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Hierarchical noise in large systems of independent agents
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A generalization of the coherent-noise models [M. E. J. Newman and K. Sneppen, Phys. Rev.
E54, 6226 (1996)] is presented where the agents in the model are subjected to a multitude of
stresses, generated in a hierarchy of different contexts. The hierarchy is realized as a Cayley-tree.
Two different ways of stress propagation in the tree are considered. In both cases, coherence arises
in large subsystems of the tree. Clear similarities between the behavior of the tree model and
of the coherent-noise model can be observed. For one of the two methods of stress propagation,
the behavior of the tree model can be approximated very well by an ensemble of coherent-noise
models, where the sizes k of the systems in the ensemble scale as k−2. The results are found to be
independent of the tree’s structure for a large class of reasonable choices. Additionally, it is found
that power-law distributed lifetimes of agents arise even under the complete absence of correlations
between the stresses the agents feel.

PACS numbers: 05.90.+m, 87.10.+e

I. INTRODUCTION

It has recently been shown that in large systems of in-
dependent “agents”, the interplay of two different types
of noise can lead to power-law distributed quantities,
like life-times of the agents, or sizes of reorganization
events [1]. One of the two noises, usually referred to
as stress, has to act coherently on all agents, while the
other one, usually referred to as mutation or reloading,
has to act individually on each agent, and on a much
longer time scale. Mechanisms of this kind have been
called “coherent-noise” mechanisms. Models incorporat-
ing coherent-noise mechanisms have been put forward to
explain effects seen in earthquakes, rice-piles, or biologi-
cal evolution and extinction [1–4].

In most applications, however, it is hard to justify a
single stress imposed on the whole system at once. In [2],
the stress was identified with global influences on the
biosphere, as in the case of extraterrestrial impacts [5].
Nevertheless, there are more reasons for species to go ex-
tinct than impacts. Often, species’ extinction is a local
phenomenon [6]. For example, species living in a small
territory regularly die out because of the invasion of a
new species, able to exploit their ecological niche more
effectively. A similar argument applies to the situation
of earthquakes. In [1] the stress has been interpreted
as background noise with long wavelength, generated by
some distant external source. Nonetheless, in a large
fault system, we would expect background noise to be
present also locally, and probably on smaller and larger
scales at the same time [7].

The aim of the present paper is to advance a model
that, while incorporating the basic ideas of coherent-noise
systems, can deal with more complex situations by con-
sidering stress on different scales. A short account of this
work has already been given elsewhere [8]. There, only
regular trees (see below) have been treated.

II. AGENTS IN A HIERARCHICAL CONTEXT

It is an observation from every-day life, as well as
from many physical systems [9], that very often ob-
jects or agents are embedded into a hierarchy of dif-
ferent contexts, all having influences on them. Mathe-
matically, this idea can be described with the concept
of ultrametricity [10], which means there exists a dis-
tance d(·, ·) such that the triangle inequality d(A1, A3) ≤
max{d(A1, A2), d(A2, A3)} holds for any three agents A1,
A2, A3. Geometrically, an ultrametric space can be con-
ceived of as a Cayley-tree. In the following, vertices in the
tree connected to exactly one other vertex will be called
leaves, and vertices connected to two or more other ver-
tices will be called nodes. In this paper, the nodes of
the tree stand for different contexts, and the agents are
placed at the tree’s leaves.

We can formulate a generalization of the original
coherent-noise model by incorporating the above ideas.
Our system consists of N agents, each represented by a
real number (threshold) xi, or, in the general case, a vec-
tor xi. Furthermore, we choose a tree with Nn nodes and
Nl = N leaves, which means Nv = Nn + Nl vertices in
total. The tree will be kept fixed throughout the simula-
tion. At every leaf we put exactly one agent. For every
node j of the tree we choose a stress distribution with
probability density function (PDF) pj(x). Additionally,
we also choose a stress distribution for every leaf of the
tree, so that we have a stress distribution for every vertex
of the tree. The stress distributions at the leaves allow to
simulate extremely localized influences acting on only a
single agent. The total number of stresses in the system
is therefore Nstress = Nv.

The course of the simulation runs as follows. At the
beginning, the agents are initialized with random thresh-
olds drawn from a distribution pthresh(x). Then, in every
time step, three actions are performed: i) from each of
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the Nstress stress distributions, a stress ηj is chosen at
random. ii) for every agent i, from all the Si stress val-

ues η
(i)
1 , . . . , η

(i)
Si

above the agent in the tree, a stress ηeff
i

is calculated according to some function A:

ηeff
i = A

(
η

(i)
1 , . . . , η

(i)
Si

)
. (1)

If ηeff
i ≥ xi, agent i is removed and replaced by a new

one with a threshold chosen at random from pthresh(x).
iii) finally, every agent has a small probability f to get a
new threshold, again from the distribution pthresh(x). Ac-
tion iii) represents the mutation or reloading mentioned
in the introduction.

There are a number of reasonable choices for the func-
tion A. In this paper, we will mainly study the “maxi-
mum rule”, which reads

A
(
η

(i)
1 , . . . , η

(i)
Si

)
= max

{
η

(i)
1 , . . . , η

(i)
Si

}
. (2)

Another natural choice is to sum up the stresses, i.e., to
use

A
(
η

(i)
1 , . . . , η

(j)
Si

)
=

Si∑

j=1

η
(i)
j . (3)

This alternative, which we will call “sum rule”, will also
be discussed in this paper.

III. THE EFFECTIVE STRESS DISTRIBUTION

The effective stress an agent feels can be calculated
exactly in the case of the maximum rule, Eq. (2). The
agent is subjected to the stress distribution at its leaf
and to the stress distributions at the nodes above it. Let
there be S−1 nodes above the leaf of an agent. Then the
S stress values having influence on this agent are S ran-
dom variables X1, . . . , XS with PDF’s p1(x), . . . , pS(x).
To obtain the effective stress distribution, we have to cal-
culate the PDF pmax(x) of the random variable Xmax =
max{X1, . . . , XS}, i.e.,

pmax(x) dx = P
(
x ≤ max{X1, . . . , XS} < x+ dx

)
. (4)

Note that

P
(

max{X1, . . . , XS} ≤ x
)

=

S∏

i

P (Xi < x) . (5)

The derivative of Eq. (5) with respect to x yields

pmax(x) =

S∑

i=1

pi(x)

S∏

j=1,j 6=i
P (x > Xj) (6)

Eq. (6) is the exact expression for the effective stress on
an agent in the case of the maximum rule Eq. (2). A sim-
ple calculation shows that the right-hand side of Eq. (6)

is dominated by the slowest decaying stress distribution.
We say that a distribution pi(x) decays slower than an-
other distribution pj(x) if there exists a x0 such that

pi(x) > pj(x) for all x > x0. (7)

For a set of reasonable stress distributions it is always
possible to identify the distribution p0(x) that is falling
off slowest according to this definition. Hence, we find
for the PDF of the effective stress on an agent

pmax(x) ∼ p0(x) for x→∞ . (8)

A similar statement cannot easily be proved for the
sum rule. However, in special cases the necessary calcu-
lations can be done. Consider, for example, the case of
exponential stress distributions pi(x) = exp(−x/σi)/σi.
In this case, we find

psum(x) ∼ 1

σmax
exp(− x

σmax
) for x→∞, (9)

where σmax = max{σ1, σ2, . . . , σn}. A similar result can
be found in the case of stress distributions with power-
law tails [8]. It seems that in most of the reasonable
cases, the sum of the stresses will be dominated by a sin-
gle distribution in the limit of large stresses, as in the
situation of the maximum of the stresses.

IV. REGULAR TREES

In this section we are interested in trees which are con-
structed as follows. We begin with a single leaf and con-
vert it into a node by connecting to it n new leaves. Then
we repeat this procedure for every new leaf. We stop
the construction when we have reached a depth of l it-
erations. Trees generated in this way are called regular
trees [11]. The tree displayed in Fig. 1 is a regular tree
with n = 2 and l = 4.

The number of leaves in a regular tree is

Nl = nl , (10)

and the number of vertices is

Nv =
l−1∑

i=0

ni . (11)

Therefore, we have N = nl agents in such a tree, and Nv

stress values have to be generated in every time step.
We saw in Sec. III that every agent feels effectively

a single stress distribution in the limit of large stresses
(Eqns. (8), (9)). Since for coherent-noise systems, large
stresses give the main contribution to the systems’ behav-
ior, the stress distributions that are falling of very slowly
dominate large parts of the tree. Hence, the tree breaks
down into subsystems that are to some extent decoupled
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from each other. For regular trees, it is relatively easy
to study the average distribution of the subsystems’ sizes
analytically. We assume for any two stress distributions
pi(x), pj(x) in the tree we can identify one of the two that
is falling off slower, according to Eq. (7). This is not a
severe restriction, as we have noted in Sec. III. Addi-
tionally, we restrict ourselves to situations in which pi(x)
and pj(x) are equally likely to fall off slower than the re-
spective other. Under these conditions, we can rank all
stress distributions in a tree, assigning rank 1 to the one
that is falling off fastest, and assigning correspondingly
higher ranks to the ones that are falling off slower. This
makes the calculation of the subsystems’ sizes relatively
easy. For every single agent, we have to identify the corre-
sponding highest rank placed above it in the tree (which
we will call the rank of the agent). Then, we simply have
to count the number of agents with the same rank. This
procedure is illustrated in Fig. 1.

We expect the mean distribution of subsystems’ sizes
to have sharp peaks whenever the size of a complete sub-
tree is reached, because the probability for a single rank
to be higher than all others further down the tree should
be larger than the probability for a complicated arrange-
ment of ranks to produce a subsystem of a certain size.
The size k of a subsystem is the number of leaves in that
subsystem. The functional dependency of the peaks at
size k is calculated as follows. The expected frequency
f(k) of independent subtrees of depth b, corresponding
to a subsystem of size k = nb, can be written as the
number of such subtrees in the whole system, Nsub(nb),
times the probability that any of these subtrees will be
independent of the rest, Pindep(nb). Hence we write

f(nb) = Nsub(nb)Pindep(nb) . (12)

The number of subtrees of size nb is

Nsub(nb) = nl−b . (13)

A subtree is independent of the rest if the rank at its root
is higher than all other ranks in the subtree and at the
nodes above the subtree. The probability Pindep(nb) is
therefore the reciprocal of the number of vertices in the
subtree plus the number of vertices above the subtree,
hence

Pindep(nb) =
(
l − b+

b∑

i=0

ni
)−1

. (14)

If we increase b by one, we get Nsub(nb+1) = nl−b−1 =
Nsub(nb)/n. With slightly more effort, we find also

Pindep(nb+1) =
(
l − b− 1 +

b+1∑

i=0

ni
)−1

=
(
l − b+ n

b∑

i=0

ni
)−1

≈ 1

n
Pindep(nb) . (15)

Therefore, we can write

f(nk) ≈ Nsub(k)

n

Pindep(k)

n
= n−2f(k) , (16)

which implies f(k) ∼ k−2.
This result is interesting. The frequency of subsystems

of size k scales as k−2, independent of the parameter n
which characterizes the structure of the tree.

We have tested these predictions by measuring the fre-
quency f(k) in computer experiments. Our simulations
are set up as follows. We choose a tree with Nv vertices
in total. For several thousand times, we assign the inte-
gers from 1 to Nv randomly to the vertices of the tree.
The integers stand for the rank of the stress-distributions
at the vertices. For every single realization of this pro-
cess, we determine the sizes of the subsystems the tree
breaks down into, and compute a histogram of the sizes’
frequencies. Finally, we calculate the average over all
histograms.

Fig. 2 shows the results of such measurements for two
different trees with 10 000 histograms each. We can see
clear peaks at powers of n, which correspond to com-
plete subtrees. We also find the heights of the peaks to
decrease as k−2, in agreement with Eq. (16).

V. RANDOM TREES

The regular trees treated in the previous section can
be easily generalized to a broader class of trees, which
we will call “random trees”. Only a small change in the
construction algorithm is necessary. To construct a reg-
ular tree, in every iteration step we connect n new leaves
to every leaf of the previous step. The straightforward
generalization of this procedure is to choose a random
number of new leaves for every leaf of the previous con-
struction step. To avoid confusion with the parameter
n, we will call this random number nrand. The random
variable nrand will take value i with probability pi, i.e.,
P (nrand = i) = pi, i = 0, 1, 2, . . .,

∑
i pi = 1. We denote

the mean of nrand by m := 〈nrand〉 and the variance by
σ2. Moreover, we assume m > 1 in all cases considered in
this paper. In the limit σ2 → 0, the random trees reduce
to regular trees with n = m.

The construction of a random tree as prescribed above
is a branching process with l generations. From the the-
ory of branching processes [12] , we know that for large
l the number of leaves in the tree will be

Nl = Wml , (17)

where W is a random variable with mean 〈W 〉 = 1. The
factor W takes into account fluctuations that happen at
the beginning of the tree’s construction. Correspond-
ingly, for the total number of vertices in the tree we use
the approximation
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Nv ≈ W
l∑

i=0

mi . (18)

The above two equations are the generalizations of
Eqs. (10), (11) for random trees.

As in the case of regular trees, we are interested in the
quantity f(k), the expected frequency with which inde-
pendent subsystems of size k occur. In the previous sec-
tion we made the assumption that the main contributions
to f(k) come from complete subtrees. The comparison
with numerical data showed that this assumption leads
to a good understanding of the structure of f(k). Conse-
quently, in the case of random trees we also assume that
we can concentrate on complete subtrees.

The number of subtrees of size k in a large tree is on
average the size of the tree (which is the number of leaves
in the tree) divided by k. Hence we have

Nsub(k) =
Nl

k
, (19)

which is equivalent to Eq. (13) for regular trees.
The probability for a subtree of size k to be dominated

by a single stress distribution is one over the total num-
ber of vertices in the subtree. The number of vertices is
asymptotically the same as the number of leaves. This
can be seen from Eqns. (17) and (18). The leading term
in the number of vertices in a random tree Eq. (18) is ex-
actly the expression for the number of leaves in the same
tree Eq (17). Hence we have

Pindep(k) ∼ 1

k
. (20)

We combine this result with Eq. (19) and obtain

f(k) ∼ 1

k2
. (21)

As in the case of regular trees, the frequency of indepen-
dent subtrees of size k scales as k−2, independent of the
details of the tree. With a little effort, it is also possible
to calculate the constant of proportionality. We find

f(k) =
αNl

k2

m − 1

m
, (22)

with

α =

[
Nl∑

k=1

1

l + 1− logm k + (k − 1) m
m−1

]−1

. (23)

Eq. (22) is in good agreement with measurements from
computer experiments. We have done simulations with
several different probability distributions for nrand, such
as uniform [p0 = c/(nmax + c); c ≥ 0; pi = 1/(nmax + c)
for 1 ≤ i ≤ nmax; pi = 0 for nmax < i], geometric series
[pi = bci−1 for i ≥ 1; b, c > 0; b ≤ 1−c; p0 = 1−∑∞j=1 pj],

or gaussian [pi ∼ exp(−(i − b)2/c); here b and c are not

mean and variance, because we use only discrete values
of the gaussian probability density function]. In all cases,
we find Eq. (22) to approximate well the measured fre-
quency f(k). An example is shown in Fig. 3. Deviations
from the straight line can be seen for very small k and for
very large k. In these two limiting cases, the assumptions
of the above approximations are no longer valid. Con-
sider first the case of a very small k. This corresponds to
k ≈ m, because we always assume m � Nv (otherwise,
the tree would have roughly a depth of 1, which would
not be very interesting). If k is close to m, the number of
subtrees of size k depends strongly on the exact form of
the probability distribution of nrand, and Eq. (19) is no
longer valid. Since, as seen above, the main contribution
to f(k) comes from complete subtrees, the distribution
of nrand then has effects on f(k). For example, in a sit-
uation where P (nrand = m) = 0, there should be a clear
dip in f(k) at k = m.

Consider now the case of a very large k. Again Eq. (19)
is no longer valid. This time because there are so few
subtrees of size k. Hence, the exact structure of the tree
comes into play. For example, a tree with Nv = 105

containing a subtree with k = 6 × 104 will not contain
another subtree with k = 5 × 104. Therefore, in this
situation there should be a clear peak at k = 6× 104.

VI. SIMULATION RESULTS

As the main result of Sections IV and V, we found
the distribution of independent subsystems of size k in
the tree to be proportional to k−2. Therefore, in the
limit of large stress values η, we expect the tree model to
behave like an ensemble of coherent-noise models whose
sizes scale as k−2.

When constructing the ensemble approximation of a
certain tree, we have to choose the right stress distribu-
tion for every coherent-noise model in the ensemble. In
principle, this can be a complicated task. However, we
have found that a very simple approach instead works
sufficiently well in many cases. It can be motivated with
Fig. 4. There, we have recorded the average ranks of
the subsystems in a tree. Interestingly, the average rank
varies only very little with the subsystem’s size k. There-
fore, in a further approximation, we assume that all the
stress-distributions that dominate a subsystem have the
same rank, i.e., they are all the same (we use a single
stress distribution, but the stress values are still chosen
independently for all systems in the ensemble).

Our numerical simulations show the similarity between
the tree model and the ensemble. We begin with results
for the maximum rule.
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A. The distribution of event sizes

Like in previous work [13,14], an “event” is the reorga-
nization of agents because of stress in a single time step.
The size of an event is the total number of agents hit by
the stress.

The event sizes of a typical simulation with maximum
rule are recorded in Fig. 5. The lower curve shows the dis-
tribution of event sizes of a tree model, the upper curve
shows the same distribution of the corresponding ensem-
ble of coherent-noise systems. The heights of the curves
reflect the total number of events we recorded for each
model and have no special meaning. The sizes of the sys-
tems in the ensemble are exactly the ones we obtained for
the sizes of the tree’s subsystems while doing the ranking
procedure described in Sec. IV. The distribution of these
sizes is shown in the inset of Fig. 5.

The tree used in Fig. 5 is a random tree with 14213
vertices and 12163 leaves. Hence, both the tree model
and the ensemble contain 12163 agents in total. The
stress distributions used in the tree are exponentials
exp(−x/σi)/σi, with different values σi between 0.03 and
0.06. The stress distribution used in the ensemble is an
exponential with σ = 0.06.

As we can see in Fig. 5, the tree model and the en-
semble behave very similar with regard to event sizes.
In both cases, we find approximately a power-law de-
crease. A power-law fit gives an exponent of 2.3± 0.15
for the tree model, and of 2.2 ± 0.15 for the ensemble.
Note the clear difference between the exponent in these
two systems and the exponent in a single coherent-noise
model with exponential stress. There, the exponent is
1.85± 0.03 [13].

The event-size distribution depends strongly on the
distribution of the subsystems in the tree. In Fig. 6, we
have used the same tree structure and the same stress dis-
tributions as in Fig. 5, but the stress distributions have
been assigned to different vertices. As a result, in this
case the tree model has a lack of large subsystems, as
can be seen in the inset of Fig. 6. Consequently, large
events appear less frequently, and the distribution is sig-
nificantly steeper than in Fig. 5 (now we have an expo-
nent of 2.9± 0.2 for the tree model and an exponent of
2.8± 0.2 for the ensemble).

It would be interesting to average over all possible as-
signments of the stress distributions to the different ver-
tices in order to gain a better understanding of a typi-
cal event size distribution in a large tree. However, we
are not able to reach such a result due to the enormous
amount of computing power that is needed. The sim-
ulation of the full tree as in Figs. 5 or 6 takes in fact
about 150 hours of computing time on a UltraSPARC
2 with 168 MHz. On the other hand, the simulation of
the ensemble approximation takes only 6 hours on the
same system. Therefore, we can do the corresponding
calculations for the ensemble approximation. Of course
we cannot average over all possible configurations, but

we can average over a reasonably large random sample.
We have generated 60 ensemble approximations of a tree
with 10000 leaves. The event size distributions we found
were all very similar. In Fig. 7 we display the average
event size distribution we obtained. The distribution has
a power-law tail with exponent 2.5± 0.05.

B. Aftershocks

Coherent-noise models display aftershocks [1,14], i.e.,
an increased number of large events can be observed in
the aftermath of a very large event. Consequently, we
study the decay pattern of the aftershocks in the tree
model and in the ensemble. We will restrict ourselves to
the case of events in the aftermath of an initial infinite
event. We follow closely the ideas and methods devel-
oped in [14]. Fig. 8 shows the change of the probability
Pt(s ≥ s1) with time. Pt(s ≥ s1) is the probability to
find an event larger than some constant s1 at time t af-
ter an initial infinite event. For both the tree model and
the ensemble, the probability Pt(s ≥ s1) decreases with
time, indicating aftershocks. However, we do not observe
a clear power-law decrease, normally visible in the case
of coherent-noise models [14].

As in the case of event-sizes, we find a close similarity
between the tree model and the ensemble. Let us first
focus on the upper two curves in Fig. 8, which corre-
spond to s1 = 0.02 and s1 = 0.0025 (here, s1 is measured
in units of the number of agents in the tree, which was
12163 in this case). For large t, the curves for the tree
model and for the ensemble lie on top of each other, indi-
cating the same decay pattern for long-time correlations.
Only for small times there are some deviations between
the two models. The tree model produces more after-
shocks shortly after the infinite event. This observation
has its origin in the fact that the two models converge
in the limit of large stresses, but the number of moder-
ate stresses produced by the tree model is significantly
larger than the one produed by the ensemble. At short
times after a very large event, already moderate stresses
can trigger large events, thus increasing the number of
events seen in the tree model as compared to the ensem-
ble.

For large values of s1, the similarity between the two
models seems to disappear. The curves in Fig. 8 corre-
sponding to s1 = 0.05 do not lie on top of each other.
The curve for the tree model is shifted upwards by about
a factor of three. This discrepancy for large s1 can be
understood from Fig. 9. There, we display the frequency
distribution of the events that have been produced dur-
ing the simulations for Fig. 8. The results for the tree
model and for the ensemble are very similar. However,
at an event-size of about 1000, the frequency distribution
for the ensemble falls off rather quickly, whereas the fre-
quency distribution for the tree has an additional peak
at about 1400. It is this peak that causes the shift of the
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probability Pt(s ≥ s1) in the tree model for large s1.
The peak in the tree model arises because from time to

time a very large stress will be generated at the root of
the tree, causing an event of the order of the tree’s size.
In the ensemble, on the other hand, events larger than
the largest subsystem are extremely unlikely.

C. The distribution of lifetimes

The lifetime of an agent is the time an agent remains
in the system without being hit by stress. In the orig-
inal coherent-noise model, the agents’ lifetimes are dis-
tributed as a power-law with exponent 2− 1/α [13]. The
quantity α depends on the stress distribution, and it is
related to the mean-field exponent τ of the event size
distribution by τ = 1 + α. For exponential stress, e.g.,
we have α = 1. Hence, in this case the lifetimes L are
distributed as L−1.

The distribution of lifetimes in a coherent-noise model
does not change if the stress is imposed on each agent
independently, instead of being imposed on all agents co-
herently. This is different to the case of event sizes or
aftershocks. It can be seen as follows. The derivation of
the lifetime distribution in [13] makes use of the time-
averaged distribution of the agents’ thresholds, which re-
mains the same whether or not the stress is imposed co-
herently. The only further assumptions that enter the
calculation are assumptions about the form of pstress(x)
and pthresh(x), but no assumptions about the coherence
of stresses are made. Therefore, the distribution of life-
times in a coherent-noise model and in a large ensemble
of degenerate coherent-noise models with size 1 is the
same, provided the stress distributions and the threshold
distributions are the same. Consequently, if the stress-
distributions in the tree have all the same α (e.g., are
all exponentials), the distribution of the agents’ lifetimes
should be similar to the one in a coherent-noise model
with τ = 1 + α. This can be seen in Fig. 10. The
distribution of lifetimes in a random tree with expo-
nentially distributed stresses is similar to the one in a
coherent-noise model with exponential stress (compare,
e.g., Fig. 10 with Fig. 5 in [13]).

D. Trees with sum rule

In the previous paragraphs, we studied simulations
with the maximum rule. Here, we will present some re-
sults from simulations with the sum rule. On the first
glance, one would expect that the tree model behaves
the same whether we choose Eq. (2) or Eq. (3) for cal-
culating the effective stress on the agents, at least for
exponential stress, because of Eq. (9). However, this is
not exactly the case. In Fig. 11, we display the distri-
bution of event sizes in a simulation where stresses are
summed up. The tree used in this simulation is exactly

the same we used in the simulation of Fig. 5. This al-
lows an easy comparison between the two choices for
A. Note that all stress distributions are exponentials,
which implies that Eq. (9) holds. We observe the emer-
gence of a power-law decrease, similar to the situation
with the maximum rule. However, the resulting distribu-
tion is slightly steeper than in Fig. 5, with an exponent
of 2.6 ± 0.1. This steeper distribution shows that the
conception of a tree being equivalent to an ensemble of
coherent-noise models is less accurate when stresses are
summed up. Second-order effects arise because all stress
distributions contribute to the overall system’s behavior
at all times (which is in contrast to the case when we use
the maximum of the stresses). Consequently, the agents
feel the stress less coherently, resulting in a smaller num-
ber of large events.

VII. CONCLUSIONS

Coherent-noise models have been proposed by New-
man and Sneppen to explain the occurence of power-laws
in a number of natural systems. The underlying mech-
anism is remarkably simple and robust. However, the
coherent stress necessary to make these models work is
an impediment to their application, since in most systems
coherence is not present a priori, and local phenomena
are important. In this paper, we were able to show that
in hierarchical contexts, coherence can arise naturally in
large subsystems. In the tree models we presented, the
system breaks down into a number of subsystems, each
of them having a high degree of coherence and being
largely independent of the rest. Interestingly, the num-
ber of subsystems of size k decreases as k−2 for a large
class of different trees. The emergence of coherent sub-
systems is closely connected to the domination of some
stress distributions by others. We should always observe
this phenomenon if the function A is proportional to a
single stress distribution in the limit of large stresses.

We made also an interesting observation about the
agents lifetimes. We found the distribution of lifetimes
to be the same in the tree model and in coherent-noise
models, as long as the stress distributions in both models
have the same functional dependency. Furthermore, from
the arguments given in Section VI C we can deduce an
even more general statement. In any system where agents
under the influence of stress are modeled as in coherent-
noise systems, the distribution of the agents’ lifetimes will
be a power-law, even if there is no correlation between
stresses different agents feel. This is a new explanation
for the appearance of power-law distributed life-times or
waiting-times in non-equilibrium systems valid under ex-
tremely weak conditions.

Further work extending the tree model presented here
could address appearance and disappearance of agents. If
we consider, for example, the case of biological evolution
and extinction, the biodiversity is constantly changing,

6



with the main tendency of exponential growth through-
out the past 1000 million years [15] (this trend, how-
ever, has changed dramatically nowadays, because of ever
increasing human activity [16]). ”Real” extinction and
speciation could be incorporated into the tree model by
removing from the tree the agents hit by stress, as it
has been done already in the case of coherent-noise mod-
els [4]. Related to this, one could consider trees changing
their structure. Up to now, we studied only fixed trees,
mainly for reasons of simplicity. Another extension could
be the consideration of vector stresses, as it has been done
by Sneppen and Newman for the original coherent-noise
model [13], inspired by a similar generalization of the
Bak-Sneppen model [17].
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FIG. 1. The breakdown of a regular tree with n=2 and l=4
into independent subsystems. The solid lines connect agents
with the same rank, the dashed lines connect agents with dif-
ferent ranks. In this example, we have two subsystems of size
1 (ranks 26 and 30), two of size 2 (ranks 24 and 27), one of
size 3 (rank 25), and one of size 7 (rank 29).

�������
�������
�����	�
������

����
����

�����
����
�����
�����
����

����� ����
 ���� ����� ����� ����� ��� �

� �
��
���
��

������ 
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decreases as a sawtooth function following approximately a
power-law with exponent −2. The upper curve stems from a
tree with l = 17 and n = 2. It has been rescaled by a factor
of 100 so as not to overlap with the lower curve. The lower
curve stems from a tree with l = 5 and n = 10. Quantities
are plotted in arbitrary units.
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FIG. 11. The distribution of event sizes in a tree model
where the stresses are summed up. The tree (including the
stress distributions) is exactly the same as in Fig. 5. Quanti-
ties are plotted in arbitrary units.
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