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Abstract

The decay pattern of aftershocks in the so-called ’coherent-noise’ models [M. E. J.

Newman and K. Sneppen, Phys. Rev. E54, 6226 (1996)] is studied in detail. Ana-
lytical and numerical results show that the probability to find a large event at time t

after an initial major event decreases as t−τ for small t, with the exponent τ ranging
from 0 to values well above 1. This is in contrast to Sneppen und Newman, who

stated that the exponent is about 1, independent of the microscopic details of the
simulation. Numerical simulations of an extended model [C. Wilke, T. Martinetz,
Phys. Rev. E56, 7128 (1997)] show that the power-law is only a generic feature of

the original dynamics and does not necessarily appear in a more general context.
Finally, the implications of the results to the modeling of earthquakes are discussed.

1 Introduction

Dynamical systems which display scale-free behaviour have attracted much
interest in recent years. Equilibrium thermodynamic systems do only exhibit
scale-free behaviour for a subset of the parameter space of measure zero (the
critical values of the parameters). Nevertheless, in nature scale-free systems
can be found in abundant variety (earthquakes [1], avalanches in rice-piles [2],
infected people in epidemics [3], jams in Internet traffic [4], extinction events in
Biology [5], life-times of species [6] and many more. See also [7] and the refer-
ences therein). The origin of this abundance lies probably in the broad variety
of systems far from equilibrium that can be found in nature. With the onset
of non-equilibrium dynamics, new mechanisms come into play which seem to
make scale-free behaviour a generic feature of many systems. However, unlike
equilibrium thermodynamics, where scaling is thoroughly understood [8,9], for
non-equilibrium dynamical systems there does not yet exist a unified theory of
scale-free phenomena (apart from non-equilibrium phase transitions). There
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do, however, exist several distinct classes of systems with generic scale-free
dynamic.

One of the first ideas to explain scale-free behaviour in a large class of dynam-
ical systems was the notion of Self-Organized Criticality (SOC) proposed by
Bak, Tang and Wiesenfeld in 1987 [10,11]. They proposed that certain systems
with local interactions can, under the influence of a small, local driving force,
self-organize into a state with diverging correlation length and therefore scale-
free behaviour. This state is similar to the ordinary critical state that arises
at the critical point in phase transitions, although no fine-tuning of parame-
ters is necessary to reach it. Since 1987 literally thousands of research papers
have been written concerning SOC (for a review see [12]), and many different
dynamical systems have been called SOC (e.g. [13–17]), mostly just because
they showed some power-law distributed activity patterns. Recently [18] it has
become clear that several SOC models (sandpile models, forest-fire models)
can be understood in terms of ordinary nonequilibrium critical phenomena
(like e.g. [19]). Driving rate and dissipation act as critical parameters. The
critical value, however, is 0. Therefore, it suffices to choose a small driving
rate and dissipation to fine-tune the system to the critical point, and this
choice is usually implicit in the definition of the model.

Scale-free behaviour does not, however, depend crucially on some sort of criti-
cal phenomenon. A simple multiplicative stochastic process (MSP) of the form

x(t+ 1) = a(t)x(t) + b(t) , (1)

where a(t) and b(t) are random variables, can produce a random variable
x(t) with a probability-density function (pdf) with power-law tail [21–25]. In
processes of this type, the power-law appears under relatively weak condi-
tions on the pdf’s of a(t) and b(t), thus making the intermittend behaviour a
generic feature of such models. Applications of Eq. (1) can be found in pop-
ulation dynamics with external sources [25], epidemics [3], price volatility in
economics [26], and others.

Another class of models with a very simple and robust mechanism to pro-
duce scale-free behaviour has been introduced recently by Newman and Snep-
pen [27]. These so called ’coherent-noise’ models consist of a large array of
’agents’ which are forced to reorganize under externally imposed stress. In
their simplest form, coherent-noise models do not have any interactions be-
tween the agents they consist of, and hence, certainly do not display criticallity.
Nevertheless, these models show a power-law distribution of the reorganization
events with a wide range of different exponents [28], depending on the spe-
cial implementation of the basic mechanism. Moreover they display power-law
distributions in several other quantities, e.g., the life-time distribution of the
agents. These models have been used to study earthquakes [27], rice piles [27],
and biological extinction [29–32].
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Coherent-noise models have a feature that usually is not present in SOC mod-
els and is never present in MSP’s, which is the existence of aftershocks. In
most coherent-noise models the probability for a big event to occur is very
much increased immediately after a previous big event and then decays with
a power-law. This leads to a fractal pattern of events that are followed by
smaller ones which themselves are followed by even smaller ones and so on. In
most SOC models and all MSP’s, on the contrary, the state of the system is
statistically identical before and after a big event. Therefore in these models
no aftershocks are visible.

The existence or non-existence of aftershock events should be easily testable
in natural systems. This could provide a means to decide what mechanism is
most likely to be the cause for scale-free behaviour in different situations [28].
But to achieve this it is important to have a deep understanding of the decay-
pattern of the aftershock events.

The goal of the present paper is to investigate in detail the aftershock dynam-
ics of coherent-noise models. We concentrate mainly on the original model
introduced by Newman and Sneppen because there can be obtained several
analytical results. We find a power-law decrease in time of the aftershocks’
probability to appear, as has been found already in [28]. But unlike stated
there, we can show that the exponent does indeed depend on the microscopic
details of the simulation. We find a wide range of exponents, from 0 to values
well above 1, whereas in [28] the authors report only the value 1.

2 The model

We will now describe the model introduced by Newman and Sneppen [27].
The system consists of N units or ’agents’. Every agent i has a threshold xi
again external stress. The thresholds are initially chosen at random from some
probability distribution pthresh(x). The dynamics of the system is as follows:

(1) A stress η is drawn from some distribution pstress(η). All agents with
xi ≤ η are given new random thresholds, again from the distribution
pthresh(x).

(2) A small fraction f of the agents is selected at random and also given new
thresholds.

(3) The next time-step begins with (i).

Step (ii) is necessary to prevent the model from grinding to a halt. Without
this random reorganization the thresholds of the agents would after some time
be well above the mean of the stress distribution and average stress could not
hit any agents anymore.
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The most common choices for the threshold and stress distributions are a
uniform threshold distribution and some stress distribution that is falling off
quickly, like the exponential or the gaussian distribution. Under these con-
ditions (with reasonably small f) it is guaranteed that the distribution of
reorganization events that arises through the dynamics of the system will be
a power-law.

There are several possibilities to extend the model to make it more general,
without loss of the basic features. Two extensions that have been studied by
Sneppen and Newman [28] are

• a lattice version where the agents are put on a lattice and with every agent
hit by stress its nearest neighbours undergo reorganization, even if their
threshold is above the current stress level.
• a ’multi-trait’ version where, instead of a single stress, there are M different

types of stress, i.e. the stress becomes a M -dimensional vector η. Accord-
ingly, every agent has a vector of thresholds xi. An agent has to move in
this model whenever at least one of the components of the threshold vector
is exceeded by the corresponding component of the stress vector.

An extension that is especially important for the application of coherent noise
models to biological evolution and the dynamics of mass extinctions has been
studied recently by Wilke and Martinetz [32]. In biology it is not a good
assumption to keep the number of agents (in this case species) constant in
time. Rather, species which go extinct should be removed, and there should
be a steady regrowth of new species. In a generalized model, the system size
is allowed to vary. Agents that are hit by stress are removed from the system
completely, but at the end of every time-step a number ∆N of new agents is
introduced into the system. Here ∆N is a function of the actual system size N ,
the maximal system size Nmax and some growth rate g. Wilke and Martinetz
have studied in detail the function

∆N =
NNmaxe

g

Nmax +N(eg − 1)
−N , (2)

which resembles logistic growth. In the limit g → ∞ their model reduces to
the original one by Newman and Sneppen. In the following we will refer to the
original model as the ’infinite-growth version’ and to the model introduced by
Wilke and Martinetz as the ’finite-growth version’.

3 Analysis of the aftershock structure

We base our analysis of the aftershock structure on the meassurement-procedure
proposed by Sneppen and Newman [28]. They drew a histogram of all the times
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whenever an event of size ≥ some constant s1 happened after an initial event
of size ≥ some constant s0, for all events ≥ s0. Consequently, we measure the
frequency of events larger than s1 occuring exactly t time-steps after an initial
event larger than s0, for all times t. This means that we consider sequences of
events in the aftermath of initial large events. Normalized appropriately, our
measurement gives just the probability to find an event ≥ s1 at time t after
some arbitrarily chosen event ≥ s0. For this to make sense in the context of
aftershocks we usually have s0 > s1. Throughout the rest of this paper we use
s0 and s1 as percentage of the maximal system size. Therefore a value s0 = 1
for example means that we are looking for initial events which span the whole
system.

We will denote the probability to find an event of size s ≥ s1 at time t after
a previous large event by Pt(s ≥ s1). In order to keep the notation simple
we omit the constant s0. It will be clear from the context what s0 we use in
different situations. Note that Pt(s ≥ s1) is not a probability distribution, but
a function of time t. Therefore, every increase or decrease of Pt(s ≥ s1) in
time will indicate correlations between the initial event and the subsequent
aftershocks. For t → ∞ we expect all correlations to disappear, and hence
Pt(s ≥ s1) to tend towards a constant.

It is possible to obtain some analytical results about the probability Pt(s ≥ s1)
if we restrict ourself to the model with infinite growth and a special choice for
the threshold and stress distributions. If not indicated otherwise, throughout
the rest of this section we assume pthresh(x) to be uniform between 0 and 1,
and the stress distribution to be exponential: pstress(η) = exp(−η/σ)/σ.

Furthermore, we focus on the case s0 = 1. That means that we are looking
at the events in the aftermath of an initial event of ’infinite’ size, an event
that spans the whole system. This is a reasonable situation because we use
a uniform threshold distribution. In this case there is a finite probability to
generate a stress η which exceedes the largest threshold, thus causing the whole
system to reorganize. For some of the examples presented in Section 4 the
probability to find an infinite event is even higher than 10−5. This probability
can be considered relatively large in a system where one has to do about
106 − 109 time-steps to get a good statistics.

3.1 Mean-field solution

The exact way to calculate Pt(s ≥ s1) is the following. One has to compute
the distribution ρ

η1,η2,...,ηt−1

t−1 (x) which is the distribution that arises if after the
big event at time t = 0 a sequence of stress values η1, η2, . . . , ηt−1 is generated
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during the following time steps. Then the equation

xt(η1,η2,...,ηt−1,s1)∫

0

ρ
η1,η2,...,ηt−1
t−1 (x′) dx′ = s1 (3)

has to be solved. That gives the quantity xt(η1, η2, . . . , ηt−1, s1), the thresh-
old that has to be exceeded by the stress at time t to generate an event
≥ s1. From the stress distribution one can then calculate the corresponding
probability P

η1 ,η2,...,ηt−1
t (s ≥ s1). Finally the average over all possible sequences

η1, η2, . . . , ηt−1 has to be taken to end up with the exact solution for Pt(s ≥ s1).
Obviously there is no hope doing this analytically.

Instead of the exact solution for Pt(s ≥ s1) we can calculate a mean-field
solution if we average over all possible sequences η1, η2, . . . , ηt−1 before we solve
Eq. (3). Note that in this context, the notion mean-field does not stand for the
average state of the system, which does not tell us anything about aftershocks,
but for the average fluctuations typically found in a time-intervall ∆t. These
average fluctuations are a measure for the return to the average state, after a
large event has caused a significant departure from it. Consequently, the mean-
field solution is time-dependent. For ∆t→∞, the time-dependent mean-field
threshold distribution converges to the average threshold distribution, denoted
by ρ̄(x) in [28]

In Appendix A, we show that the averaging over all fluctuations in a time inter-
vall of t time-steps equals to t times iterating the master-equation. Therefore,
to calculate the mean-field solution for Pt(s ≥ s1) we have to insert ρt(x), the
t-th iterate of the master-equation, into Eq. (3). The details of this calculation
are given in Appendix B.

3.2 Approximation for τ

In this paragraph we will calculate the dependency of the exponent τ on s1

under the assumption that the probability to find aftershocks decays indeed
as a power-law, i.e. that we can assume Pt(s ≥ s1) ∼ t−τ . A fairly simple
argument shows that for the probability Pt(s ≥ s1) to decrease as a power-law
the exponent τ must be proportional to 1− s1 for s1 not too small. Again we
concentrate on exponentially distributed stress only.

We begin with an approximation of the quantity xt(s1), which is the average
threshold at time t above which a stress value must lie to trigger an event of
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size ≥ s1. In the mean-field approximation, xt(s1) is defined by the equation

xt(s1)∫

0

ρt(x) dx = s1 . (4)

Because ρt(x) and s1 are normalized, we can rewrite this equation (again we
assume pthresh(x) to be uniform between 0 and 1):

1∫

xt(s1)

ρt(x) dx = 1 − s1 . (5)

For the most reasonable stress distributions the distribution of the agents ρt(x)
forms a plateau in the region close to x = 1. Therefore for sufficient large s1

we can approximate the integral in Eq. (5) by substituting ρt(x) with its value
at x = 1, which is ρt(1). Eq. (5) then becomes

(
1− xt(s1)

)
ρt(1) = 1− s1 . (6)

The values ρt(1) are a function of t. We define

R(t) := ρt(1) (7)

and find for xt(s1):

xt(s1) =
s1 − 1 +R(t)

R(t)
. (8)

The probability Pt(s ≥ s1) now becomes

Pt(s ≥ s1) = exp
(
− xt(s1)

σ

)
= exp

(
− s1 − 1 +R(t)

σR(t)

)
. (9)

The principal idea to derive a relation between τ and s1 is as follows. The
function R(t) is obviously independent of τ and s1. We make the ansatz Pt(s ≥
s1) ∼ t−τ , rearrange Eq. (9) for R(t) and then get a condition on τ and s1

since they should cancel exactly. Hence we have to solve the equation

at−τ = exp
(
− s1 − 1 +R(t)

σR(t)

)
, (10)

where a is the constant of proportionality. We take the logarithm on both
sides to get

ln a− τ ln t = −s1 − 1 +R(t)

σR(t)
(11)
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and finally

R(t) =
1 − s1

1 + σ ln a− τσ ln t
. (12)

This is of the form c1/(c2 − ln t), where

c1 =
1 − s1

τσ
(13)

and

c2 =
1 + σ ln a

τσ
. (14)

For every function of the form c1/(c2−ln t), the constants c1 and c2 are unique,
as can be seen if we write

c1

c2 − ln t
=

c1

ln exp c2
t

. (15)

A change in c2 results in a rescaling of the variable t, while a change in c1

results in a rescaling of the whole function. Consequently, neither c1 nor c2 can
depend on τ or s1. This can be seen as follows. If, e.g., c1 depended on s1, then
a change in s1 would rescale the functionR(t). But this function is independent
of s1 according to its definition (Eq. (7)). Hence c1 must be independent of
s1 in itself. A similar argument holds for the variable c2. Therefore, s1 and τ
must cancel exactly in Eq. (13). This leads to the condition

τ =
1 − s1

σc1
∼ (1 − s1) . (16)

Up to now we have not done any assumptions about the size of the first big
event after which we are measuring the subsequent aftershocks. Therefore the
proportionality τ ∼ (1 − s1) should hold in general, as long as s1 is not too
small. If we additionally assume the inital event to have infinite size (s0 = 1)
we can easily calculate the constant a in Eq. (10). The meaning of this constant
is the probability to get an event of size ≥ s1 immediately after the initial big
event, as can be seen by setting t = 1:

P1(s ≥ s1) = a1−τ = a . (17)

For the case s0 = 1 the distribution of thresholds ρ0(x) is uniform and thus

a = exp(−x1(s1)

σ
) = exp(−s1

σ
) . (18)

With Eqs. (9), (10), (13), and (18) we can write the probability Pt(s ≥ s1) as

Pt(s ≥ s1) = e−s1/σt−(1−s1)/(σc1) . (19)
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In Section 4 we will find numerically that c1 = σ−1, and therefore τ = 1− s1.

3.3 Limiting cases

For two limiting cases we can deduce the behaviour of the exponent τ regard-
less of the stress distribution. We begin with the case s0 = 1, s1 → 1. From
Eq. (16) we find that τ → 0 as s1 → 1 under the assumption of an exponential
stress distribution. But this result is more general. For s1 = 1 the probability
Pt(s ≥ s1) reads simply

Pt(s ≥ 1) =

∞∫

1

dx pstress(x) (20)

and hence is constant in time. Consequently we have τ = 0 for any stress
distribution. From continuity we have τ → 0 as s1 → 1.

A similar argument holds when either s0 or s1 approaches 0. For s0 = 0, the
probability Pt(s ≥ s1) reduces to the mean probability to find an event of
size s ≥ s1. Hence τ = 0. For s1 = 0, the probability Pt(s ≥ s1) becomes 1,
because an event of size at least zero can be found in every time step. Hence
also in this case τ = 0. From continuity we have again τ → 0 as either s0 → 0
or s1 → 0.

4 Numerical results

In the previous section we have focused on the behaviour of the system in the
aftermath of an infinite event. This situation is not only analytically tractable,
but it also makes it simpler to obtain good numerical results. If we want to
measure the probability to find aftershocks following events exceeding some
finite but large s0, we have to wait a long time for every single measurement
since the number of those large events vanishes with a power-law. This makes it
hard to get a good statistics within a reasonable amount of computing time.
If, on the other hand, we focus on the situation of an infinite initial event,
we can simply initialize the agents with the uniform threshold distribution,
take the measurement up to the time t we are interested in and repeat this
procedure until the desired accuracy is reached. Unless stated otherwise, the
results reported below have been obtained in this way, and with exponentially
distributed stress.

The t-th iteration of the master-equation should give exactly the average dis-
tribution of the agent’s thresholds at time t. In Fig. 1 it can be seen that this
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is indeed the case. The points, which represent simulation results, lie exactly
on the solid lines, which stem from the exact analytical calculation.

The mean-field approximation for Pt(s ≥ s1) should be valid if the agent’s dis-
tribution at time t does not fluctuate too much about the average distribution
ρt(x). Since there are many more small events than big ones the fluctuations
should occur primarily in the region of small x. Consequently we expect the
mean-field approximation to be valid for large s1, and to break down for
small s1. Fig. 2 shows that already for moderately large s1 the mean-field
approximation captures the behaviour of Pt(s ≥ s1), with a slight tendency
to underestimate the results of the measurement. Note that the statistics is
becoming worse with increasing s1 due to the rapidly decreasing probability
to find any events of size ≥ s1 for large s1.

In Fig. 3 a measurement of the probability Pt(s ≥ s1) is presented for a number
of simulations with different values of the parameter f . As it can be seen, the
parameter f does not affect the exponent of the power-law, but limits the
region where scaling can be observed. Note the difference between the effect
seen here and typical cut off effects in the theory of phase transitions. The
quantity Pt(s ≥ s1) is not a probability distribution, but a time dependent
probability, which tends towards a constant for t→∞. Therefore, we do not
see an exponential decrease at the cut off timescale. Instead, the probability
Pt(s ≥ s1) levels out to the time-averaged value P (s ≥ s1), which is the
average probability to find events of size s ≥ s1.

In section 3.2 we showed that τ ∼ 1− s1, under the condition of a sufficiently
large s1. Simulations indicate that the constant of proportionality is just 1,
which means the constant c1 in Eq. (13) equals σ−1. If this hypothesis is true,
Eq. (19) becomes

Pt(s ≥ s1) = e−s1/σt−(1−s1) . (21)

This means, a rescaling of the form

Pscaled =

(
Pt(s ≥ s1)

e−s1/σ

)1/(s1−1)

(22)

should yield a functional dependency Pscaled(t) = t−1. Fig. 4 shows the results
of such a rescaling for different σ and s1. All the data-points lie exactly on
top of each other in the region where the statistics is good enough (about
t < 100). We find that for σ up to 0.1, Eq. (21) is very accurate for s1 between
about 0.1 and 1. With smaller σ, Eq. (21) holds even for much smaller s1.

The situation becomes more complicated if we study the sequence of after-
shocks caused by an initial event of finite size. The probability to find an
event of size s ≥ s1 after some initial event of size s ≥ s0 decreases with a
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power-law, but the exponent is not a simple function of s1. Rather, it depends
on s0 as well. In Fig. 6 we have displayed the results of a measurement with
s1 = 3×10−4 and several different s0, ranging from 5×10−4 to 1. The curve for
s0 = 1 has been obtained with the method described at the beginning of this
section. We find that the aftershocks’ decay pattern for s0 < 1 continuously
approaches the one for s0 = 1 as s0 → 1. This shows that it is indeed justified
to study the system in the aftermath of an infinite initial event and then to
extrapolate to finite but large initial events. Note that in Fig. 6, s1 is so small
that Eq. (21) does not hold anymore.

Sneppen and Newman have argued that the decay pattern of the aftershocks
is independent of the respective stress distribution. Our results do not support
that. Despite the fact that the exponent of the power-law seems to be inde-
pendent of σ in the case of exponential stress, as we could show above, the
exponent is not independent of the functional dependency of the stress distri-
bution. If we impose, for example, gaussian stress with mean 0 and variance
σ, we find (Fig. 5) exponents larger than 1 for moderate s1. We do event find
a qualitatively new behaviour of the system. The exponent is getting larger
with increasing s1, as opposed to the exponent getting smaller for exponential
stress. Of course, this can only be true for intermediate s1. Ultimately, we
must have τ → 0 for s1 → 1.

Finally, we present some results about systems with finite growth. In these sys-
tems, there exists some competitive dynamics between the removal of agents
with small thresholds through stress and their regrowth. Aftershocks appear
in the infinite growth model because the reorganization event leaves a larger
proportion of agents in the region of small thresholds, thus increasing the prob-
ability for succeding large events. In the finite growth version, on the contrary,
this can happen only if the regrowth is faster than the constant removal of
agents with small thresholds through average stress. If the regrowth is too
slow, the probability to find large events actually is decreased in the after-
math of an initial large event. The interplay between these two mechanisms
is shown in Fig. 7. The regrowth of species is done according to Eq. (2). For a
small growth-rate g, the probability to find aftershocks is reduced significantly,
and it aproaches the equilibrium value after about 100 time-steps. With larger
g, the probability Pt(s ≥ s1) increases in time until a maximum well above the
equilibrium level is reached, and then decreases again. The maximum moves
to the left to earlier times t with increasing g. When g is so large that the
maximum coincides with the post initial event, the original power-law is re-
stored. Note that, as in the case of infinite growth, the measurement depends
on the choice of the parameters s0 and s1. Consequently, with a different set
of parameters the curves will look different, and the maximum will appear at
a different time. Nevertheless, we find that the qualitative behaviour is not
altered if we change s0 or s1.
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Instead of logistic growth, we can also think of linear growth, i.e. ∆N = gNmax,
where g is again the growth rate. In order to keep the system finite, we stop
the regrowth whenever the system size N exceedes the maximal system size
Nmax. In such a system, aftershocks can be seen for much smaller growth
rates (Fig. 8). Note that apart from the growth rate, all other settings are
identical in Fig. 7 and Fig. 8. Linear growth refills the system much quicker
than logistic growth with the same growth rate. Therefore the time intervall
in which aftershocks are suppressed is much shorter for linear growth.

5 Conclusion

We could show in the present paper that the decay pattern of the aftershock
events depends on the details of the measurement. Although the qualitative
features remain the same for different parameters s0 and s1 (e.g. a power-
law decrease in the infinite-growth version), the quantitative features vary to
a large extend. The exponent τ of the power-law is significantly affected by
an alteration of s0 or s1. Therefore the measurement-procedure proposed by
Sneppen and Newman can reveal the complex structure of aftershock-events
only if the change of the measured decay pattern with varying s0 and s1 is
recorded over a reasonably large intervall of different values. This should be
considered in a possible comparison between the aftershocks’ decay pattern
from a model and from experimental data. A more in-depth analysis could
probably be achieved with the formalism of multifractality (see e.g. [33]).

We found the aftershocks’ decay pattern to vary with different stress distri-
butions. This is in clear contrast to Sneppen and Newman. They reported a
power-law with exponent t ≈ 1 for the infinite growth version, independent of
the respective stress distribution they used. The question remains why Snep-
pen and Newman measured such an exponent in all their simulations. The
answer to this lies in the fact that they did only simulations with s0 < 1.
For the reasons explained at the beginning of Section 4, under this condition
one has to choose a relatively small s0, and accordingly, a very small s1. This
causes the measurement almost inevitably to lie in the intermediate region
between the limiting cases of Sec. 3.3. In this region, for the most reasonable
stress distributions and a large array of different values for s0 and s1, we find
indeed exponents around 1.

The application of coherent-noise models to earthquakes has been discussed
in [27]. Two very important observations regarding earthquakes, the Gutenberg-
Richter law [34,35] and Omori’s law [36], can be explained easily with a
coherent-noise model. The Gutenberg-Richter law states that earthquake mag-
nitudes are distributed according to a power-law. Omori’s law, which interests
us here, is a similar statement for the aftershocks’ decay pattern of earth-
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quakes. In the data from real earthquakes, the number of events larger than a
certain magnitude M1 decreases as t−τ in the aftermath of a large initial earth-
quake. Consequently, we can only apply infinite-growth coherent-noise models
to earthquakes. But this is certainly no drawback, since we expect the thresh-
olds against movement at various points along a fault (with which we identify
the agents of the coherent-noise model) to reorganize almost instantaneously
during an earthquake.

The exponent τ is not universal, but can vary significantly, e.g., in [1] from
τ = 0.80 to τ = 1.58. This would cause problems if the statement was true
that for coherent-noise models we have τ ≈ 1. But as we could show above,
the exponent can assume values in the observed range, depending on the stress
distribution, the size of the initial event, and the lower cut-off (which we called
M1 for earthquakes and s1 throughout the rest of the paper).

For a further comparison, it should be interesting to study the dependency of
the exponent τ on variation of the cut-off M1 in real data. We are only aware
of a single work where that has been done [37]. Interestingly, the authors do
not find a clear dependency τ (M1). Nevertheless, this is not a strong evidence
against coherent-noise models, since the aftershock series analysed in [37] con-
sists mainly of very large earthquakes with magnitude between 6 and about
8, which does not allow a sufficient variation of M1. Statistical variations in
the exponent τ are probably larger for this aftershock series than the possible
variations because of an assumed τ (M1) dependency.

Numerical simulations of the finite-growth version have revealed a much more
complex structure of aftershock events than present in the infinite-growth ver-
sion. The competition between regrowth of agents and agent removal through
reorganization events leads to a pattern where the probability to find events
after an initial large event is suppressed for short times, enhanced for inter-
mediate times and then falls off to the background level for long times. This
observation can be important for the application of coherent-noise models to
biological extinction. It might be possible to identify a time of reduced and
a time of enhanced extinction activity in the aftermath of a mass extinction
event in the fossil record. This would be a good indication for biological ex-
tinction to be dominated by external influences (coherent-noise point of view)
rather than by coevolution (SOC point of view).
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A Rederivation of the master-equation

In this appendix we are interested in the average state a coherent-noise sys-
tem will be found in several time-steps after some initial state with threshold
distribution ρt0(x). Our calculations will lead to a rederivation of the master-
equation for coherent-noise systems. Although a master-equation has already
been given for the infinite-growth version and has been generalized to the
finite-growth version, these master-equations have not been derived in a strin-
gent way, but just have been written down intuitively. Our calculation will
confirm the main terms of the previously used equations, but we will find an
additional correcting term that becomes important for large f .

Consider the case of infinite growth. At time t0 the threshold-distribution may
be ρt0(x). We construct the distribution ρηt0+1(x), which is the distribution that
arises at time t0 + 1 if a stress η is generated at time t0. A stress η will cause
a proportion sη =

∫ η
0 dx ρt0(x) of the agents to move. We have to distinguish

two regions. For x < η, all agents are removed. Then they are redistributed
according to sηpthresh(x). A small fraction f of the agents is then mutated,
which results in

ρηt0+1(x) = (1− f)sηpthresh(x) + fpthresh(x) ; x < η . (A.1)

For x ≥ η, the redistribution of the agents gives ρt0(x)+sηpthresh(x). With the
subsequent mutation we obtain:

ρηt0+1(x) = (1 − f)
(
ρt0(x) + sηpthresh(x)

)
+ fpthresh(x) ; x ≥ η .

(A.2)

We take the average over η to get the distribution ρt0+1(x) that will on average
be found one time-step after ρt0(x):

ρt0+1(x) =

∞∫

0

dη pstress(η)ρηt0+1(x)

=

∞∫

0

dη pstress(η)pthresh(x)
[
(1 − f)

η∫

0

ρt0(x
′)dx′ + f

]

+

x∫

0

dη pstress(η)ρt0(x)(1− f)

= pthresh(x)
[
f + (1 − f)

∞∫

0

dη pstress(η)

η∫

0

ρt0(x
′)dx′

]

+ ρt0(x)(1− f)(1 − pmove(x)) . (A.3)

Here, pmove(x) is the probability for an agent with threshold x to get hit

14



by stress, viz. pmove(x) =
∫∞
x dx

′ pstress(x
′). To proceed further we have to

interchange the order of integration in the remaining double integral. Note
that

∫∞
0 dη

∫ η
0 dx

′ =
∫∞
0 dx′

∫∞
x′ dη, and therefore

ρt0+1(x) = pthresh(x)
[
f + (1 − f)

∞∫

0

dx′
∞∫

x′

dη pstress(η)ρt0(x
′)
]

+ ρt0(x)(1− f)(1 − pmove(x))

= pthresh(x)
[
f + (1 − f)

∞∫

0

dx′ ρt0(x
′)pmove(x

′)
]

+ ρt0(x)(1− f)(1 − pmove(x))

= pthresh(x)

∞∫

0

dx′
(
f + (1− f)pmove(x

′)
)
ρt0(x′)

+ ρt0(x)(1− f)(1 − pmove(x)) (A.4)

We are thus led to the master-equation

∆ρt(x) =
(
− f − pmove(x) + fpmove(x)

)
ρt(x) +Apthresh(x) ,

(A.5)

where A is the normalization constant
∫∞

0 dx′ (f + (1− f)pmove(x
′))ρt(x′).

We notice the appearance of the term fpmove(x) which was not present in the
master-equation used by Sneppen and Newman. The term arises if one takes
into account the fact that the agents which are hit by stress get new thresholds
before the mutation takes place. Therefore every agent with threshold x has
the probability fpmove(x) to get two new thresholds in one time-step. But obvi-
ously this is exactly the same as geting only one new threshold. Consequently,
the term fpmove(x) has to be present to avoid double-counting of those agents
which are hit both by stress and by mutation. Nevertheless, this term does
not affect the scaling behaviour of the system, because the derivation of the
event size distribution in [28] has been done under the assumption f � 1.

Eq. (A.4) gives the average state of the system one time-step after the initial
state ρt0(x). If we are interested in the average state t time-steps after the
initial state, we have to repeat the calculations in Eqs. (A.1)-(A.4) t times.
Since all averages in these calculations can be taken independently, this is
exactly the same as t times iterating the master-equation (A.5).
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B Calculation of the mean-field solution.

We assume that at time t = 0 a big event takes place and produces the distri-
bution ρ0(x). If we apply the master-equation (A.5) t times to this distribution
ρ0(x), we will end up with a distribution ρt(x) that tells us the average state
of the system at time t after the big event.

In the following we will use

T (x) := (1 − f)(1− pmove(x)) (B.1)

and write At for the normalization constant that appears on the right-hand
side of Eq. (A.5) at time t. The average distribution at time t then becomes

ρt(x) = T (x)ρt−1(x) +Atpthresh(x)

= T t(x)ρ0(x) +
t∑

k=1

T t−k(x)Akpthresh(x) . (B.2)

We integrate both sides of Eq. (B.2) and find a recursion relation for the
constants At:

At = 1−
∞∫

0

T t(x)ρ0(x)dx+
t−1∑

k=1

Ak

∞∫

0

T t−k(x)pthresh(x)dx .
(B.3)

All integrals can be calculated analytically for a special choice of the thresh-
old and stress distributions. As threshold distribution, we choose the uniform
distribution pthresh(x) = 1; 0 ≤ x < 1, and as stress distribution we choose
the exponential distribution pstress(η) = exp(−η/σ)/σ. Furthermore, we as-
sume that the initial event was so large as to span the whole system, i.e.
ρ0(x) = 1; 0 ≤ x < 1.

Under the above assumptions there is basically one integral that appears in
Eq. (B.3), which is

In :=

1∫

0

T n(x)dx

=

1∫

0

(1 − f)n
(

1− e−x/σ
)n
dx , (B.4)

and Eq. (B.3) becomes

At = 1− It +
t−1∑

k=1

It−kAk . (B.5)
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With the aid of the binomial expansion (1 + a)n =
∑n
k=0

(
n
k

)
ak we find

In = (1− f)n
1∫

0

n∑

k=0

(
n

k

)(
− e−x/σ

)k

= (1− f)n
(

1 +
n∑

k=1

(
n

k

)
(−1)k

(
σ

k
− σe−1/σ

k

))

= σ(1− f)n
(

1 +
n∑

k=1

(
n

k

)
(−1)k

k

(
1 − e−1/σ

))
. (B.6)

We are now in the position to calculate the probability that an event of size
s ≥ s1 occurs at time t after the initial big event. The minimal stress value
ηmin that suffices on average to generate such an event is the solution to the
equation

ηmin∫

0

dx ρt(x) = s1 . (B.7)

The corresponding probability is Pt(s ≥ s1) = exp(−ηmin/σ). We invert this
expression and insert it into Eq. (B.7). The resulting equation determines the
probability Pt(s ≥ s1):

−σ lnPt(s≥s1)∫

0

dx ρt(x) = s1 . (B.8)

The integrals that appear after inserting ρt(x) into the above equation are
very similar to the integral In defined in Eq. (B.4). We define

Jn(P ) :=

−σ lnP∫

0

T n(x) dx . (B.9)

This integral can be taken in the same fashion as the calculation of In in
Eq. (B.6). We find

Jn(P ) = σ(1− f)n
(
− lnP +

n∑

k=1

(
n

k

)
(−1)k

k
(1 − P )

)
.

(B.10)

Eq. (B.8) now becomes

Jt

(
Pt(s ≥ s1)

)
+

t∑

k=1

Jt−k

(
Pt(s ≥ s1)

)
Ak = s1 . (B.11)

All the quantities which appear in this equation are given above in analytic
form. Therefore solving Eq. (B.11) is simply a problem of root-finding. With a
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computer-algebra program such as Mathematica, the recursion relation for the
constants Ak as well as the sums that appear in the quantities In and Jn(P )
can be evaluated analytically if we restrict ourselves to moderate t. Then the
only numerical calculation involved in the computation of Pt(s ≥ s1) is the
calculation of the root of Eq. (B.11).
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Fig. 1. The average distribution of agents at time t = 1, t = 10, and t = 100 after the
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master-equation, the dots show the simulation results. Parameters where σ = 0.05
and f = 10−5
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Fig. 2. The probability Pt(s ≥ s1) for σ = 0.1 and f = 10−5. The solid lines show
the mean-field approximation, the dots show the simulation results.
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Fig. 3. The probability Pt(s ≥ s1) in simulations with σ = 0.1, s1 = 0.06 and
several different values for f (from bottom to top: f = 10−4, f = 10−3, f = 10−2,

f = 10−1).
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Fig. 4. The rescaled probability Pt(s ≥ s1). The solid line shows a t−1 decrease for

comparison.
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Fig. 5. The probability Pt(s ≥ s1) after an initial infinite event in a simulation

with gaussian stress. Parameters are σ = 0.1, f = 10−5, and, from bottom to top,
s1 = 0.2, s1 = 0.1, s1 = 0.02. In a simulation with gaussian stress the distribution

is getting steeper with increasing s1.

Fig. 6. The probability Pt(s ≥ s1) after an initial finite event. Parameters are

σ = 0.05, f = 10−5, s1 = 3 × 10−4, and, from bottom to top, s0 = 5 × 10−4,
s0 = 2× 10−3, s0 = 0.01, s0 = 0.1 and s0 = 1.

22



Fig. 7. The probability Pt(s1 ≥ 3 × 10−4) after an event of size s0 ≥ 0.001 in a
simulation with finite logistic growth. Parameters are σ = 0.5, f = 10−5, and, from

bottom to top, g = 2× 10−4, g = 2× 10−3, g = 2 × 10−2 g = 2 × 10−1, g = 10. A
power-law can only be seen for relatively large growth rates. For small growth-rates,

the probability to find aftershocks is reduced significantly.

Fig. 8. The probability Pt(s1 ≥ 3 × 10−4) after an event of size s0 ≥ 0.001 in a

simulation with finite linear growth. Parameters are σ = 0.5, f = 10−5, and, from
bottom to top, g = 10−5, g = ×10−4, g = ×10−3, g = 10. Aftershocks are seen for
much smaller growth rates than in the version with logistic growth.
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