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Adaptive walks on time-dependent fitness landscapes
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The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes
on large time scales is extended to fitness landscapes that are slowly changing over time. The
influence of ruggedness and of the amount of static fitness contributions are investigated for model
landscapes derived from Kauffman’s NK landscapes. Depending on the amount of static fitness
contributions in the landscape, the evolutionary dynamics can be divided into a percolating and
a non-percolating phase. In the percolating phase, the walker performs a random walk over the
regions of the landscape with high fitness.

PACS numbers: 87.10.+e

Most work on Darwinian evolution so far has been
concerned with evolution in constant environments on
the one hand (e.g., see [1–3] for the field of population
genetics, or [4] for adaptive walks), and coevolutionary
processes on the other hand (e.g., see [5,6] for ecological
models like Lotka-Volterra systems, or [7–9] for Artificial
Life type computer simulations). The case in which a
species is subjected to a changing environment, without
being able to influence it, has been studied only rarely.
Most work of the latter type is considering a single pe-
riodically changing optimum [10–13]. In such situations,
the evolutionary dynamics acts as a low pass filter [14].
The optimum can only be tracked if the oscillation fre-
quency is sufficiently low.

In this work, we are considering evolution in high-
dimensional fluctuating fitness landscapes, with different
amounts of dynamic and static fitness contributions. The
motivation of this work comes from in vivo evolution of
proteins. Living organisms use a huge amount of differ-
ent proteins. Where does this diversity originate from?
When looking at a single protein in a particular species,
the protein appears to be in a local optimum, without any
better mutants nearby. However, to account for the ob-
served diversity, there must be mechanisms that allow to
move on from one local optimum to another sporadically.
The simplest mechanism one can consider is one in which
large mutations sometimes carry a protein into a distant
region in the genotype space. Although this mechanism
cannot completely be rejected, it is unlikely that large
mutations play a predominant role in protein evolution.
A large mutation is essentially a random jump into the
genotype space, leading with extremely high probability
to an amino acid sequence that cannot fold correctly any-
more. Therefore, large mutations will in almost all cases
not produce a viable protein.

A mechanism that works with small mutations is drift
on neutral networks. It has been mostly studied for
RNA [15–17], but it can also be considered in the case of
proteins [18]. On a neutral network, mutations change
the amino acid sequence, but leave the protein fold and,

more importantly, the protein’s active region unaltered.
From time to time, the drifting sequence comes close to
a sequence with higher fitness, and then a transition to a
new local optimum takes place. This theory works well
for in vitro experiments [19], but it is unclear whether
enough neutrality exists in vivo to allow for sufficient
drift [20–22]. There exists evidence that in some cases,
no neutral amino acid substitutions exist in living or-
ganisms (e.g., for Drosophila m.’s alcohol dehydrogenase
locus [23]) and that the environment can select for ex-
tremely small fitness differences [24,25]. The reason why
this cannot be observed in in vitro experiments is prob-
ably that the experiments are not sensitive enough [25].

Benner and Ellington [20] have suggested a different
mechanism that could work with small mutations and
in the absence of neutrality. They propose that slow
environmental changes generate a constant genetic drift
which can be accounted for the protein diversity. This
idea has never been studied quantitatively in a mathe-
matical model.

Here, we are going to study a model which demon-
strates that indeed a slowly changing environment can
generate something like a constant genetic drift. We will
call this drift “environmentally guided drift”. It is not
a diffusion process, such as neutral drift [1]. The pop-
ulation as a whole moves through the genotype space,
since transitions to selectively advantageous states hap-
pen very fast, as first order phase transitions [26,27].
Adaptive walks are particularly suitable to study such
phenomena, and we will use them throughout this paper,
neglecting population effects or crossover of genotypes.

The statement that the population always remains lo-
cated in the genotype space, and that hence the dynamics
can be approximated with an adaptive walk, can only be
justified if the environmental changes are very slow. If
this is the case, i.e., if the fitness landscape does change
only marginally over time intervals of the length of typ-
ical waiting times between two transitions, the adaptive
walk approximation should be valid under the same as-
sumptions as in static landscapes. Note that this means,
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on the other hand, that in our model the adaptive walk
must be allowed to do a number of jumps prior to sig-
nificant changes in the landscape. As a consequence, the
walker will often have the chance to reach a local opti-
mum before it starts out for a new peak because of the
deforming landscape. Later in this paper, we will discuss
the adiabatic limit, which is an even slower time scale. In
the adiabatic limit, the changes happen so slowly that for
every change in the fitness landscape the adaptive walk
can always find a local optimum.

As example landscapes, we choose Kauffman’s NK
landscapes [4,28], which are spin glass-like landscapes
commonly used for the study of adaptive walks. Al-
though they cannot be directly related to the true land-
scapes underlying in vivo protein evolution, their tunable
degree of ruggedness makes them a good tool to study
general effects in rugged landscapes. In a NK landscape,
the fitness of a bit string of length N is defined as the
average over each bit’s fitness contribution. The contri-
butions depend on the state of the corresponding bit as
well as on the state of K other bits interacting with it.
We can write the fitness f as:

f =
1

N

N∑

i=1

fi({S}i) , (1)

where {S}i is the state of the K+1 bits influencing the fit-
ness contribution of bit i. In Kauffman’s original formu-
lation, the functions fi({S}i) are realized as tables con-
taining a different quenched random fitness contribution
for every state {S}i. Here we are interested in a time-
dependent form of Eq. (1). One possibility has been pro-
posed by Levitan and Kauffman [29], who have studied
the case that the fitness cannot be measured exactly. In
their work, the measured fitness f ′ equals the true fitness
f plus a noise term g(t). Such an approach has proven
suitable to study the effects of noise in chemical engineer-
ing problems [30]. However, it does not work here, since
we are interested in local deformations of the landscape,
and not in a global noise-induced shift. What we do in-
stead is to use time-dependent functions fi({S}i, t). Note
the general difference in the model of Levitan and Kauff-
man and of ours. In their model, the fitness landscape
is static, but can only be measured with finite accuracy.
In our model, the fitness landscape itself is changing, but
the fitness can be measured exactly. Considering the long
time scale we are addressing, we can assume that noise
does not play a prominent role here. The single walker
represents the mean of a population, as noted above. In
the population mean, the noise is averaged out. We will
later discuss how the model could be altered for noise too
intense to allow that assumption, or for populations so
small that destabilizing effects can occur.

We choose the functions fi({S}i, t) to be continuous
in time. Noisy, discontinuous fitness contributions seem
to be unappropriate to model a slowly changing environ-

ment. In principle, one could of course add a noise term
on top of each fitness contribution, or study landscapes
with mixed noisy and continuous contributions, but this
is not our objective here.

Not necessarily all fitness contributions need to be
truly time dependent. Some may be equal to a constant,

fi({S}i, t) = Ci, {S}i . (2)

It is useful to keep track of the amount of static contribu-
tions in the landscape. We denote the fraction of static
contributions by fS. Adaptive walks on time-dependent
NK landscapes show several distinct classes of behavior,
most strongly influenced by fS.

So far we have described the basis of our model, now
we have to specify the actual form of the fitness contri-
butions. For data analysis, it is useful to impose periodic
boundary conditions on the fitness landscape, i.e.,

f(t + T ) = f(t) , (3)

with oscillation period T . Throughout the rest of this
work, we will stick to this choice. Its advantage rests in
the easy comparison of a bit string’s evolution in differ-
ent oscillation periods. In particular, it allows to use the
concept of environmentally linked networks introduced
below.

The form of the functions fi({S}i, t) can in principle
be arbitrarily complicated. We are going to consider a
simple trigonometric time dependency,

fi({S}i, t) =
1

2
[sin(ω{S}it+ δ{S}i) + 1] . (4)

This introduces only a single additional constant per fit-
ness contribution, if compared to the static landscape.
The frequencies ω{S}i and the phases δ{S}i are chosen
randomly when constructing the landscape, and are then
kept fixed for all times t. The phases are distributed uni-
formly in the interval [0; 2π) so that the resulting fitness
landscape is homogeneous in time. We set the frequen-
cies to ω{S}i = 2πn{S}i/T , with n{S}i being integral, and
T being arbitrary, but the same for all ω{S}i , to obtain
a periodic fitness landscape with oscillation period T . If
we want a fitness contribution to be constant, we set the
corresponding frequency ω{S}i to 0.

We have done a large number of simulations with dif-
ferent choices for N and K, with different sets of oscil-
lation frequencies, and also with more complicated func-
tions fi({S}i, t), in which the oscillations have additional
random amplitudes and offsets. In all cases, the ba-
sic patterns are very similar. The parameters having
the strongest influence on the observed behavior are the
ruggedness K and the fraction of static fitness contri-
butions fS. In Figs. 1-3, some typical runs of adaptive
walks in oscillating NK-landscapes are presented. In the
simulations leading to these plots, we used N = 20 and
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K = 8. Additionally, we employed only a single oscilla-
tion mode. This means, all frequencies ω{S}i were either
set to zero or set to some fixed value ω = 2π/T . The
oscillation period T was set to T = 1000, which can be
considered large in a system with N = 20. A local opti-
mum can typically be found in about 100 time steps in
a static NK landscape with such N . The adaptive walk
was performed exactly as in Kauffman’s original work: a
random point mutation was accepted if it increased the
bit string’s fitness. Otherwise, the mutation was rejected.

Figure 1 shows an example of the evolutionary dynam-
ics with a relatively low fraction of static fitness contri-
butions. The resulting pattern is a chaotically changing
fitness. With almost every accepted mutation, a new
genotype is encountered. The environmental changes
constantly lead the walker into regions previously not
visited. This reminds one of a random walk. However,
there are some differences between the adaptive walk and
a random walk. We will discuss them below.

The behavior of the adaptive walk changes drastically
with increasing fS. The higher amount of static fitness
contributions reduces the number of possible advanta-
geous mutations in every time step. The bits connected
to static contributions freeze out in a locally optimal
state, and only the sites connected to oscillating con-
tributions can still change. Hence, the dynamics gets
confined in a small region of the genotype space. The
same mutational patterns are seen over and over again
in the different oscillation periods. In the fitness plots,
we can identify this behavior with a periodic or almost
periodic change of the fitness, as shown in Fig. 2. Using
the language of dynamic systems, we can say that the
attractor of an adaptive walk on an oscillating landscape
with intermediate fS is a noisy limit cycle. With some
small probability p, the process can leave a limit cycle.
Several transitions between such metastable limit cycles
are shown in Fig. 3. The mean fitness can increase or
decrease because of the transitions. The frequency with
which transitions occur depends on the actual value of
fS. The larger fS, the rarer can transitions be observed.

These metastable states remind one very much of
the metastability induced by finite populations on static
landscapes with a high degree of neutrality [31–33], how-
ever they are generated through a completely different
mechanisms. A slight qualitative difference between the
two types of metastability is that here, the transitions
lead regularly to a decrease of a metastable state’s av-
erage fitness, whereas in neutrality-induced transitions,
this is mostly not the case. Nevertheless, the work of
Nimwegen et al. shows that with very small populations,
the evolutionary dynamics on a landscape with neutral-
ity can as well display transitions leading to a decrease
of fitness [32]. The interesting point of our findings here
is that we find metastability under the complete absence
of neutrality.

Let us now address the question whether the transi-

tions actually lead to an increase in fitness, or whether
advantageous and disadvantageous transitions balance
each other. In Fig. 4, we show the expected fitness as
a function of time for 100 oscillations with a period of
T = 2560. The expected fitness was obtained by averag-
ing over 50 independent runs. We have chosen fS = 0.6,
which is well in the metastable regime. We observe that
the most important fitness gain is reached during the first
couple of oscillations (the curve starts of from 〈f〉 = 0.5
for t = 0). Nonetheless, for the complete duration of
the 100 oscillations, we observe a constant slight increase
in the fitness. A linear fit to the expected fitness from
time step 104 to the end of the recording gives an in-
crease in fitness of 1.03×10−4 per oscillation period. Ul-
timately, for much longer simulation runs, the expected
fitness reaches an asymptotic value. Note that the slight
fitness increase over many oscillation periods is an ef-
fect peculiar to the metastable regime. In the chaotic
regime the expected fitness reaches its asymptotic value
very quickly, after a few oscillation periods.

The adaptive walk’s efficiency to find regions of high
fitness can be judged from the mean fitness encountered
during the walk. Figure 5 shows the mean fitness, aver-
aged over several independent adaptive walks, as a func-
tion of the oscillation period T . The curve correspond-
ing to the chaotic regime, with fS = 0, starts off at a
mean fitness of 0.5 for small T . This is the average fit-
ness on the landscape, and hence the walker approxi-
mately does a random walk on the landscape. For larger
T , the mean fitness quickly grows and reaches a value
close to the average of a local optimum in the landscape.
Although the movement in the genotype space appears
to be chaotic, the expected fitness of the walker at any
point in time is as large as the expected highest fitness
an adaptive walk in a comparable static landscape would
encounter. Therefore, for large T the walker’s movement
can be considered as a random walk confined to the re-
gions of high fitness in the genotype space. When we
increase the amount of static contributions in the land-
scape, the average fitness is above 0.5 even for very fast
environmental changes. For larger T , the average fitness
increases towards the average height of local optima in
the landscape, and even significantly above it. The lat-
ter occurs in time-dependent landscapes as long as only a
tiny amount of time-dependent contributions is present.
To understand why this happens, consider a bit string
in which all but one bit have only static contributions.
The remaining bit may also give a static contribution
if it is set to 0, and a time-dependent one if it is set
to 1. For the times when the time-dependent contribu-
tion is smaller than the static one, the bit will be set
to 0, and otherwise it will be set to 1. This effectively
increases the average height of local optima in dynamic
landscapes. The effect is most pronounced if the number
of static contributions is moderately large, for fS around
0.8.
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At this point, it is interesting to ask what proportion of
the genotype space can actually be reached through envi-
ronmentally guided drift. The question can be addressed
with the concept of environmentally linked networks (EL
networks). We define an EL network to be the set of
all points in the genotype space the adaptive walk can
reach at times nT , n = 0, 1, 2, . . ., starting from a fixed
position in the genotype space. We will say an EL net-
work percolates if it consists of infinitely many points.
This definition is similar to the usual definition of the
percolating cluster on the Bethe lattice, and is the ap-
propriate way to define percolation in high-dimensional
spaces [34]. It can be applied literally only in the limit
N →∞. However, the genotype space grows so fast with
increasing N that this restriction can be neglected.

If the walker is for small fS indeed doing a random
walk over the landscape, or over the landscape’s regions
of high fitness, as we supposed above, then we should
find a percolating EL network in the chaotic regime.

The study of EL networks in oscillating NK land-
scapes is computationally very demanding, since we have
to go through the full oscillation periods in the simula-
tion. Hence, we have to restrict ourselves to moderate
T and N . In the examples below, we have again used
ωi = ω = 2π/T with T = 1000, as well as N = 20.

Figure 6 shows the fraction γ of new genotypes among
all the genotypes encountered at the beginning of each
oscillation period. This is a measure for the size of an
EL network. A value near 1 means a new genotype has
been encountered in almost every oscillation period. On
the other hand, a value near 0 means the network’s size
is small, thus confining the adaptive walk in a limited re-
gion of the genotype space. In the limit of infinitely many
oscillation periods, only percolating networks can have a
positive γ, whereas finite networks yield γ = 0. There-
fore, γ is a proper order parameter indicating a perco-
lation transition. Clearly, in numerical experiments the
number of oscillation periods over which the measure-
ment is taken is finite, and therefore we will observe a
positive γ even in the non-percolating regime. In the
case of Fig. 6, the value γ was obtained from averag-
ing over 60 adaptive walks, each on a different fitness
landscape. Every adaptive walk endured 200 oscillation
periods. The error bars present the standard deviations
of the single measurements.

Let us begin the discussion of Fig. 6 with the graph on
the right, for K = 8. We find a γ close to 1 for small fS,
and a vanishing γ for fS ≈ 1. The standard deviations
are very small in both limiting regimes. In the region
about fS ≈ 0.5, a sharp drop in γ can be observed, ac-
companied with an enormous increase in the error bars.
This is good evidence for the existence of a percolation
transition with critical point f∗S around 0.5. The large
error bars are a sign for critical fluctuations, observed in
2nd order phase transitions. The graph on the left of
Fig. 6, for K = 2, shows a very different behavior. The

quantity γ does not reach higher than about 0.2, and
the error bars are large for the whole range of fS. We
do not see a clear percolation transition for this much
less rugged landscape. The large error bars indicate that
the finite γ for small fS is rather an artifact due to the
finite sampling than a true result. We have done compa-
rable simulations for the range of K from 0 up to 14, and
what we generally observe is that the transition becomes
sharper with increasing K.

We can understand the above observation in the adi-
abatic limit. For the case of a Fujiyama landscape
(K = 0), the EL network degenerates to a single point
in this limit, and percolation can consequently not be
observed. On the other hand, the completely random
landscape we obtain for K = N − 1 presents a multitude
of local optima, and the changes in the landscape pro-
vide the opportunity to hop from one local optimum to
another in a random fashion during the oscillation pe-
riods. The landscapes with intermediate K interpolate
between the two extremes. This argument shows that
ruggedness must generally promote the movement in the
genotype space for the low-fS regime, a situation com-
pletely opposite to the case of static landscapes, where
ruggedness is regarded as an impediment to the move-
ment in the genotype space. If the changes happen on a
slow enough time scale, the increased mobility does not
lead to an error catastrophe through which all informa-
tion is lost, such as the breakdown of the quasispecies for
large mutation rates [35]. As we saw in Fig. 5, the fitness
is constantly in the region of average local optima. We
observe this also in the example run displayed in Fig. 1.
The fitness is chaotically changing, but it is always well
above the landscape mean of 0.5. An error catastrophe
occurs only if the environmental changes happen very fast
compared to the typical adaptation time of the system.

So far, we disregarded noise or loss of information be-
cause of very small populations in our model. Both have
the effect to enable the acceptance of mutations leading
to lower fitness. Here, we could incorporate them by
adding noise to the fitness as in [29], or by accepting bad
mutations with some probability. As long as these mech-
anisms do not lead to an error catastrophe on a static
landscape, they should not very much alter the dynam-
ics on a slowly changing landscape from what we have
found here.

Evolution in a slowly changing environment follows a
dynamics very different from the situation in a fixed envi-
ronment. The environmentally guided drift drives genes
out of local optima, and drags them around in the geno-
type space. We have presented evidence for the existence
of a giant EL network for fS below some critical f∗S in
landscapes with sufficient ruggedness. Consequently, in
this regime the whole genotype space can be transversed
by means of environmentally guided drift. The guided
drift can provide – in absence of any neutral pathways in
the fitness landscape – an efficient mechanism to generate
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constantly new genotypes, albeit at every single point in
time the system seems to be trapped in a local optimum.
We could show that the efficiency of the environmentally
guided drift is related to the ruggedness of the landscape.
A more rugged landscape provides more opportunities to
move around under environmental changes than a land-
scape with only a few peaks. Consequently, the rugged
landscapes observed in protein evolution [20] can pro-
mote protein evolution in an ever changing environment,
instead of hindering it. If we have a population that de-
composes into several subpopulations not coupled with
each other through selection, these subpopulations will
disperse and move to completely different regions of the
genotype space because of environmentally guided drift,
even if the process starts off from a completely homoge-
neous population and if all individuals in the system feel
the same environmental changes at the same time. The
decoupling of the subpopulations can occur, for exam-
ple, if the population lives in a very large geographical
territory, so that individuals living in one part do not di-
rectly interact with individuals living in another part, or
if a physical barrier forms at one point in time that di-
vides the territory into several independent regions. As
a consequence, rugged landscapes combined with slow
environmental changes should inevitably lead to a large
variety of different evolutionary solutions for the same
problems.

Although the EL networks used here for data analysis
are only meaningful in periodic landscapes, the conclu-
sions drawn from their study should also hold in non-
periodic situations. The reason why environmentally
guided drift becomes so efficient for small fS is that con-
stantly new local optima appear nearby. Therfore, if the
changes are non-periodic, but the landscape has sufficient
ruggedness, the adaptive walk should similarly behave
like a random walk over the landscape’s regions of high
fitness.

An effect tightly connected to the periodicity of the
landscape, on the other hand, is the appearance of limit
cycles. The dynamics in oscillating NK landscapes is
above the percolation transition dominated by noisy limit
cycles, with sporadically occuring transitions from one
limit cycle to another. The system goes through several
noisy limit cycles until a stable limit cycle, or a stable
fixed point, is reached. This effect reminds one of the
behavior of evolution on landscapes with a high degree
of neutrality. There, evolution proceeds on neutral net-
works, with sporadic transitions between them, until a
stable local optimum is reached.

The model studied in the present paper, i.e., an adap-
tive walk on an oscillatingNK-landscape, is certainly too
simplistic to be accounted for as a realistic model of the in
vivo evolution of proteins in a changing environment. In
particular, it can be argued whether sinusoidally chang-
ing fitness contributions are justified. Nevertheless, such
simple models often capture the qualitative properties of

more realistic situations. Similar percolation transitions
can probably be found also in other time-dependent land-
scapes with sufficient ruggedness.

In future work, it should be interesting to study the
percolation transition in more detail, and to determine
for what K a percolating regime actually exists. Further-
more, the interplay between static and dynamic fitness
contributions should also be investigated in other fitness
landscapes.
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[13] T. Bäck, in Proceedings of the 1998 IEEE International

Conference on Evolutionary Computation (IEEE Press,
Piscataway, NJ, 1998), pp. 446–451.

[14] A. J. Hirst and J. E. Rowe, J. theor. Biol. (1998), sub-
mitted.

[15] C. V. Forst, C. Reidys, and J. Weber, in Advances in
Artificial Life, Vol. 929 of Lecture Notes in Artificial In-
telligence, ECAL ’95, edited by F. Morán, A. Moreno,

5



J. Merelo, and P. Chacón (Springer, Berlin, Heidelberg,
New York, 1995), pp. 128–147, SFI Preprint 95-10-094.

[16] M. A. Huynen, P. F. Stadler, and W. Fontana, Proc.
Natl. Acad. Sci. USA 93, 397 (1996).

[17] C. Reidys, P. F. Stadler, and P. Schuster, Bull. Math.
Biol. 59, 339 (1997), SFI Preprint 95-07-058.

[18] A. Babajide, I. L. Hofacker, M. J. Sippl, and P. F.
Stadler, Folding & Design 2, 261 (1997), SFI Preprint
96-12-085.

[19] C. V. Forst, J. Biotechnology 64, 101 (1998).
[20] S. Benner and A. D. Ellington, CRC Critical Reviews in

Biochemistry 23, 369 (1988).
[21] M. Kreitman and H. Akashi, Annu. Rev. Ecol. Syst. 26,

403 (1995).
[22] M. Kreitman, Bioessays 18, 678 (1996).
[23] M. Kreitman, Nature 304, 412 (1983).
[24] A. Berry and M. Kreitman, Genetics 134, 869 (1993).
[25] J. W. Thatcher, J. M. Shaw, and W. J. Dickinson, Proc.

Natl. Acad. Sci. USA 95, 253 (1998).
[26] J. H. Gillespie, The American Naturalist 121, 691 (1983).
[27] C. Adami, Introduction to Artificial Life (Telos, Springer-

Verlag Publishers, Santa Clara, 1998).
[28] S. A. Kauffman and E. D. Weinberger, J. theor. Biol.

141, 211 (1989).
[29] B. Levitan and S. Kauffman, Molecular Diversity 1, 53

(1995).
[30] B. Levitan, in Annual Reports in Combinatorial Chem-

istry and Molecular Diversity, edited by M. R. Pavia,
W. H. Moos, A. D. Ellington, and B. K. Kay (ESCOM
Publishers, The Netherlands, 1997), Vol. 1, pp. 95–152.

[31] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell,
Physics Letters A 229, 144 (1997).

[32] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell,
Theoretical Computer Science, to appear, SFI working
paper 97-04-035.

[33] J. P. Crutchfield and E. van Nimwegen, in Evolution as
Computation, Lecture Notes in Computer Science, edited
by L. F. Landweber, E. Winfree, R. Lipton, and S. Free-
land (Springer-Verlag, New York, 1999).

[34] D. Stauffer and A. Aharony, Introduction to Percolation
Theory, 2nd ed. (Taylor & Francis, Basingstoke Hauts,
UK, 1992).

[35] M. Eigen, J. McCaskill, and P. Schuster, Adv. Chem.
Phys. 75, 149 (1989).

N = 20, K = 8, fS = 0.2

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35 40

time steps t/1000

fi
tn

e
ss

f

0.5

FIG. 1. The evolutionary dynamics is chaotic for small fS.
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FIG. 2. With increasing fS, some bits in the bit string
freeze out, and the evolutionary pattern becomes more and
more oscillatory.

N = 20, K = 8, fS = 0.55, T = 1000

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180 200

fi
tn

e
ss

f

time steps t/1000

0.5

FIG. 3. The oscillatory states are metastable, and transi-
tions between them can occur.

N = 20, K = 8, fS = 0.6, T = 2560
Averaged over 50 independent runs
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FIG. 4. Average fitness over time in adaptive walks
over a landscape with fS = 0.6. The dashed line indi-
cates the result of a least squares fit. The exact slope is
m = 4.00824 × 10−8 ± 2.057 × 10−10.

6



average height
of local optima

0.5

0.6

0.7

0.8

10 100 1000

fS = 0.0

fS = 0.4

fS = 0.6

10000

a
v
e
r
a
g
e

fi
tn

e
ss

〈f
〉

oscillation period T

FIG. 5. Mean fitness encountered during an adaptive walk
as a function of the oscillation period T . The fitness was
averaged over 50 independent adaptive walks, of which each
endured 100 oscillation periods.
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FIG. 6. Fraction of newly encountered genotypes γ at the beginning of each oscillation period in oscillating fitness landscapes.
The quantity γ was averaged over 60 independent adaptive walks, of which each endured 200 oscillations with period T = 1000.
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