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Since Lettvin, Maturana, McCulloch and Pitts
(1959), neurophysiologists have known that the
visual system contains detectors that respond
to stimulus features such as “bugs”, line ends,
bars, corners, etc. (Hubel & Wiesel, 1965).
During the same period, the theory of linear
systems has been applied successfully to the
analysis and modelling of visual functions
(DeValois & DeValois, 1980). Interestingly,
however, there is a fundamental incompatibility
between these two approaches that has not yet
received adequate attention. Linear filtering,
even if modified by common nonlinearities like
thresholding or rectification, will generally con-
found straight signals with signals that show
essentially two-dimensional variations. This
principle deficiency is illustrated for a curvature
detector recently suggested by Dobbins, Zucker
and Cynader (1987, 1989), which is based
on a nonlinear combination of linear filters.
However, the problem can be solved by
using the mathematical formalism of differential
geometry. We employ the concept of “Gaussian
curvature” of surfaces to derive a class of
physiologically plausible operators for the
detection of two-dimensional signal variations.
Two essential properties of these detectors turn
out to be necessary: the use of “and” oper-
ations, that are impossible with linear filters,
and a specific “‘compensation principle” cor-
responding to inhibitory interactions between
orientation selective filters.

One example for the encoding of essentially
two-dimensional signal variations is the detec-
tion of curvature. According to a recent hypoth-
esis by Dobbins et al. (1987, 1989), this can be
accomplished by using the difference between
the outputs of two simple cells with different
receptive field sizes to generate “‘endstopped”

responses that proportionally vary to stimulus
length and curvature. It can be shown, however,
that this particular model, as well as any essen-
tially linear system, is subject to response ambi-
guities in that it is always possible to find a
stimulus of zero curvature that erroneously
elicits a response. Consider the stimulus con-
figuration shown in Fig. la. While the curved
lines and short bars give rise to appropriate
responses of the Dobbins et al. detector, it also
reacts erroneously to certain straight stimuli on
the right side (Fig. 1b). The corresponding
critical spectral area within which such false
responses can occur is indicated in Fig. 2.
The very reason for the occurrence of
such ambiguous responses has to be sought
in a fundamental limitation of linear filters
in the processing of two-dimensional signals.
Such signals can be classified into three elemen-
tary categories: (1) constant signals that
show no variation at all; (2) intrinsically one-
dimensional signals that are constant along one
orientation and can, therefore, be completely
characterized by their variation along the ortho-
gonal orientation (here: 1D-signals); (3) actually
two-dimensional signals that vary along all ori-
entations (here: 2D-signals). Obvious examples
of 1-D signals are straight lines, straight edges,
or sinusoidal gratings with arbitrary orien-
tation. Curved lines, curved edges and junc-
tions, intersections, terminations, etc. are typical
2D-signals (Marko, 1974; Julesz, 1981). An
essential requirement for all detectors which
encode 2D-signal properties is that they should
not erroneously respond to 1D-signals. Curva-
ture detectors, for example, should not respond
to straight stimuli. We will show that such an
unambiguous detection of 2D-signal properties
necessarily employs “and” operations. Such
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Fig. 2. Spectral representation of the different sized receptive
fields used by Dobbins et al. (1987, 1989), providing an
explanation for the responses of Fig. 1b. Although they are
obviously not curved, certain sinusoidal gratings whose
frequencies fall within the hatched area can pass the non-
linear filter combination. This becomes evident if the non-
linear equation given in Dobbins et al. (1987, 1989), is
rewritten as a set of linear equations:

R =[[¢,R,] [, R]] can be rewritten as:

R ~aR, R>0, R>0, R > Rqc; (la)
R =cR, R,>0, R <0; (1b)
0 otherwise, (l¢)

with [.] denoting one-way rectification, ¢,, ¢, denoting con-
stants, and R, R, denoting responses from a small and a
large receptive field. Since sinusoidal eigenfunctions pass
both the R- and Rpfilter without a change in their basic
form, their positive parts can fulfil equation (la), provided
R, is great enough. Equation (1b) can be fulfilled by the
sidelobes of the responses to dark straight lines. It is easy
to show that, independent of the filter function, similar
effects will occur for any conceivable “filter followed by
threshold” operation.

operations have already been claimed to be of
general importance for visual information pro-
cessing (Marr & Hildreth, 1980; Reichardt &
Poggio, 1981; Barlow, 1985; MacKay, 1985;
Gliinder, 1990). Signal processing in linear
filters, however, can be seen as being restricted
to an “or” combination of their inherently 1D
basis functions. These basis functions, the eigen-
functions of linear shift invariant systems,
are complex exponentials varying sinusoidally
along one orientation, while being constant
along the orthogonal one. Linear signal pro-
cessing can be completely characterized via a
decomposition of signals into these special 1D-
signals (Gaskill, 1978). The action of a filter is
to merely modulate the amplitude and phase of
the input eigenfunctions, while it preserves their
basic form. The final step within this descripton
scheme is the additive recombination of these
weighted eigenfunctions. It is now easy to see
that for every linear filter, independently of its
filter function, one can always find at least one
1D-signal causing a nonzero output. This is
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because the filter can be regarded as performing
a logical “or” operation: on the one hand, the
presence of a single input eigenfunction will
produce a nonzero output signal (except for the
trivial case of a zero filter coeflicient). On the
other hand, the additive interaction of several
eigenfunctions can only change the form of the
output signal but can never cause it to vanish
completely for all (x, y), as is easily deduced
from Parseval’s Theorem (Gaskill, 1978).

It might be argued that this limitation of
linear filters could be overcome by a combi-
nation of linear filters and nonlinear operations
of the rectifying, clipping, thresholding, etc.
type. However, if the nonlinear functions can be
described, at least approximately, by piecewise
linear transducer functions, the operation of the
whole system can always be expressed by a set
of linear equations, each being valid within a
specific definition range determined by the non-
linearities (see the caption of Fig. 2 for an
example). Since these equations are either zero,
constant or linear filter operations, ambiguous
responses to 1D-signals can only be avoided if
the definition ranges are determined in such a
way that the constant and linear subcases can
not be obtained for any 1D-signal. It will turn
out that this is only possible for the special case
where the set of equations correspornds to some
version of an “and” operation.

Our solution of the problem of response
ambiguities is based on differential geometry.
The approach is related to an earlier proposal
by Koenderink and van Doorn (1987) and to
techniques in image processing where the image
intensity function is regarded as a surface onto
which geometrical principles can be applied
(Paton, 1975; Hsu, Mundy & Beaudet, 1978;
Haralick, Watson & Laffey, 1983; Besl & Jain,
1988). A central concept of differential geometry
is the approximation of a local two-dimensional
surface by an “osculating” paraboloid. In the
limit this paraboloid will degenerate to a plane:
the surface is “planar”. If one has to bend a
plane, like bending a piece of paper, the surface
is “parabolic” and the corresponding image
intensity function is a [D-signal (from this
point of view, sinusoids are corrugated card-
board). For 2D-signals, like corners, the corre-
sponding surface cannot be formed without
elastic deformation (paper will crease). In this
case the paraboloid is “elliptic” or ‘“hyper-
bolic”, and what we seek is the mathematical
specification of this property. This specification
is provided by the concept of “Gaussian



Fig. 1. (a) Input. Several 2D-signals are shown on the left side: three curved line segments with different
degrees of curvature and three bars with different length and width. 1D-signals are on the right side: a
bright straight line, a dark line, and a frequency modulated grating with spatial frequency increasing from
left to right. (b) Output of the even-symmetry (ES) model of Dobbins et al. (1987, 1989). Note that the
model responds as expected to the presence of curvature (left) and to the bar stimuli (center). Also as
expected there is no response to the straight bright line. However, even the “optimal” stimulus (the middle
bar) yields a weak response compared with the false-positive responses caused by suitable 1D-signals in
the right side (dark line, grating with appropriate spatial frequency).

Fig. 3. Impulse responses (first row, a-¢) and corresponding Fourier transforms (second row, f-j) of the
terms appearing in the discriminant D = 1./, — /% In addition to differentiation, an appropriate
isotropic Gaussian band limitation is applied to ensure stability. (a) /., (b) /., (©) /., () /,,
(e) D =1, ~12 . Obviously the spectra of /., and / (I, g) have some overlap in the oblique areas of
the frequency domain. This has to be compensated by substraction of /%y = 1/4 (I, — 1, )%, which has its
spectral energy concentrated within the overlapping areas (h, ). Since the operator D is nonlinar, its
impulse response (¢) or its Fourier transform (j) can not be interpreted in the conventional sense.
Nevertheless they illustrate the important fact that the nonlinear combination of anisotropic orientation-
selective filters can lead to an isotropic behavior.
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Fig 6(a-c). Caption opposite.
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curvature” or, more precisely, by the discrimi-
nant of the osculating paraboloid (also known
as determinant of the “Hessian™) (Spivak,
1975). It can be written as:

D=1, Iyy —1 >2<y @

where [ = [(x, y) is the image intensity function,
and the subscripts denote partial differentiation
in the respective directions. D is zero for planar
and for parabolic points, and hence a corre-
sponding operator can already be regarded as a
detector for 2D-signals (Beaudet, 1978). How-
ever, the above formula is of more general
importance, since it allows the detection of the
essential requirements for any unambiguous
detection of 2D-signals, and it can easily
be translated into terms of neural signal
processing.

The impulse responses of the appropriately
band-limited second derivtives /,, and /,, are
shown in Fig. 3(a, b). Differentiation being a
linear operation, they can be interpreted as
oriented even-symmetric receptive field profiles
or, equivalently, orientation selective filters
(Young, 1985; Koenderink & van Doorn, 1987).
Since any one of them will give an unwanted
response to 1D-signals, their nonlinear multi-
plicative combination must be the essential
operation for the computation of D. From the
definition of 1D- and 2D-signals, it is clear that
appropriate detectors should not respond if
there is no variation at all, i.e. if both orien-
tation filters yield zero outputs. Likewise, they
should not respond if the signal is constant
along one orientation (one filter yields a zero,
the other, a nomzero output). They should
respond, however, if (and only if) both filters
indicate a signal variation. It is obvious that
the required nonlinear combination of filter

0 "
c Ro-

Fig. 4. Explicit multiplication can be avoided by the old
Babylonian trick (Resnikoff’ & Wells, 1973),

Ry Ry= /A [(R, + Rz)2 ~ (R~ Rz)z]'

This can be modified to:
min(R, By) = 1/2 (| R + Ry| =1 R — Ry|);
or, even more general:
Ri® Ry = N(R + Ry) —~ N(R, ~ Ry);

where (V) indicates a generalized “and” operation, and “N”
can be any even-symmetric nonlinearity. A general test for
the correctness of 2D-signal detectors would consist of a
power series expansion of the nonlinearities and an analysis
of the resulting terms for the appearance of products of
complex exponentials whose two-dimensional frequencies
do not differ in orientation. If such products exist, it is
definitely possible to find a corresponding 1D-signal that
will cause a false-positive response.

outputs corresponds to a logical “and” oper-
ation, and we claim that such an “and” has
to be the necessary basis for any detector of
two-dimensional signal variation.

The specific implementation of the “and”,
however, can take place in various ways.
Thresholding of the sum is the trivial solution
for the restricted case of binary signals. Multi-
plication seems to be the obvious method in the
case of analog signals but may be considered
difficult as a neural operation. A physiologically
plausible circuit for a generalized “and” oper-
ation is shown in Fig. 4. The most general case,

Fig. 6. (a) A “bug detector”. (Input left, output right side.) “Off”-type filter outputs can be defined as:
R~ = —Rif R <0and R~ =0 otherwise. “And” combinations of such filters respond preferably to dark
convex objects. Here even-symmetry, orientation-selective DOG’s with orthogonal orientation axes have
been used (cf. Fig. 5a). (b) Hypercomplex cell. (Input upper half, output lower half). The same input as
for the Dobbins et al. operator is used (cf. Fig. 1). The hypercomplex cell is wired according to the scheme
in Fig. 5c. For ease of computation, polar separable orientation filter functions have been used for all
three filters. Orientation half-bandwidth is 26 deg, radial bandwidth is 2 octaves. Angular separation of
the two “and” combined orientation filters is 26 deg. Note the hyperacuity property: a slight change from
a straight to a curved line raises the response from zero to a considerable value. Due to the filter
configuration employed, this hyperacuity property is confined to a limited range of orientations, as has
been suggested by Watt and Andrews (1982): (c) Dot-responsive cell. (Input left, output right side.) While
these cells do not respond to 1D-signals of arbitrary orientation, they do respond to interruptions in
straight lines and to isolated dots. An essential property is their isotropic behaviour. It is interesting to
note, however, that this isotropy need not necessarily be based on isotropic operations, but can result from
an appropriate nonlinear combination of anisotropic orientation-selective filters, as in the discriminant
formula. The combination of four orientation-selective filters shown in Fig. 3a-d has been used. Responses
are two-way rectified.
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however, comprises all those combinations of
linear and nonlinear operations that can be
guaranteed to produce solely mixed terms,
i.e. products of eigenfunctions with different
orientations. The approach of Koenderink and
Richards (1988) can be regarded as a special
case where the “and” is implicitly used in the
form of a “gating” operation. A response occurs
if and only if one orientation selective filter has
the maximal output and another filter with a
different orientation selectivity yields a nonzero
output.

However, the “and” combination of orien-
tation filter outputs cannot ensure the avoidance
of false-positive responses to 1D-signals, unless
the filters are strictly independent, i.e. have no
spectral overlap. This condition can be fulfilled
for orthogonally oriented filters in the human
visual system (Fig. 5a), bul restricts the sensitiv-
ity of detectors to a limited class of 2D-signals.
We suggest, however, that various “and” com-
binations of orientation filters differing in size,
even/odd-symmetry and angular separation are
necessary to capture the variety of 2D-signals in
the natural environment (Fig. 5a—c). In such
combinations, depending on angular separation
and orientation bandwidth, both filters may
overlap spectrally, and therefore will respond to
a suitable 1D-signal. Hence the “and” will lead
to a false response. Here the second important
property of the discriminant ID comes into play.
We call it the “compensation principle.” False
responses to 1D-signals due to overlapping filter
ranges can be avoided by subtraction of a
compensation term, like the squared mixed
partial derivative [, in (2), which can be written
as:

[\'_\' = 1/2 (luu - lmr); (3)

with u and v being the oblique orientations
(Koenderink, 1988). /,, and /, can also be seen
as orientation-selective ﬁlter operations (cf.
Fig. 3c,d). If the filters that are “and” com-
bined have a relatively sharp orientation tuning,
as has been reported from neurons in the visual
cortex (DeValois, Albrecht & Thorell, 1982),
compensation is necessary for small angular
separations only and can be achieved through
inhibition from a single filter with intermediate
orientation (Fig. 5¢). Inhibitory interactions
between orientation filters are a well-established
fact and might even play a role in perceptual
illusions caused by certain 2D-signals (Hess,
Negishi & Creutzfeldt, 1975; Blakemore,
Carpenter & Georgeson, 1970).

(a)

(b)
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Fig. 5. Three examples of combinations of orientation filters
differing in orientation, scale, and angular separation, re-
spectively. In (c), orientation filters 4, and A, are inhibited
by C to compensate the overlap. The compensation filter
function can be derived from the Fourier transform of a
generalized version of the discriminant equation:
FD(x, )} = E(p,0) A, (p, 0) *E(p, 0) Ay(p, )
—FE(p,0) C(p,0) *E(p, 0) C(p, 0);

where p, 0 are polar frequencies, £ is the Fourier transform
of an arbitrary input, A, A, are the transfer functions of the
“and” combined filters, and C, of the compensation filter.
* denotes convolution with respect to p. This equation can
be easily solved analytically for C if the filter functions are
polar separable [4(p,0) = 4,(p) Ay(0)] and have the same
radial frequency tuning [4, ,(p) = 4, (p) = C,,(p)] The cor-
rect angular tuning of the compensation filter is then given

by Cy(0) = \/{A41)(0) Ay(0)}.

In conclusion, we have shown that the un-
ambiguous encoding of 2D-signals is a non-
trivial capability achievable neither with linear
filters nor by the common nonlinearities. Differ-
ential geometry, however, provides the frame-
work for a wiring of visual cells that enables
such a capability. The essential aspects of
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this framework are a nontrivial (Reichardt
& Poggio, 1981), nonlinear combination of
orientation-selective responses by an ‘“‘and”
operation and a suitable inhibition from inter-
mediate orientations. It is interesting to note
that cells which are obviously specified in the
analysis of 2D-signals and which, therefore,
resist any linear analysis, have been known
for as long as 30 yr, namely the famous “bug
detectors” of Lettvin et al. (1959) (Fig. 6a). For
higher vertebrates, hypercomplex cells (Hubel
& Wiesel, 1965) (Fig. 6b), and the recently
discovered ““dot responsive” cells (Saito,
Tanaka, Fukada & Oyamada, 1988) (Fig. 6c),
are also typical 2D-signal detectors. Although
the latter two represent a considerable part of
the visual cortex (Orban, 1984; Saito et al.,
1988), exploration and modelling of spatial
vision has been clearly dominated by linear filter
theory in the last twenty years. From the logical
point of view, the latter theory can only provide
one half of the truth, namely “or’ operations.
The inclusion of “and” operations and geo-
metrical principles in the theoretical concepts
might bring us one step closer to understanding
biological vision.
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