig. 2. The left panel displays results for frame number 23, when
the square appears. Note that for the MST-based algorithms all vectors are zero
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Fig. 1. Results for the synthetic sequence - see text.

(as the motion is). The other algorithms (especially Uras and L&K) compute
false motion vectors induced by the popping square and the noise.

The same type of results are shown in in the right panel of Fig. 2 for frame
number 34 when the square translates. Note that in this case the ST and MST
algorithms yield a certain number of correct motion vectors at the corners of
the square and minimize the effect of the noise. Note also that the filled-MST
algorithm produces a much higher density (at the expense of some additional
errors). Of course, the filling algorithm could be applied to other methods also,
but it is crucial that all incorrect motion vectors are eliminated prior to filling.

4.2 Traffic scene

Results obtained with the filled-MST algorithm for a real video sequence are
shown in Fig. 3. Note the high density obtained by change detection and fill-
ing. Also note, that the pedestrian is detected correctly in the top left corner.
This example illustrates that the filled MST algorithm performs well on real
sequences; a more comprehensive analysis is desirable but beyond the scope and
size of this paper.

Since different implementations have been used, a direct comparison of com-
putation time is only meaningful for the ST and MST algorithms. In our imple-
mentations (MATLAB) the ST algorithm took 0.52msec (244 flops) per pixel
and the MST algorithm 0.04msec (43 flops). The filled MST algorithm is much
slower but the speed of change detection can be improved. Also, filling will be
replaced by more efficient reconstruction algorithms: since it has been shown [4]
and proved [11] that images can be reconstructed from curved regions only, the
aperture and density problems do (theoretically) not exist.
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Fig. 2. Sample results for frame 23 when the square appears (left panel) and frame
34 when the square translates (right panel).
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Fig. 3. Hamburg-taxi scene and results of filled-MST algorithm.

5 Conclusions

We have presented a novel method for motion estimation based on the minors of
the structure tensor J. The results are better than those obtained by computing
the eigenvalues and eigenvectors of J (and better than those based on the minors
of the Hessian of f). Traditional first- and second-order differential methods are
also outperformed.



The key results and features are that (i) the minors of J yield four different
expressions v; for the motion vector (ii) these expressions are equal for trans-
lations and accelerated motions but differ for occlusions and noise (iii) the flow
field that results from accepting only similar v;’s is correct but sparse (iv) the
density can be increased substantially by combining motion estimation with
change detection.
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