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Lübeck, Germany, 3 Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany, 4 Computational Systems Biology, Jacobs
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Abstract

NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations
(SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured,
the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass
model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As
the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation.
Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of
large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven
oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real
electroencephalogram data and points out possible differences between the different stages of natural sleep.
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Introduction

Several studies indicate a major role of slow wave sleep (SWS) in

the consolidation of memories [1,2]. Especially its hallmarks,

cortical slow oscillations (SO), are hypothesized to be a key

mechanism for the transfer of memory into the neocortical long-

term storage [3,4]. Furthermore, it has been shown that the

efficacy of memory consolidation can be improved with oscillatory

transcranial electric and phase-locked auditory stimulation [5–7].

In the human electroencephalogram (EEG) SOs are defined as

waves with a frequency of 0.5–2 Hz and a peak-to-peak amplitude

.75 mV [8,9]. Underlying the SO is a widespread, almost

synchronous alternation of neocortical networks between phases

of depolarization (active or up state) and hyperpolarization (silent

or down state) [10,11], that behaves like a traveling wave [9,12].

Modeling and experimental studies indicate a role for both,

synaptic mechanisms and intrinsic currents, in the generation of

SOs [13–16].

The K-complex (KC) occurs at the pace of the SO [17] and is

believed to be the EEG expression of the cellular slow oscillatory

activity [18]. The negative peak of the KC marks the transition to

the cellular up state [19]. A KC during light NREM sleep (N2) was

identified to be an isolated down state [20]. Furthermore, KCs

show a high variability in morphology and amplitude, but are

generally characterized as a negativepositive event with a sharp

negative peak. Common variations of this theme are multiple

peaks in the negative component or an initial positive bump before

the negative-positive complex.

The components of evoked KCs were found to have typical

latencies, namely the P200, N550 and P900 peaks. It was

suggested that these components are not independent and share

a common generation mechanism. Sometimes later components

(N1500, P1900) with smaller amplitude are reported too [21,22].

The complexity of the brain on the structural as well as the

neuronal level has, however, been challenging for theoretical studies

and modeling approaches. Neural mass models, pioneered by the

work of [23] and [24], successfully described many phenomena of

the human EEG, e.g. alpha and gamma rhythms, evoked responses

and epilepsy [25–27]. See [28] and [29] for reviews.

In addition to states of wakefulness sleep has been modeled

within the neural mass framework, too. A parameter study by [30]

revealed the importance of synaptic gains for the dominant

frequency of neural mass models. Steyn-Ross et al. [31]

investigated the effect of changes in the efficacy of excitatory

connections and the resting membrane voltage, finding multiple

stable states which they classified as sleep and wake.
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While those features are generated within a -local- column of

neural tissue, spatial components have been shown to lead to

complex interactions with the intrinsic dynamics, e.g. Turing

patterns and traveling waves [32,33]. However, within this study

we focus on the generation of KCs as well as SOs rather than their

spatial propagation. Nevertheless, our model can form the basis of

a network of neural masses that covers spatial aspects, such as

wave propagation.

Activity-dependent feedback via slow potassium channels has

been suggested as a mechanism for the generation of SOs and KCs

because of their sensitivity to the sleep related neuromodulator

acetylcholine and their implication in the slow afterhyperpolariza-

tion [34,35]. Multiple studies also point out that potassium leak

channels can be activated by several anesthetics [36–38]. In the

neural mass framework additive and multiplicative adaptation

mechanisms have been discussed by [39–41]. So far KCs were

described as excursions from a stable silent state to an unstable

active state and the related SOs as oscillations between those two

states [42,43].

However, while for certain forms of anesthesia it seems plausible

that the cortex undergoes a phase transition, it is not clear whether

this necessarily holds for natural sleep [39,44]. Addressing these

issues we present a neural mass model for the sleeping cortex

which is extended by sodium dependent potassium current

[45,46]. This approach links our neural mass model to modeling

studies on SO generation based on single neurons as well as to

experimental studies [14,16]. The model output resembles EEG

time series of sleep stages N2 and N3 to a high degree and shows

key features of spontaneous and evoked KCs.

Building upon a bifurcation analysis, we characterize the

dynamic repertoire of the cortex model. Our analysis indicates

that cortical SOs and KCs are related but different phenomena.

We suggest a route for the transition from wake to deep sleep and

point out differences between natural sleep and anesthesia.

Methods

In the following sections, we motivate and describe the

mathematical foundation of the model. First, we introduce the

concept of neural mass models and define the basic neural module

we use as a starting point. Into this basic neural module, we

incorporate a physiological plausible firing rate adaptation,

characteristic for the sleeping cortex.

Neural mass framework
Instead of considering single neurons individually, an averaged

representation of the respective neuron type describes the behavior

of a whole population. The mean membrane voltage Vk of the

neural population k is transformed into a firing rate Qk via a

sigmoidal mapping [25,47].

Qk(Vk)~
Qmax

k

1zexp {C(Vk{hk)=skð Þ : ð1Þ

Here, Qmax
k is the maximal firing rate of the respective

population, while hk represents the firing threshold of the

population and 1=sk the gain or steepness of the transition.

C~p=
ffiffiffi
3
p

acts as a scaling factor that links the gain directly to the

standard deviation of the change in firing rate dQk=dVk.

At the dendrites, incoming spikes elicit transmitter release

leading to the opening of synaptic channels. At any time, the

fraction of open channels smk of type m at population k can be

described by a convolution with an alpha function am [48],

with

smk~
X

k’

amNk0k6Qk’,

am~c2
m t exp({cmt):

ð2Þ

Here, the inverse rise time cm determines its shape. The sum is

over all spikes from different sources k’ that arrive at the same type

m of synapses at population k. We consider AMPAergic synapses

for excitation and a generic GABAergic type for inhibition,

leading to the second order differential equations

€ssek ~c2
e NekQe(Ve)zwn{sekð Þ{2ce _ssek,

€ssik ~c2
i NikQi(Vi) {sikð Þ{2ci _ssik:

ð3Þ

Here, Nk’ k stands for the mean number of synaptic connections

of type k’ to population k. While inhibitory populations only

spread locally, there are two different sources of excitation: local

inputs NekQe(Ve) and background noise coming from unspecified

brain structures wn, which is taken as uncorrelated Gaussian white

noise with zero mean. To model external stimulation the mean of

the background noise is elevated by wstim representing increased

incoming spike rates.

The connectivity structure of our model is given in Figure 1. It

consists of an excitatory and an inhibitory population coupled all

to all.

An important assumption of most neural mass models is the

existence of an equilibrium state V0 the system is always close to

[23]. However, this is not true for KCs and SOs and the scaling of

synaptic currents with respect to the membrane voltage Vk

becomes important. This was addressed by [49] with the

introduction of a weighting term (Vk{Erev).

Their model can be written similar to the classical conductance

based form of [50] with one leak and two synaptic currents as

Author Summary

In recent years, sleep has drawn increasing attention due
to its multifunctional role, e.g. the involvement in the
consolidation of memory. While neural mass models have
been successfully employed to describe the dynamics of
the awake brain, the drastic changes that arise during
sleep have been challenging. As intracellular recordings
point to a bistability in the membrane voltage of individual
neurons, previous studies assumed a bistability to be
responsible for the generation of SOs as well as KCs on the
macroscopic scale. Here we present a minimal neural mass
model of the cortex that we extend by a slow firing rate
adaptation, which is assumed to underlie the termination
of the cortical up state. A bifurcation analysis reveals the
existence of a Hopf bifurcation together with an canard
phenomenon. We show that these additional bifurcations
are able to generate KCs as well as SOs, and reproduce the
electroencephalogram (EEG) of sleeps stages N2 and N3 to
a high degree. Based on these findings, we propose a new
route for the sleep/wake transition, that is also consistent
with the effect of neuromodulators on the brain.

K-Complexes and Slow Wave Activity in a Neural Mass Model
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tk
_VVk~{ L(Vk{Erest

k )

{ AMPAsek(Vk{EAMPA)

{ GABAsik(Vk{EGABA),

~{IL{IAMPA{IGABA:

ð4Þ

Here, g depicts the maximal conductivity, and E corresponds to

the Nernst potentials of the respective channel.

The potential fluctuations measured in an EEG are mainly

generated by pyramidal neurons [51]. Therefore, we use the

membrane voltage of the excitatory population as our output

variable. Similarly, multiple studies [25,49,52–54] used either the

deviation of the membrane voltage from the resting state,

Ve{Vrest, or the membrane voltage itself. As our system has no

spatial extension and we only assume ohmic effects of skull and

scalp, the EEG signal can be approximated by a linear scaling of

the excitatory membrane voltage. When comparing experimental

data and model output both time series are z-scored, because this

linear transformation normalizes mean and standard deviation but

preserves the other statistical properties of a signal. As we are only

interested in qualitative properties of the model, e.g. the ratio

between medium amplitude background oscillations and large

amplitude deflections during N2, the different sleep stages are z-

scored independently. For quantitative statements the same

measuring function must be used.

Model extension with respect to sleep
As motivated in the introduction, we add the sodium dependent

potassium current

IKNa~ KNa
0:37

1z
38:7

½Na�

� �3:5
(Ve{EK ),

½ _NNa�~(aNaQe(Ve){Napump(½Na�))=tNa

ð5Þ

to the excitatory population, see Equation 4. The current is

connected to the excitatory membrane voltage by a membrane

capacity Cm = 1 mF/cm. Sodium influx responsible for IKNa

activation results from spiking or INaP activation, for which a

depolarization above 260 mV is sufficient. We do not explicitly

model these mechanisms but combine their effects via the Ve-

determined spike rate Qe and regard aNa as average sodium influx

per spike. Sodium extrusion is due to an active pump [55], which

is detailed in Text S1. For simplicity, we neglect synaptic

depression and other candidate mechanisms for additive feedback,

like calcium dependent potassium currents.

This approach is qualitatively different to changes in the firing

rate function, as utilized by [39]. Gradually switching between two

firing rates alters the overall shape of the sigmoid function in a

multiplicative activity-dependent manner, whereas we employ an

additive threshold modulation.

Computational methods
The model was implemented in C++ and run within MATLAB

[56]. The stochastic differential equations were iterated using a

stochastic Runge-Kutta method of 4th order [57] with a step size

of 0.1 ms. Simulation length was chosen as 30 s with a 5 s onset to

ensure a steady state. All settings were run multiple times to check

for robustness. Full model equations and parameters are given in

Text S1 and Table S1. Bifurcation analysis is done with XPPaut

[58], and a script is provided in Text S2.

Results

In the following, we analyze the dynamic repertoire of the

model and define multiple dynamic regimes. We stress that the

bifurcation analysis is done in the noise free deterministic case.

However, noise is able to push the system into different regimes,

if the parameters are chosen sufficiently close to the border.

Therefore, the analysis provides the repertoire of possible modes,

whereas the corresponding response to external stimuli is captured

in a following section.

Based on that description we show that the model is able to

reproduce KCs as well as SOs. Furthermore, the analysis suggests

a distinction between KCs and SOs and provides some insights in

the differences between natural sleep and anesthesia. We will

finally present a comparison of the noisy simulation to human

EEG data.

Bifurcation analysis
In order to characterize the dynamic repertoire of the cortical

model we conducted a numerical bifurcation analysis of the noise-

free system. The qualitative behavior of the model was most

sensitive to changes in the inverse gain, se, of the pyramidal

population and the strength of the adaption, KNa.

Additionally, both parameters are known to be susceptible to

changes in the neuromodulatory milieu, and the concentration of

many major neuromodulators is known to change throughout the

sleep-wake cycle. Cortical acetylcholine levels are lowest during

slow wave sleep and highest during wake and REM sleep, whereas

serotonin and norepinephrine levels are highest during wake,

intermediate during SWS and lowest during REM sleep [59].

Tonic application of acetylcholine blocks leak and activity-

dependent potassium currents IKLeak, Im, IKNa, IKCa (reviewed in

[60]), as well as INaP [61]. Furthermore, many studies show that se

can be altered by norepinephrine, serotonin, acetylcholine as well

as dopamine [35,62–69].

Consequently, se and gKNa were chosen as bifurcation

parameters. The adaptation currents are primarily found in

excitatory pyramidal cells and less so in inhibitory interneurons,

which justifies the restriction of the parameter changes to the

excitatory population.

As can be seen in Figure 2 the dynamics of the system is shaped

by two bifurcations. The first one is a fold created by two saddle

node bifurcations (black), that vanishes in a cusp. Between the two

saddle nodes there are three equilibrium states, leading to

bistability or excitability, see Figure 3a or Figure 3b. This is in

good agreement with [31] and [70], as in the case of a fixed

sodium concentration IKNa is constant, and an increase in KNa

acts as a decrease in resting potential.

Figure 1. Connectivity of the cortex. The two populations are all to
all coupled. In addition to intrinsic activity both populations receive
background noise from unspecified brain structures. Circles indicate
excitatory synapses, butts inhibitory synapses.
doi:10.1371/journal.pcbi.1003923.g001

K-Complexes and Slow Wave Activity in a Neural Mass Model
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The second bifurcation is a Hopf arising at the upper stable branch

(red). Importantly there is a canard explosion, where the small

amplitude limit cycle of the Hopf bifurcation transitions into a high-

amplitude relaxation cycle. This phenomenon was first described by

[71] and is typical for systems where fast and slow subsystems

interact. The relaxation cycle vanishes at the left saddle-node via a

homoclinic bifurcation. At the cusp both saddle nodes coalesce and

the homoclinic bifurcation turns into a second Hopf point.

Based on those bifurcations we define multiple dynamical

regimes, see Table 1 for a short overview. Within region I a single

stable state exists at depolarized membrane voltages where the

cortex shows relatively high activity (see Figure 3). Especially for

small values of KNa even large excitatory and inhibitory inputs

only cause a passive response. A switch to the lower branch of the

S-shaped curve in Figure 3 (region IV, silent state) is not possible.

Because of these properties we assume the waking brain to operate

within this regime.

When crossing the curve of saddles to region V two new fixed

points appear (see also Figure 3a). The system becomes bistable,

with a stable active and silent state. Positive and negative inputs

can cause a switching between the two stable branches.

A further increase in KNa turns the upper branch (active state)

unstable. However, within region VI there are still multiple

equilibria leaving the system excitable. Here a stimulus can

produce a large positive response, which was previously thought to

be responsible for the generation of KCs as well as SOs [72].

Only after the second saddle node is crossed the upper two

equilibria vanish and a single stable state remains. This state is

characterized by hyperpolarized membrane voltages leading to a

quiescent cortex.

Figure 2. Bifurcation diagram of the cortex with respect to KNa and se. Overview over the models dynamic regimes, obtained via numerical
bifurcation analysis of the cortex with respect to se and KNa. Hopf bifurcations are drawn in red, while the black line depicts saddle-node
bifurcations. The bottom gray line marks the intersection of Hopf and saddle curves, the top gray line the cusp bifurcation. The green line depicts the
proposed route for the transition from wake to sleep stage N3. The region around wake corresponds to parameter settings commonly used for wake
EEG. N2 and N3 are settings used within this study for the respective sleep stages, as given in Table 2 and 3. Regions I-VI are described in the text and
Table 1 (Parameters as in Table S1).
doi:10.1371/journal.pcbi.1003923.g002

Figure 3. One-dimensional bifurcation diagrams for different gain levels se. Low gain corresponds to high values of se. Thick black lines
depict stable fixed points, dashed lines unstable fixed points and red lines stable periodic solutions. The gray dashed lines mark bifurcations and
separate the different regimes. (a) Two saddle-node bifurcations lead to excitability in region VI and bistability in region V. (b) A Hopf bifurcation
appears (between I and III) in addition to the two saddle-nodes. The initial small amplitude limit cycle transitions into a high-amplitude relaxation
cycle via a canard explosion. The high-amplitude periodic solutions vanish at the left saddle-node via a homoclinic bifurcation. The period of the
relaxation oscillations goes to infinity as one approaches the homoclinic bifurcation. (c) Only the Hopf bifurcation remains, after the saddle nodes
disappeared via a cusp bifurcation. Within region II there is no canard anymore.
doi:10.1371/journal.pcbi.1003923.g003
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Region III is characterized by periodic limit cycles or relaxation

oscillations and, hence, high rhythmicity. The initial Hopf

bifurcation is accompanied by a canard explosion: due to an

exponentially small variation of the bifurcation parameter an

abrupt transition from a medium-amplitude limit cycle to a high-

amplitude relaxation cycle can take place.

This phenomenon was first described in [71] and is typical for

systems where fast and slow subsystems interact. The correspond-

ing one-dimensional bifurcation diagram is shown in Figure 3b.

The periodic solutions vanish at the left saddle-node via a

homoclinic bifurcation, and the period of the relaxation oscilla-

tions goes to infinity as one approaches the homoclinic bifurcation.

Additionally, with increasing se the amplitude of the limit cycle

increases and approaches the form of relaxation oscillations. This

explains the similarity between the limit cycles and relaxation

oscillations. Both are shaped by the same homoclinic orbit.

At the cusp the two saddle nodes vanish and the homoclinic

bifurcation turns into a second Hopf point. Without the

homoclinic bifurcation there is no canard anymore. Therefore,

in region II above the cusp bifurcation only limit cycles remain,

illustrated in Figure 3c, leading to high-amplitude oscillations.

Response to perturbations
While the bifurcation analysis provides the basic repertoire of

the unperturbed model, its responsiveness with respect to

perturbations, e.g. external stimuli or background noise, is crucial

for its behavior. As mentioned before, within region I the cortex

shows only a passive response. However, this changes for larger

values of KNa, i.e. closer to the curve of Hopf points (red line in

Figure 2, separating region I from II and III).

There, positive as well as negative inputs may cause a reverse

spike resembling a KC. Additionally, close to the curve of Hopf

points the stable active state turns into a stable focus, i.e. the

system behaves like a damped oscillator upon perturbation. In

Figure 4a we show the response to artificial stimuli wstim of varying

strength, when the cortex is set close to the Hopf bifurcation

between region I and III.

Stimuli of low strength lead to damped oscillations whose

amplitudes are considerably larger than during the wake state but

smaller than KCs or SOs. However, as the strength of the stimuli

increases the system is pushed into the canard explosion and the

amplitude of the response increases rapidly. While in Figure 4a

there seems to be a threshold separating the two types of responses,

it is actually a smooth transition given sufficiently small increases

in stimulation strength.

The induced relaxation cycles show a good qualitative match

with KCs seen during sleep. In the noise driven simulation the

majority of inputs would lead to medium-amplitude oscillations,

whereas only the rare outliers would trigger a KCs like response.

This is in good agreement with the dynamics seen in sleep stage

N2, where medium-amplitude background oscillations are inter-

rupted by large amplitude KCs.

We assume this mechanism to be responsible for the generation

of KCs during sleep stage N2. Furthermore, this requires the

cortex to be in the active state close to the Hopf bifurcation to

region III, rather than being in the silent down state. This is in

good agreement with multiple studies who report that during SWS

of naturally sleeping animals more time is spent in up states than in

down states [73–78].

Close to the Hopf, an increase of the inverse gain, se, leads to

an increase in the amplitude of the background oscillations and

they approach the shape of a relaxation cycle. Beyond the cusp the

canard vanishes and isolated events in the sense of KCs are not

possible anymore (see Figure 4b).

This behavior is well reflected in what is seen during sleep stage

N3, where SOs appear as large amplitude oscillations, that are not
separated from the ongoing background activity. Furthermore, it

explains the high similarity between KCs and SOs, as they are

both shaped by the same homoclinic orbit. We hypothesize that

during sleep stage N3 the cortex is in region I close to the Hopf

bifurcation to region II.

Together these findings give rise to a new interpretation of the

sleep/wake transition. At the transition to sleep stage N2, the

cortex approaches the Hopf bifurcation close to region III, which

shifts the EEG trace to higher amplitudes and lower frequencies

compared to wake activity. By virtue of a canard explosion this

background activity is then interrupted by single, isolated

relaxation cycles. As sleep deepens further, the cortex follows

the route depicted in Figure 2, while the amplitude of the

background oscillations increases and ultimately approaches the

form of a KC.

However, this is in contrast with the view that the cortex

undergoes a phase transition when entering NREM sleep.

Interestingly, a similar model was utilized to describe character-

istics of anesthesia [39]. We can reproduce similar behavior, e.g.

burst suppression in region VI (See Supplementary Figure S1).

Table 1. Dynamic regimes of the cortical module.

Region dynamical properties

I active cortex

II limit cycles

III limit cycles and relaxation cycles

IV silent cortex

V bistable

VI excitable

doi:10.1371/journal.pcbi.1003923.t001

Figure 4. Response of the noise-free cortex to artificial stimuli.
Excitatory bursts of 50 ms duration were applied to both populations.
The spike rate of the stimuli wstim varies uniformly from 5 Hz (dark blue)
to 100 Hz (dark red). The stimulus is shown in grey. (a) Bifurcation
parameters are set to the mark N2 close to region III (see Table 2).
There, a canard explosion leads to large amplitude responses that
qualitatively resemble a typical evoked KC with its P200, N550 and P900
components. (b) Parameters are set to mark N3, so that the cortex is
beyond the cusp close to region II (see Table 3). The canard vanished,
leading to an even increase in the amplitude of the response.
doi:10.1371/journal.pcbi.1003923.g004

K-Complexes and Slow Wave Activity in a Neural Mass Model
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Reproduction of sleep stages N2 and N3
To verify the ability of the model to reproduce sleep stage N2

we set the model to parameter configuration ‘‘N2’’ from Figure 2

(See Table 2). The chosen parameter set is within region I close to

the border of region III, an example time series is shown in

Figure 5.

In a region close to the chosen parameters the cortex is in the up

state and shows the expected noise-driven medium-amplitude

oscillations. In addition, background noise may push the model into

high-amplitude deflections that closely resemble KCs seen in human

EEG. Similar to the data the KCs can show a single pronounced

peak or a prolonged down state, which depends on the noise.

Following our route for the sleep/wake transition in Figure 2 we

then moved along the Hopf bifurcation to a setting beyond the

cusp and close to region II, labeled as ‘‘N3’’. In Figure 6 a

representative time series is shown with the parameters given in

Table 3. There the cortex shows high amplitude oscillations

around 0.8 Hz. In contrast to the N2 stage, the cortex does not

produce KCs in the sense of isolated events that differ from the

background oscillations. Rather, the response increases until it

approaches the form of a KC, depending on the strength of the

perturbation.

Discussion

Characterization of KCs and SOs
We explored an extended neural mass model of the cortex and

related its multiple dynamical regimes to different sleep stages.

A bifurcation analysis revealed the existence of a fold as well as a

Hopf bifurcation accompanied by a canard phenomenon. We

argue that deflections generated by the canard explosion are

identical to KCs seen in the EEG during natural sleep, leading to

the spike-like nature of the KCs. Increasing the bifurcation

parameter se the canard vanishes, explaining the damped

oscillatory behavior of SOs. Our analysis provides a clear

theoretical distinction between KCs and SOs. However, as both

the limit and the relaxation cycle are shaped by the same

underlying homoclinic orbit, the actual transition is rather smooth

even in the noise-free deterministic system (see Figure 4).

Therefore, it might be challenging to find this distinction within

experimental data.

Based on the bifurcation analysis we identified parameter regimes

that show characteristics of sleep stage N2 and N3 and showed that

our model is able to reproduce the EEG of both sleep stages to a

high degree. Building upon these findings we propose an alternative

scenario for the sleep wake transition. Rather than entering a

bistable regime the cortex stays primarily within the active state. As

sleep deepens, the cortex approaches the Hopf bifurcation, leading

to an increase in amplitude and slowing of noise-driven background

oscillations, as well as large amplitude deflections, i.e. KCs. At the

transition to sleep stage N3 the canard phenomenon vanishes due to

the cusp bifurcation. The remaining Hopf bifurcation is responsible

for the generation of noise-driven SOs. Isolated events as in sleep

stage N2 are not possible within that regime.

Parameter settings within region II or III lead to highly regular

relaxation oscillations or limit cycles, that do not resemble human

EEG. It is crucial that the cortex must be within region I close to

region II or III to reproduce the data. In a study on resting state

networks [79] found the awake brain to be in a state of criticality,

which leads to an increased responsiveness. In this study, we also

find the sleeping cortex close to a phase transition and suggest that

the concept of criticality is not restricted to wakefulness, but carries

over to sleep. However, the phase transition and computational

goal are different.

Due to the presence of noise bifurcations do not lead to clear-cut

qualitative changes of the dynamics [43]. Noise can shift critical

points or induce behavior that is not seen in the deterministic case,

such as noise-induced transitions.

Relation to intracellular recordings
Our work deals primarily with the characteristics of EEG signals

during NREM sleep. However, the presented bifurcation analysis

is useful in a broader context. Similar activity is found e.g. during

non-REM sleep, anesthesia, coma and in isolated cortical

preparations. It becomes increasingly clear that there exists a

continuum of slow oscillatory states, which are mainly character-

ized by the fraction of time spent in up or down states, the

temporal regularity with which state transitions occur and the

response to external stimuli.

The phenomenon of up and down states in intracellular

recordings is commonly associated with the notion of bistability

or relaxation oscillations. However, it is important to note that

most results on SOs were obtained in deeply anesthetized animals

or slice preparations. Under these conditions, the system is down

state dominated, i.e. down states last longer than up states, the

occurrence of up states is often highly rhythmic [76,80] or up

states are infrequent and transient [81]. In our model these

classical regimes are also present, namely in regions III, V and VI.

Generally, SOs produced by anesthesia are much more regular

than during natural sleep [76,82]. Under ketamine-xylazine

anesthesia neurons spend twice the time in silent states compared

to natural SWS [76], and in the auditory cortex of awake rats

prolonged up states are not even observed at all [83]. Further-

more, SO properties differ from one anesthetic to the other [84].

Ketamine-xylazine anesthesia produces a uniform and continuous

SO state [85], whereas with urethane epochs of stable SOs are

short-lived and desynchronized periods may occur spontaneously

[86]. This is similar to SWS where one finds waxing and waning of

slow wave complexes interleaved with periods reminiscent of

active states [74].

In contrast, [20] pointed out that a KC during light sleep is not

always embedded in an ongoing SO, but is mostly an isolated event.

Clearly, in N2 the active state dominates. Similarly, many studies

report that during SWS of naturally sleeping animals more time is

spent in up states than in down states [73–78] Furthermore, it has

been reported that SWS contains many episodes of low-amplitude fast

oscillations, lasting several seconds and resembling the active state

[87]. This evidence points to natural sleep being up state dominated.

Table 2. Parameters of regime N2.

Symbol Value Unit Description

se 4.6 mV inverse gain

KNa 1.33 mS/cm2 conductivity

doi:10.1371/journal.pcbi.1003923.t002
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Furthermore, bistability is inferred via bimodality in the

distribution of individual cells’ membrane potential. In local field

potentials, one can observe a markedly conserved waveform of

individual SO events [88], but bimodality is already less visible. It

is known that collective dynamics can exhibit, e.g. limit-cycle

regimes, but at the same time emerge from irregular and high-

dimensional neuronal activity, which is only apparent at small-

scales [89].

The spectrum of SO phenomena cannot be fully captured by

the concepts of bimodality or relaxation oscillations. Our analysis

corroborates that the KC can be identified with a single, isolated

relaxation cycle and slow wave activity, including prolonged

episodes of low-amplitude fast oscillations, stems from noise-driven

oscillations around a stable focus. Down states occur frequently in

the up state dominated cortex, but they are transient.

Predictions
The assumption that a substantial gain change accompanies the

change of sleep stages is reasonable, but still has to be clearly

demonstrated experimentally for natural sleep. The only publication

we are aware of that touches this issue is [73]. Our model indicates

that an increase in gain can induce a bistable state when awake,

moving from region I to region V. Likewise, looking at comatose

states (region IV) a decrease in gain should induce limit cycle

oscillations.

Additionally, constant neural activation, i.e. arousal, causes

relaxation oscillations in the model. Indeed, this phenomenon

seems to occur in comatose patients, too, where one observes an

increase in delta activity after stimulation [90]. This is termed

paradoxical arousal and should not be confused with the

paradoxical excitation/biphasic response during the induction

process of anesthesia.

Furthermore, given the suggested role of gain change in the

transition between N2 and N3, an altered slope of the f-I-relation

of excitatory pyramidal cells could be a key factor in distinguishing

wake and REM sleep.

Activity-dependent and leak potassium currents (or tonically

activated extrasynaptic GABAA receptors) are both able to

promote bistability in a cortical population. However, only

activity-dependent mechanisms contribute to rhythmicity. It

Figure 6. Comparison of human EEG with model output in regime N3. Qualitative comparison of (a) human EEG data of sleep stage N3 from
electrode Cz with (b) the isolated cortical module in regime N3 (region I in the bifurcation diagram in Figure 2). As the system is close to the Hopf
bifurcation noise leads to quasiperiodic oscillations around the stable focus (up state). Large amplitude oscillations resemble KCs as both are shaped
by the same homoclinic orbit. The model output is excitatory membrane voltage Ve, and both time series are z-scored (Parameters as in Table 3).
doi:10.1371/journal.pcbi.1003923.g006

Figure 5. Comparison of human EEG with model output in regime N2. Qualitative comparison of (a) human EEG data of sleep stage N2 from
electrode Cz with (b) the isolated cortical module in regime N2 (region IV in the bifurcation diagram in Figure 2). The traces illustrate the medium-
amplitude background oscillations and the stereotypical shape of spontaneous KCs at the EEG level. It may or may not have an initial bump followed
by a large negative peak and a pronounced positive overshoot. The model-KC is noise induced and represents a single relaxation cycle. An evoked KC
in the noise-free case is shown in Figure 4a. Model output is excitatory membrane voltage Ve, and both time series are z-scored (Parameters as in
Table 2).
doi:10.1371/journal.pcbi.1003923.g005
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would be interesting to see their contributions revealed for natural

sleep and anesthesia.

A study by Molaee-Ardekani et al. [39] showed that a similar

model of slow firing rate adaptation can reproduce the effects seen

under anesthesia. A comparison of our findings with their results

suggest that the region of bistability (V) as well as the region of

excitability (VI) are actually associated with anesthesia.

Sleep: More than bistability and relaxation oscillations
A main result of this paper is that on the macroscopic level the

cortex is not necessarily in a bistable regime during natural deep

sleep. We argue that properties of KCs and SOs at the EEG level

support the view of a monostable active cortex close to a Hopf and

a saddle node bifurcation.

We stress that the characterization of KCs and SOs is made on

the population level. While the switching between up and down

states on the cellular level points to relaxation oscillations or

bistability with noise-driven transitions, relatively regular oscillation

at the cellular level may appear less regular at the EEG level, due to

varying spatial synchrony [82]. Relaxation oscillations in the EEG

usually correspond to pathological conditions like epilepsy.

We have not explicitly analyzed other adaptation mechanisms

like multiplicative feedback arising due to synaptic depression or

depletion of extra-cellular calcium or inhibitory modulation [91].

However, the additive activity-dependent feedback investigated

here is sufficient to account for a multitude of phenomena in

healthy and pathological conditions. Furthermore, we expect that

the bifurcation structure of the system, i.e. presence of saddle-

nodes, Hopf and homoclinic bifurcation, will persist in alternative

settings. Thus, our main conclusions do not depend on the

particular choice of the feedback mechanism.

Supporting Information

Figure S1 Burst suppression in region VI. Within region

VI the system shows characteristics of burst suppression. A

quiescent stable down state is interrupted by large amplitude

excursions around the unstable active state.

(TIF)

Table S1 Parameters. Description and values of all param-

eters that are not subject of the bifurcation analysis.

(PDF)

Text S1 Full model equations. Full mathematical description

of the model used within this study.

(PDF)

Text S2 Bifurcation analysis code. Script file used for the

bifurcation analysis in XPPaut.

(PDF)

Video S1 Visualization of the sleep-wake transition.
This video illustrates the change of the evoked response to

perturbations, as the model follows the proposed sleep-wake

transition depicted in Figure 2. Close to the ‘‘wake’’ state, the

system immediately returns to the stable fixed point, without any

oscillatory behavior. At the onset of sleep, KNa and se increase

and the system approaches the Hopf bifurcation, such that

perturbations away from the active state lead to transient, small

and slow oscillatory responses. However, as there are no large

deflections, which resemble KCs this regime corresponds to sleep

stage N1. Close to label ‘‘N2’’ in Figure 2, KCs emerge as isolated

events through a canard explosion (Sleep stage N2). With further

transition into deeper sleep, the amplitude of the background

oscillations increases and approaches the relaxation cycle of the

canard. Finally in the proximity of ‘‘N3’’ in Figure 2 there are no

KCs in the sense of isolated events, but large amplitude slow

oscillations around a stable focus (Sleep stage N3).

( MP4)
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