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Stimulation Augments Spike Sequence Replay and Memory
Consolidation during Slow-Wave Sleep
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Newly acquired memory traces are spontaneously reactivated during slow-wave sleep (SWS), leading to the consolidation of recent
memories. Empirical studies found that sensory stimulation during SWS can selectively enhance memory consolidation with the effect
depending on the phase of stimulation. In this new study, we aimed to understand the mechanisms behind the role of sensory stimulation
on memory consolidation using computational models implementing effects of neuromodulators to simulate transitions between awake
and SWS sleep, and synaptic plasticity to allow the change of synaptic connections due to the training in awake or replay during sleep. We
found that when closed-loop stimulation was applied during the Down states of sleep slow oscillation, particularly right before the
transition from Down to Up state, it significantly affected the spatiotemporal pattern of the slow waves and maximized memory replay.
In contrast, when the stimulation was presented during the Up states, it did not have a significant impact on the slow waves or memory
performance after sleep. For multiple memories trained in awake, presenting stimulation cues associated with specific memory trace
could selectively augment replay and enhance consolidation of that memory and interfere with consolidation of the others (particularly
weak) memories. Our study proposes a synaptic-level mechanism ofhow memory consolidation is affected by sensory stimulation during
sleep.
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Stimulation, such as training-associated cues or auditory stimulation, during sleep can augment consolidation of the newly
encoded memories. In this study, we used a computational model of the thalamocortical system to describe the mechanisms
behind the role of stimulation in memory consolidation duringslow-wave sleep. Our study suggests that stimulation preferentially
strengthens memory traces when delivered at a specific phase of the slow oscillation, just before the Down to Up state transition
when it makes the largest impact on the spatiotemporal pattern of sleep slow waves. In the presence of multiple memories,
presenting sensory cues during sleep could selectively strengthen selected memories. Our study proposes a synaptic-level mech-
anism of how memory consolidation is affected by sensory stimulation during sleep.
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and Down states in the cortical neurons, are mainly observed
during N3 sleep (also referred to as slow-wave sleep [SWS])
(Blake and Gerard, 1937; Steriade et al., 1993, 2001). Presently,
sensory stimulation during NREM sleep has been shown to mod-
ulate brain rhythms of sleep as well as affect memory perfor-
manceacross sleep. The sensory stimuliapplied during sleep were
either associated with the learning material in a training session
before sleep, targeted memory reactivation (TMR) (Rasch et al.,
2007; Rudoy et al., 2009; Antony et al., 2012; Cousins et al., 2014,
2016; Schonauer et al., 2014) or were unassociated to learning
content (Ngo etal., 2013, 2015). In both cases, sleep stimulation
could improve memory performance compared with the non-
stimulation case (for review, see Oudiette and Paller, 2013;
Schouten et al., 2017).

In TMR, auditory (Rudoy et al., 2009) or olfactory (Rasch et
al., 2007) cues that were used during learning are presented again
during NREM sleep, leading to an increase in memory per-
formance after sleep. While many TMR studies use declarative
memory tasks, TMR protocols may also enhance consolidation of
hippocampus-independent procedural memories (Antony et al.,
2012; Cousins et al., 2014, 2016; Schonauer et al., 2014). Antony
et al. (2012) trained participants for two different motor se-
quence tasks with sensory cues and then presented the cue for
one of the tasks during the nap. Following the nap, the cued
task revealed higher performance than the uncued one, sug-
gesting that TMR can enhance procedural memories. The
amount of improvement correlated with the duration of SWS
and the number of spindles during SWS (Antony et al., 2012).
Similar improvements were found for the declarative compo-
nent of a trained sequence (Cousins et al., 2014). Memory
performance across a sleep period of 8 h without auditory cues
was comparable with performance across a shorter sleep pe-
riod of 3 h with cued activation (Schénauer et al., 2014). Au-
ditory cues during SWS may not only enhance motor sequence
performance but also increase the functional brain activity
and connectivity in consolidation-relevant networks (Cousins
et al., 2016). Interestingly, presentation of the cues during
wakefulness was not effective for augmenting either declara-
tive (Rasch etal., 2007) or procedural memories (Schonauer et
al., 2014).

When the sensory stimuli were unassociated with the learning
content, such as presenting pink noise during sleep, the ampli-
tude of slow waves during sleep and retention performance were
enhanced (Ngo etal., 2013, 2015). Stimulation was effective only
when auditory “clicks” occurred in synchrony with the slow
waves. In contrast, out-of-phase stimulation was ineffective (Ngo
etal., 2013; Weigenand et al., 2016). Surprisingly, in a closed-loop
auditory stimulation protocol, when more than two stimuli were
presented sequentially at the adjacent cycles of the SO, it led to
saturation and could not further enhance memory performance
(Ngo etal., 2015).

In this new study, we used a biophysical model of the thalamo-
cortical network to investigate the mechanisms behind the role of
external stimulation (training-associated cues or sensory stimu-
lation) on memory consolidation during SWS (N3 sleep). The
model incorporated populations of thalamic and cortical neu-
rons and implemented effects of neuromodulators to allow tran-
sitions between awake and SWS (Krishnan et al., 2016), as well as
spike-timing-dependent plasticity (STDP) (Wei et al., 2016,
2018). Our study explains previous empirical data and provides
insights into how synaptic reactivation within the thalamocorti-
cal network may be affected by sensory stimulation during sleep.
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Table 1. Main parameters’

Parameter Value Description

Cy 1 wF/em? (TG RE); 0.75 peF/em ? (PY; IN) Membrane capacitance

Thalamic cells

S 29 %10 *em?(TC); 143 X 10 “cm?(RE)  Areaofneurons

G, 0.01 mS/cm ?(TC); 0.05mS/cm? (RE) Leakage conductance

E —70mV (TQ); —77 mV (RE) Leakage reversal potential

Gy, 0.024mS/cm? (T0); 0.012 mS/cm * (RE) Potassium leakage conductance

E —95mV (TG RE) Potassium reversal potential

0 10mS/am? (RE); 12mS/em? (TQ) Maximal potassium conductance

O 90mS/em? (TC); 100 mS/cm ? (RE) Maximal sodium conductance

9 25mS/em? (TC); 2.2 mS/em? (RE) Low-threshold Ca* * conductance

g, 0.016mS/em? (TQ); 0 mS/cm 2 (RE); Hyperpolarization-activated cation
conductance

Cortical cells (soma)

Scani 10 X 10~ Scm? (PY; IN) Areaofthe axosomatic
compartment

Ok 200 mS/cm? (PY; IN) Maximal potassium conductance

O 3000 mS/cm ? (PY); 2500 mS/cm ? (IN) Maximal sodium conductance

Ghaip) 15mS/cm? (PY); 0 mS/cm? (IN) Maximal persistent sodium

Cortical cells (dendrite)

conductance

p 165 (PY); 50 (IN) Sdend = PSsama

G, 0.009mS/cm? (PY); 0.009 mS/cm 2 (IN) Leakage conductance

E —67mV (PY); —70 mV(IN) Leakage reversal potential

Gy, 0.011mS/cm? (PY); 0.009 mS/cm 2 (IN) Potassium leakage conductance

E —95mV (PY; IN) Potassium reversal potential

O 0.8mS/cm? (PY; IN) Maximal sodium conductance

Gstp) 25mS/cm? (PY); 0 mS/cm 2 (IN); Maximal persistent sodium
conductance

Guva 0.01mS/cm? (PY; IN) Maximal high-threshold Ca **
conductance

Oaca 0.05 mS/cm 2 (PY; IN) Slow (a? " -dependent K *
conductance

G 0.02 mS/cm ? (PY); 0.015 mS/cm? (IN) Slow voltage-dependent
noninactivating K *
conductance

“This table includes the units and description of the parameters used in the model.

Materials and Methods

Model description

Network geometry. The thalamocortical network model incorporated 40
thalamic relay (TC) and 40 reticular (RE) neurons in the thalamus, 200
pyramidal (PY) neurons and 40 inhibitory interneurons (IN) in the cor-
tex (Bazhenov et al., 2002; Wei et al., 2016, 2018) organized with local
synaptic connectivity (see Fig. 1la). The PY and IN neurons received
inputs from PY neurons via AMPA and NMDA synapses, and PY neu-
rons also received inputs from IN neurons via GABA , synapses. The radii
of connections between cortical neurons were Ryypapypy) = 5
Ravmapy-rpy) = 5 Ravpary-ng = L Ruvpaey.ng = Land Reapanancey) =
5. The TC neurons projected to RE neurons through AMPA synapses
(Rantpacre-rey = 8), and connections from RE to TC neurons included
GABA , and GABA synapses (Rgapaare-tc) = 8 Roasasre-tc) = 8)-
The radii of connections between RE and RE were R, i o re-re) =
Thalamocortical connections were wider and mediated by AMPA syn-
apses from TC neurons (Ryypacrc-py) = 20, Rynpacrcan) = 4); corti-
cothalamic connections were mediated by AMPA synapses from PY
neurons (Ryypapy-re) = 10, Roypapy.rp) = 8). Flat connectivity pro-
files were used for all synaptic connections. For example, R \\p A py-py) =
5, indicating that each PY receives AMPA synaptic input from the left five
and the right five PY neurons. We previously tested different radii of
connections and exponentially decaying profiles and found qualitatively
similar network dynamics, assuming that synaptic connections are scaled
to maintain total synaptic input per neuron. All neurons were modeled
based on the Hodgkin-Huxley kinetics. The units and description of
parameters are summarized in Table 1.

Neuromodulators and sleep stages. The model implemented the change
of neuromodulators, such as acetylcholine (ACh), histamine (HA), and
also GABA, in the intrinsic and synaptic currents to model transitions
between sleep stages (Krishnan et al., 2016). Compared with the awake
state, in Stage N3 sleep, the levels of ACh and HA were reduced while the
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Table 2. Neuromodulators expressed as factors with corresponding intrinsicand
synaptic currents during awake and N3 sleep”

Value during Value during N3
Parameter awake sleep Description
Ahy 0.133 (PY;IN) 0361 (PY;IN) The factor that modulates /,
0.4 (10 16(T0)
0.9 (RE) 0.45 (RE)
ACh 00 0.133 (PY) 0.4332 (PY) The factor that modulates AMPA
0.6 (TC) 1.2(TQ) synaptic currents
HA,, —24mV ~1mV Ashift in the activatation curve of /,
GABA 504 0.22 (IN) 0.44 (IN) The factor that modulates GABA
0.6 (RE) 1.2 (RE) synaptic currents

“Equations for all intrinsicand synaptic currents implementing the factors listed are provided in the corresponding
Materials and Methods sections.

level of the inhibitory neurotransmitter GABA was increased. Specifi-
cally, the reduction of ACh was implemented as an increase in potassium
leak conductance in TC, PY, and IN neurons, a reduction of potassium
leak conductance in RE cells (McCormick, 1992), and an increase in
AMPA connection strength (Kimura et al., 1999). The reduction of HA
was implemented as a negative shift in the activation curve of a
hyperpolarization-activated cation current (I},) (McCormick and Wil-
liamson, 1991; McCormick, 1992). The increase of GABA was imple-
mented as an increase of the maximal conductance of GABAergic
synapses in IN and RE neurons (Krishnan et al., 2016). Since we model
effects of neuromodulators phenomenologically (Krishnan et al., 2016),
we do not use the absolute values to simulate neuromodulator activity
but apply a factor indicating relative change on each intrinsic or synaptic
conductance compare to the awake state (Table 2). These synaptic and
intrinsic changes were tuned to model transitions between awake state
and SWS (N3 sleep) (Krishnan et al., 2016).

Intrinsic currents: cortex. Cortical PY and IN neurons included den-
dritic and axo-somatic compartments, similar to the models used in our
previous papers (Timofeev etal., 2000; Bazhenov et al., 2002; Chen et al.,
2012; Krishnan et al., 2016; Wei et al., 2016, 2018), representing a reduc-
tion of the multicompartmental neuron model as described previously
(Mainen and Sejnowski, 1996) as follows:

av, _

Co dt

- AChgklIl(L = Ina — I n Tw = Txca = Tyva — 11

—g(Vy, = Vg — L, (1)

0= —g(Vs—=Vp) = Iyg— Ix — Ianpl

where C,, is the membrane capacitance, AChy represents the modula-
tion on potassium leak current I, based on the level of ACh during
different sleep stages (Table 2), I, is a fast sodium current, Iy, is a
persistent sodium current, I, is a slow voltage-dependent noninactivat-
ing potassium current, I, is a slow Ca**-dependent K current, I,
is a high-threshold Ca** current, I; is the Cl~ leak current, g is the
conductance between axo-somatic and dendritic compartment, V;, and
Vs are the membrane potentials of dendritic and axosomatic compart-
ments, and I, is the sum of synaptic currents to the neuron. This model
was first proposed by Mainen and Sejnowski (1996) as a reduction of a
multicompartmental pyramidal cell model, based on the assumption
that the current dynamics in the axosomatic compartment are fast
enough to ensure that Vy is always at equilibrium state, as defined by the
second equation in Equation 1. Indeed, this reduced model has relatively
high Na* and K * conductance values ( gy, = 3000 mS/cm?, g = 200
mS/cm?) (Mainen and Sejnowski, 1996) in the axosomatic compartment
(representing the axon hillock in the model). Therefore, the full version
of the axosomatic membrane voltage equation CdVs/dt = —g(Vs — V),
IS““ can be rewritten in a form edVs/dt = F(Vs), where & is a small
parameter and F(Vs) represents axosomatic currents normalized to
match the magnitude of the dendritic currents. Using singular perturba-
tion analysis (Kuznetsov, 1995), we can find that the state variable Vs
quickly reaches the manifold of slow motion defined by equation F(Vs)
= 0, which corresponds to Equation 1 in our model (see detailed discus-
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sion in Chen et al., 2012). The persistent sodium current I, was in-
cluded in the axosomatic and dendritic compartment of PY cells to
increase bursting propensity. IN cells had the same intrinsic currents as
those in PY cells, except that I, ,,, was not included. All the voltage-
dependent ionic currents I; have the similar form as follows:

I = gm"h™(V — E)

where g; is the maximal conductance, m and h are gating variables, V is
the voltage of the corresponding compartment, and E; is the reversal
potential. The dynamic of gating variables are described as follows:

dx  x— xx
dr T

x

Tz = (l/(ax + Bt))/Ql
X. = a,/(a, + B,)

where x = m or h. Q, is a temperature-related term, Q = Q"1 =
2.9529, with Q = 2.3, T = 36°C. The detailed description of individual
currents was provided in our previous study (Wei et al., 2016).

Intrinsic currents: thalamus. The thalamic TC and RE cells were mod-
eled as a single compartment that included voltage- and calcium-
dependent currents described by the Hodgkin-Huxley kinetic
(Bazhenov et al., 2002) as follows:

dv

C",I = - ACthIKL - IM, - ]K - I'r - Ih - IL - I,y,,

where AChy, in TC cells and RE cells is summarized in Table 2. Iy, is a
potassium leak current, I, is a fast sodium current, I is a fast potassium
current, I is a low-threshold Ca®* current, I, is a hyperpolarization-
activated cation current, I; isa C1~ leak current, and I, ,, is the sum of the
synaptic currents to the neuron. The hyperpolarization-activated cation
current I, was only included in TC neurons, not in RE neurons. The
detailed description of individual currents was provided in our previous
study (Wei et al., 2016). The effect of HA on I, was implemented as ashift

of HA, in the activation curve (Krishnan et al., 2016) as follows:

m. = 1/(1 + exp((V + 75 + HAy)/5.5))

where HA, is summarized in Table 2.

Synaptic currents. The equations for GABA,, AMPA, and NMDA syn-
aptic currents were described by first-order activation schemes, and the
GABA; synaptic currents had a more complex scheme of activation that
involved the activation of K™ channels by G proteins (Destexhe et al.,
1996). The equations for all synaptic currents used in this model were
given in our previous studies (Bazhenov et al., 2002; Wei et al., 2016). In
this paper, we added the level of ACh and GABA to modulate AMPA, and
GABA , synaptic currents as described by the following:

I;;‘:“IA = AChrpagy, [ O)(V — E,,)
Ig,'\'a,\ = GABAGupargsyl O1(V — E,,,)

where g is the maximal conductance, [O] is the fraction of open chan-
nels, and E_, is the reversal potential (Ey;p, = 0mV, Egypa = 0 mV,
and E,gaa = —70 mV). ACh, \p 4 is the variable that modulates AMPA
synaptic currents for cortical PY-PY, TC-PY, and TC-IN connections by
the level of ACh. ACh, ., from PY and TC cells is summarized in Table
2. GABA( s 544 Is the variable that modulates GABA synaptic currents for
cortical IN-PY, RE-RE, and RE-TC connections. GABA s34, from IN
and RE cells is summarized in Table 2. The maximal conductance for
each specific synapse type was as follows: giapaaretc) = 0.06 1S,
5 ABAB(RE-TC) = 0-0025 1S, 86 apaa(re-rE) = 0-1 1S, 8ampacrcre) = 0.06
S, Bampacrc-py) = 0-14 1S, ganpacrcany = 012 1S, Eavpapy-py) =
0.24 S, guapaey-py) = 0.01 1S, 8anpa (py-1n) = 012 1S, Eumpacpy-in
= 0.01 uS, ganpa py-rey = 0.06 WS, ganpa py-rp = 0.1 pS, and
SABAAGN-PY) = 0.24 pS.
In addition, spontaneous miniature EPSPs and IPSPs were imple-
mented for PY-PY, PY-IN, and IN-PY connections. The arrival times of
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spontaneous miniature EPSPs and IPSPs were modeled by Poisson pro-
cesses (Stevens, 1993), with time-dependent mean rate u = (2/(1 +
exp(—(t — t,)/F)) — 1)/250 (Bazhenov et al., 2002), where t, is a time
instant of the last presynaptic spike (Timofeev et al., 2000). The mEPSP
frequency (F) and amplitude (A) were Fpy_py = 30, Fpy 1y = 30, Fiyypy =
30, Apy.py = 0.2 mV, Apy |y = 0.2mV, and Ajy py = 0.2 mV.

STDP. Facilitation or depression of the synaptic strength is believed to
underlie learning in the brain. Here we used STDP model of synaptic
plasticity to adjust the synaptic connections between cortical pyramidal
neurons based on the relative timing of the presynaptic and postsynaptic
spikes. The change of excitatory synaptic connections (g, ypa) and the
amplitude of mEPSC (A, pps) were described as in our previous paper
(Wei et al., 2016) as follows:

Zavea < Zampa + GmanF (A1)
Apsc < Apppsc + fApy pyF(AL)

where g, is the maximal synaptic conductance of g,\ps. f = 0.01 isa
scaling factor. Fis the STDP function that shows the change of synaptic
connections as a function of the relative timing (At) of presynaptic and
postsynaptic spikes (Song et al., 2000), as follows:

|Ae|

Ace o, if At>0
F(A)=4{"" 'mf

—Ae T, if At <0

where parameters A, and A _ determine the maximum amounts of syn-
aptic modification. Here, weset A, = A_ = 0.002,and 7, = 7_ =20 ms.
We reduced the STDP amplitude A, and A_ to 0.001 during SWS to
account for reduction of ACh (Sugisaki et al., 2015). We assumed that the
synaptic efficacy should stay within [0, 200%] range of the initial synaptic
weights to prevent STDP from runaway synaptic dynamics. We would
like to note that in vivo the rate of synaptic potentiation is slower than
that in the model and typically saturates ~150% of cortical neurons over
a full night (Chauvette et al., 2012). Because of that, although our simu-
lation times (in absolute unites) are much shorter than a full night, the
change of the synaptic weights in the trained region was sufficient to
observe the performance improvement after sleep.

Training and test. For most of the simulations, the training pattern
included 5 groups of neurons that were activated in sequential order,
with 5 ms delays between subsequent groups of activation. Each group
was a set of 5 adjacent neurons drawn from a contiguous 25 cell subre-
gion of the full 200 cell network. For example, if the sequence started at
neuron #50, these 5 groups were as follows: A (#50-54), B (#55-59), C
(#60-64), D (#65-69), and E (#70-74). Each group was stimulated by a
step current that led to a suprathreshold response with a duration of 10
ms and a delay of 5 ms between groups. Thus, during training, the neu-
ronal activity in these groups reflected the order of the trained sequence
(e.g., ABCDE). During test sessions, the model was only presented with
the first input at Group A to recall the trained sequence ABCDE within a
350 ms response window. During both training and test sessions, each
trial was repeated every 1s.

Stimulation protocols. To model sensory stimulation, we modeled in-
dependently a second (sensory) cortical network with 200 PY cells that
were connected one-to-one to the PY cells of the primary network. We
mimicked two different types of the auditory stimulation. For the
learning-specific cue, we hypothesized that the sensory cue only affects a
small population of neurons (local cue). The stimulation was applied at
the local site Q (#50-54) of the secondary cortical network, which pro-
jected to the specificlocation A (#50-54) of the primary network. During
the training session, we stimulated sequentially Qq—A—B—C—D—E.
The pink noise auditory stimulation can potentially activate a broad
group of neurons (broad cue). In this protocol, the stimulation was
applied during sleep to the broad population of neurons Q (#30-169) of
the secondary cortical network, which activated a broad region (#30—
169) of the primary network.

Duringsleep, in the open-loop stimulation protocol, the cue lasted for
50 ms and was repeated at a frequency of 0.75 Hz, which was close to the
internal frequency of SO in the model. In the closed-loop stimulation
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protocol, we first detected the onset of the Down state or Up state in
ongoing SO, then presented the cue with X ms delay after Down or Up
state onset as defined below. We set X to be 0, 100, 200, 300, 400, or 500
ms. The Up or Down states were detected based on the analysis of the
local field potential (LFP). The LFP was approximated by calculating
mean membrane potentials of all the cortical excitatory neurons, and it
had a bimodal distribution during N3 sleep, where one peak corre-
sponded to the Up state and another peak to the Down state (see Fig. 1f).
The trough of the distribution was selected as a threshold to separate Up
and Down state. The onset of Up or Down state was then defined as the
moment when LFP value crossed the threshold. In the closed-loop Best
Phase protocol, the stimulation was delivered at the optimal phase pre-
dicted by the model (that gives the highest performance after sleep),
which corresponds to ~500 ms after detecting the onset of a Down state,
at each cycle of SO. In the closed-loop 2-Click protocol, the stimulation
was delivered at the optimal phase at two sequential cycles of SO with a
pause of 2.5 s after the second stimulation to match experimental proto-
col (Ngo etal., 2015).

Computational methods. All model simulations were performed using
a fourth-order Runge-Kutta integration method with a time step of 0.02
ms. Source C++ was compiled on a Linux server using the gcc compiler.
Part of the simulation was run on the Neuroscience Gateway (Sivagna-
nam et al., 2013). All data processing was done with custom-written
programs in MATLAB (The MathWorks). The model simulation code
will become available from https://www.bazhlab.ucsd.edu/downloads/
after publication.

Data analysis
Sequence learning analysis. To model sequence learning, the model was
presented with multiple trials of sequential input to the groups of selected
cortical neurons. The performance of sequence recall was measured by
the percentage of success of sequence recall during test sessions when
only the first group of a sequence was stimulated. First, we detected the
network sequence using the following steps: (1) We detected all spikes for
five groups of neurons (each group contains five neurons) within a 350
ms response time window (starting from the time when test stimulus was
applied). (2) We smoothed the firing rate of each group by convoluting
the average instantaneous firing rate of five neurons with a Gaussian
kernel (50 ms window size). (3) The firing sequence of the groups was
determined by ordering the peaks of their smoothed firing rates during a
350 ms window. Next, we applied a String Match (SM) method to
measure the similarity between each detected sequence and an ideal
sequence (e.g., S = ABCDE). The SM was calculated as SM = 2#N
— =N |L(S,,S,[1]) — i], where S, is the test sequence generated by the
network, S, is the subset of ideal sequence that only contains the same
elements as S, N is the sequence length of S, and L(S,, S,[i]) represents
thelocation of element S,[i] ina sequence S,. SM was then normalized by
dividing by M, where M is 2 times the length of S. For example, if the ideal
sequence S was ABCDE and S, was ACDB, then S, = ABCD, N = 4. The
location ofelement Ain S, is L(S;,A) = 1;Bin S, is L(S,,B) = 4;Cin §,
isL(S,,C) = 2;and Din S, is L(S,, D) = 3. Therefore, SM =2 X 4 — (|1 —
1|+ |4 — 2|+ |2 — 3| + |3 — 4]) = 4. After SM was normalized by M =
10, it became 0.4, indicating the recalled sequence has 40% similarity to
the ideal sequence. If the ideal sequence S was ABCDE and S, was
ABCDE, then S, = ABCDE,N = 5,and SM =2 X 5 — 0 = 10, or 1.0 after
normalization by 10. The performance was calculated as the percentage
of recalled sequences with SM = Th during the test session. In this paper,
we selected a threshold of Th = 0.8, indicating that a recalled sequence
with at least 80% similarity to the ideal sequence was counted as a suc-
cessful recall. Baseline performance (before training) of the network was
~15% for Th = 0.8 due to the random spiking. Ifhigher threshold Th =
1.0 was selected, the baseline performance became almost 0.

Analysis of synaptic weights. Synaptic weights between neurons in a
direction of sequence activation were enhanced due to the sequence re-
play. The mean of the changes of synaptic weights associated with a given
sequence was used to characterize memory strength.

Phase locking index (PLI). The PLI was applied to quantify the phase
synchronization between the LFP signals. It was calculated based on the
following equation:
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poral patterns (top), LFP (middle), and single-cell activity (bottom) of neuron #50 during awake (left), and N3 sleep (right) from
wherepinkand dark green barsare shown under LFP tracesin b. The SOs (<<1Hz) during N3 sleep consist of a typical Upand Down
state transition. d, The characteristic examples of a training session and a test session. Training included stimulating sequentially:
Groups A—E (each group was stimulated for 10 ms, and the delay between groups was 5 ms). The testincluded stimulating only
Group Ato recall the trained sequence withina 350 ms response window. The sequence started at neuron #50. Each group included
five PY neurons. e, Black dots represent Up state initiation sites over the entire sleep period. Right, Vertical panel represents
probability of Up state initiation across neurons. f, The LFP distribution during N3 sleep. Red star indicates the trough of the
distribution. g, The relationship between SO waveform and its calculated phase.
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combinations of the focal LFPs during individ-
ual Up states. The higher PLI indicates the
higher spatial synchronization of the network
activity due to the stimulation.

Statistical analysis

When data were normally distributed based on
the Anderson—Darling test, numerical values are
given as mean * SEM (the standard error of the
mean). Otherwise, we used median = interquar-
tile range to report the data. For each experiment,
20 simulations with different random seeds were
performed. If data had a normal distribution, the
parametric test was used; otherwise, the equiva-
lent nonparametric test was applied. If only two
groups of data were compared, the two-sample ¢
test (parametric) or the Mann—-Whitney U test
(nonparametric) was used. When data were
paired, nonparametric Wilcoxon signed rank test
was used. When more than two groups of data
were compared, one-way ANOVA ( parametric)
or Kruskal-Wallis ANOV A test (nonparametric)
with Bonferroni’s post hoc test was applied. To
compare the means of two or more columns and
two or more rows of the observations, two-way
ANOVA was used.

Results

The model presented in this new study is
built upon the models we used in our ear-
lier work (Krishnan et al., 2016; Wei et al.,
2016, 2018). In short, the base model (Fig.
la) represents minimal thalamocortical
architecture implementing one cortical
layer (consisting of PY and IN neurons) and
one thalamic layer (consisting of TC and RE
neurons), with all the neurons simulated us-
ing one- or two-compartmental Hodgkin—
Huxley models. This network structure is a
simplification over the three cortical layer
model used previously (Wei et al., 2016),
but it implements effects of neuromodula-
tors (Krishnan et al., 2016; Wei et al., 2018)
to simulate transitions between sleep and
wake states (Fig. 1b). Furthermore, the new
model includes a cortical sensory network
for simulating effects of auditory stimula-
tion. Synapses are based on AMPA, NMDA,
GABA,, and GABA;; receptors with con-
nectivity patterns identical to those used in
our previous work (Krishnan et al., 2016;
Wei et al,, 2016, 2018).

Periodic stimulation during sleep
enhances memory performance

The characteristic network activity during
the awake state (Fig. ¢, left) reveals ran-
dom spiking and fluctuations in the LFPs,

whereas during N3 sleep the network displays slow (<1 Hz) os-

cillations (Fig. 1c, right) characterized by repetitive transitions

where @1 and @2 were the Hilbert transforms of the two signals. In this
paper, global LFP was calculated as the population activity from all 200
cortical PY cells, whereas the focal LFP was calculated as the population
activity from adjacent 25 cortical PY cells selected at the different net-

between Up and Down states in all cortical neurons (Blake and
Gerard, 1937; Steriade et al., 1993, 2001). Similar to Wei et al.
(2018), the awake state includes one training and three test ses-

work locations. To quantify how external stimulation affects the spatio-  sions: before training, after training before sleep, and after sleep
temporal pattern of SO, we calculated the averaged PLI betweeneachtwo ~ (Fig. 1b). During the training session, the model was presented
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with a sequence of stimuli applied to se-
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instantaneous phase of the ongoing SOs
was derived from a Hilbert transforma-
tion of LFP filtered within the SO fre-
quency range of 0.2—4 Hz: the peak of
the Up state is defined as 0° after Hilbert
transformation, and the peak of the
Down state as 180° (Fig. 1g).

To model sensory cues, we modeled
independently a second (“sensory”) corti-
cal network making one-to-one connec-
tions to the primary network. Thus,
during the training session, we stimulated
sequentially Q—A—B—->C—D—E, where
group of neurons (Q) belonged to the
“sensory” network. During sleep, in an
open-loop stimulation protocol, the cue
lasted for 50 ms and was repeated at a predefined frequency of
0.75 Hz that was close to the internal frequency of SOs in the
intact model (Fig. 2a). The cue (Fig. 2b, top, red arrow) could
trigger ABCDE sequence replay (Fig. 2d); and if it occurred dur-
ing the later part of the Down state, it could also initiate an Up
state of the SO (Fig. 2b, bottom).

The phase of the SO at the time of a cue presentation (Fig. 2b,
middle, red dots) was extracted to construct the circular histo-
gram of the stimulation phase. The distribution had a well-
formed peak (Fig. 2¢), indicating that the spontaneous SO was
entrained or phase-locked to the periodic cue stimulus. Analysis
of the sequence recall performance among all three test sessions
(Fig. 2e, gray bars) revealed the following (one-way ANOVA;
Fi557) = 6849, p = 6.95 X 10 '°). First, repetitive training for
80 s during awake improved performance compared with the

Figure 2.

Post-synaptic neuron #

60 100 140 180 20 60 100 140 180 20 60 100 140 180

Post-synaptic neuron # Post-synaptic neuron #

Periodic cue presentation during sleep. a, The cue was associated with the sequence during the training session in
awake. During sleep, this leaming-related cue was presented for 50 ms every 1.333 s (~0.75 Hz) during the entire sleep period.
Red linesindicate when the cue was presented. b, Top, Characteristic example of network activity during SOs. Red arrow indicates
cue delivered to Group A. Middle, Characteristic example of LFP. Red dots represent the times of cue presentation. Bottom, Black
dots represent Up stateinitiation sites over the entire sleep period. Right, Vertical panel represents probability of Up stateinitiation
across the network. ¢, Circular histogram of SO phases at which the cue was applied. d, Characteristic example of slow wave
illustrating sequence (ABCDE) replay when the learning-related cue was presented. e, The bar plot of performance thatwas defined
by the probability of the recalled sequence to have 80% similarity to the ideal sequence ABCDE as measured during each recalled
testsession. Errorbars indicate SEM.*p << 0.05.***p << 0.001.£, The change of synapticweights relative tothe initial values after
training (left), after N3 sleep without cue presentation (middle), and after N3 sleep with periodic cue presentation (right). x axis
indicates the index of the postsynaptic neuron; y axis indicates the left (—) and right (+) presynaptic neurons relative to the
postsynaptic neurons at the x axis. The synaptic weights between neurons in direction of sequence activation (black box) were
enhanced due to training during awake (left) and sequence replay during sleep (right). Warm colors (e.g., red) representincreased
synaptic weight relative to cold colors (e.g., blue).

baseline performance before training (28.8 = 1.454% vs 17.8 =
1.025%, p = 2.0677 X 10 *, one-way ANOVA Bonferroni cor-
rections). Second, performance after sleep was enhanced signifi-
cantly compared with that before sleep without cue stimulation
(43.7 * 2.059% vs 28.8 * 1.454%, p = 2.926 X 10 °, one-way
ANOVA Bonferroni corrections). Finally, when the cue was pre-
sented during sleep, performance aftersleep (Fig. 2e, red bar) was
significantly higher compared with the uncued experiments
(51.3 = 2.314% vs 43.7 = 2.059%, t 35, = 2.454, p = 0.0188,
two-sample f test).

To identify the change of the network connectivity underlying
performance increase, we next analyzed the dynamics of synaptic
weights between the cortical neurons. During the training phase,
the ordered firing of neurons led to the potentiation of synapses
in the direction of the trained sequence (Fig. 2f, left, black box),
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Figure3. The effect of periodic cue presentation during sleep. a, The number of Up states
during sleep versus performance after sleep. Duration of the entire sleep period was either 300
or 260 5. b, Performance aftersleep for the different training durations (memory strengths) with
(red) or without (black) cue presented during sleep. Error bars indicate SEM.

whereas the synapses corresponding to the opposite direction
were depressed (Fig. 2f, left). These changes in the connectivity
matrix among the trained neurons (Fig. 2f, left, black box) were
augmented after the subsequent N3 sleep in both uncued (Fig. 2f,
middle, black box) and cued experiments (Fig. 2f, right, black
box), similar to our previous analysis of the replay without cues
(Weietal., 2018). However, the changes in the experiments with
sensory cue stimulation (Fig. 2f, right) were higher, which ex-
plains the higher performance of memory recall after the cued
sleep compared with the uncued sleep.

The number of Up states of SO was significantly increased
during cued sleep compared with uncued experiments (189.1 =
0.85 vs 166.75 = 0.615, t35) = —21.32, p = 9.64 X 10 >, two-
sample ¢ test; Fig. 3a red vs black). This is consistent with the data
of the recent experiments where the greater amount of SOs was
found to be elicited with the targeted sound compared with the
experiments with a control new sound (Oyarzun et al., 2017). To
examine whether the enhanced performance in our simulations
was merely due to the higher Up state count, we reduced the sleep
duration from 300 to 260 s for the cued sleep to obtain a compa-
rable Up state count to the uncued sleep. We observed that the
performance after the 260 s of cued sleep was still significantly
higher than after the 300 s of uncued sleep (50.6 * 2.559% vs
43.7 £ 2.059%, t3g) = —2.1, p = 0.0423, two-sample ¢ test; Fig.
3a, pink vs black). This suggests that the performance improve-
ment due to cue presentation can be summed up in two factors:
(1) facilitation of the trained sequence replay within each Up state
and (2) increase in the number of Up state events.

To characterize how relative strength of a memory trace be-
fore sleep influences the sequence recall and memory perfor-
mance after the sleep, we varied duration of initial training (Fig.
3b). As the training duration (memory strength before sleep)
increased, the performance after sleep increased as well (Fig. 3b;
comparison among different memory strengths, F 99y =
106.33,p =22 X 10 ¥, two-way ANOVA). In all cases, perfor-
mance of the sequence recall after sleep was significantly higher
when the cue was presented during sleep (Fig. 3b, compare black
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and red; F, 100y = 51.60, p = 1.5 X 10 ', two-way ANOVA).
Thus, the cues presented during sleep can benefit memory con-
solidation at different levels of the presleep memory strength.

Closed-loop stimulation protocol revealed phase-dependent
responses during SWS

Experimental studies suggest that stimuli presented at certain
phases of the sleep SO have a stronger effect on memory consol-
idation compared with the other stimulation phases (Batterink et
al,, 2016). To investigate the relationship between the phase angle
of the SO at the cue presentation and the change in performance,
we used a closed-loop stimulation protocol to vary the timing of
stimulation in respect to the phase of SO. In the closed-loop
conditions, we first detected the onset of the Down state or Up
state in an ongoing SO, then presented the cue with X ms delay
after Down or Up state onset (see Materials and Methods). The
onset of Up or Down state was defined as the moment when LFP
crossed the threshold that was defined as the trough that sepa-
rates two peaks in the histogram of the LFP distribution (see
Materials and Methods). We set X to be 0, 100, 200, 300, 400, or
500 ms. In the example shown in Figure 4a, the cue was presented
with 500 ms delay after the network transition from Up to Down
state (Fig. 4a, left middle, red dot). After the experiment was
completed, we plotted the circular histogram of stimulation
phase for all stimulation events (Fig. 4a, right). In this particular
example, the peak of the circular histogram was ~210° (Fig. 4a,
right), which corresponds to the very end of the Down state of the
SO. We propose that, since this was a time moment when the
network was “almost ready” to start a new Up state on its own,
stimulation reliably triggered a new Up state; and because of the
stimulus location, these Up states were largely initiated near the
beginning of the trained sequence (Group A), thus promoting
sequence replay (Fig. 4a, left bottom, see peak of histogram). In
another characteristic example in the Figure 4b, the cue was pre-
sented 200 ms after the onset of Up state (Fig. 4b, left middle, red
star). At that phase of stimulation, the entire network was already
in the Up state (phase ~330°) (Fig. 4b, right), therefore, stimula-
tion had minimal impact on the network spatiotemporal dynam-
ics (Fig. 4b, left bottom).

Figure 4 summarizes results for all stimulation phases. When
the cue was presented during the Down state (90°-270°) of SO,
the performance (Fig. 4c, middle top), the synaptic weight change
associated with the trained sequence replay (Fig. 4¢, middle bot-
tom), and the probability of Up state initiation at Group A of
neurons (Fig. 4¢, bottom) were all higher than those when the cue
was presented during the Up state (270°-360° and 0°-90°) and
also higher than those in the uncued model (Fig. 4c, gray lines).
The optimal phase was ~210° which was right before transition
from Down to Up state, and it maximized synaptic changes and
performance improvement (Fig. 4¢). It is worth noting that, be-
cause of the relatively small size of the model, open-loop periodic
stimulation at the frequency close to the natural frequency of
slow waves entrained the entire network oscillation by selecting
the same optimal phase of stimulation as we report here using
closed-loop protocol (compare Fig. 2¢ and Fig. 4a).

Analysis of the Up state initiation sites (see examples in Fig.
4a,b, bottom right, vertical histograms) revealed that, in the
model with optimal stimulation phase (Fig. 4a), stimulation
leads to the majority of Up states being initiated at the location
corresponding to the beginning of the trained sequence, which
promotes sequence replay. In contrast, for suboptimal stimula-
tion time (Fig. 4b), distribution of the Up state initiation sites
remains random. Our modeling findings are in agreement with
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Aclosed-loop stimulation protocol during SO. a, b, Examples of cue presentation for two different phases of SO. Cue presentationsin a and b correspond to 500 ms after the Up to Down

state transition and 200 ms after the Down to Up statetransition, respectively.a, b, Top left, Characteristic example of network activity during SO. Middle left, Characteristicexample of LFP. Red stars
represent the times of stimulation. Bottom left, Black dots represent Up state initiation sites during the entire sleep period. Right, Vertical panel represents probability of Up state initiation across
neurons. Right, Circular histogram of phases at which the cue was applied. ¢, Top, The correspondence between phase angle and states of SO (Up and Down states). Vertical arrow indicates the
optimal phase for cue presentation. Middle Top, The recall performance after sleep as a function of stimulation phase. The letters “a” and “b” indicate the phase values corresponding to examples
showninaand b. Middle bottom, The change in synaptic weights associated with the trained sequence asa function of stimulation phase. Bottom, The probability of Up state initiation at Group A
(neuron #50-54) as a function of stimulation phase. Error bars indicate SEM. Gray line indicates the value from uncued sleep. Blue and red regions represent Down and Up states of the SO,

respectively.

recent experimental data that revealed that the learning-related
cues would preferentially strengthen associated memories when
they are delivered at the Down phase of SO (Batterink et al.,
2016). Our study proposes a possible mechanism for such phase-
dependent reorganization of the structure of the slow waves to
promote specific sequence replay, and provides insight into how
the memory consolidation may be affected by sensory cues ap-
plied during sleep SOs.

Closed-loop stimulation enhances SO power and

peak frequency

To compare model predictions with experimental data (Ngo et
al., 2013, 2015), we next tested performance of the closed-loop
2-Click protocol. Above, we found that the optimal phase for
stimulation was when the cues were delivered ~500 ms after
detecting the onset of a Down state. In the Best Phase protocol,
stimulation was delivered at the optimal phase at each cycle of
SO. The 2-Click protocol consists of 2 subsequent clicks delivered
at the optimal phase with a pause of 2.5 s after the second click
(Fig. 5a) to match the experimental protocol of Ngo etal. (2015).
In the Sham (No stimulation) condition, no cue was presented
during sleep. Compared with the Sham condition, the cue pre-
sentation at Best Phase significantly increased SO power (Fig. 5b;
p = 3.18 X 10 '?, pairwise comparison), shifted the peak fre-
quency in the SO range (0.2-1 Hz) toward higher frequencies
(Fig. 56 p =13 X 10 “, pairwise comparison), and increased
the performance of sequence recall after sleep (Fig. 5d; p = 0.001,

pairwise comparison). These results are all consistent with exper-
imental data (Fig. 5e-g, modified from Ngo et al.,, 2015). Al-
though we found slight differences in the SO power and peak
frequency (Fig. 5b, p = 0.0324; Fig. 5¢, p = 0.0104; pairwise
comparison), there was no significant difference in performance
between Best Phase and 2-Click stimulation protocols after sleep
(Fig. 5d; p = 0.0773, pairwise comparison). Importantly, this
result is consistent with experimental data (Fig. 5e-g, modified
from Ngo et al., 2015).

We previously reported that the spatiotemporal pattern of
slow waves has a “history effect”; after slow wave is initiated at
one network site, there is a higher probability for initiation to
occur again at the same site, and this effects lasts for 3 or 4 sub-
sequent cycles of SO (Wei et al., 2016). We believe this phenom-
enon can explain the results of our new stimulation experiments.
Indeed, when stimulation skips only 1 or 2 cycles of SO (as in
2-Click protocol), during these cycles, the network still has higher
than chance probability for new Up state initiation near the last
initiation site. This prediction is supported by analysis in Figure 5h
where we plot the distribution of the Up state initiation sites
across the network for Best Phase (Fig. 5h, left) and 2-Click (Fig.
5h, middle) stimulation protocols, and we compared them with
the Sham case. We found that the first two distributions (Fig. 5h,
left and middle, vertical histograms) are very similar and show
peaks at the stimulation location, whereas the third distribution
(Fig. 5h, right, vertical histograms) does not have any clear peak.
Thus, for 2-Click stimulation protocol, the network dynamics is
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the very synchronized network transitions
from Down to Up states (Fig. 6a, left). Up
state initiation front was also broader
(more neurons transited to Up states
within relatively small time window) but
still was centered near the trained popula-
tion of neurons (Fig. 6a, left bottom). In
another experiment (Fig. 6b), the broad
stimulation cue was presented 200 ms af-
ter the onset of the Up state (Fig. 6b, left
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Figure 5.

0.001. N.S. represents no significance.

effectively identical to that during continuous stimulation (Best
Phase), and this explains the nearly identical performance.

Closed-loop stimulation protocol with the entire

network activation

From the perspective of the cortical neurons, it remains unclear
how focal or distributed the effect of the sensory stimulation is
during sleep. In the next set of model stimulations, instead of the
input targeting only a single Group A of five neurons, stimulation
targeted a much larger neuronal population (Fig. 6a, left top).
The phase of closed-loop stimulation was selected near the end of
a Down state, before the onset of an Up state (Fig. 6a, right),
based on the results we obtained in the previous modeling exper-
iments. We found that the amplitude of SO (Fig. 6a, left middle)
was significantly increased in such stimulation conditions due to

Closed-loop stimulation enhances SO power, peak frequency, and performance. a, The protocol is based on two
subsequent stimuli: 2-Click. The cues were triggered 0.5 s after detecting the onset of a Down state. The detection routine was
paused for 2.5 s after the second cue presentation. Red star indicates the time when the cue was presented. b-d, SO power, SO
peak frequency, and performance after sleep are compared between Best Phase and Sham, as well as between Best Phase and
2-Click. The stimulation protocol for Best Phase was the same as for 2-Click, but stimuli were presented at each Up state without
pausing the detection routine. For the Sham condition, time points of stimulation were marked, but no actual cue was presented.
e-g, S0 peak power, SO peak frequency, and retention from experimental data (modified from Ngo et al,, 2015). h, Black dots
represent Up state initiation sites over the sleep period during Best Phase (left), 2-Click (middle), and Sham (right) stimulation
protocols. Right, Vertical panels represent probability of Up state initiation across entire network. *p << 0.05.**p << 0.01.**p <

dicates the population activity from 25
neurons; we excluded the boundary neu-
rons from analysis). The following three
conditions were compared (Fig. 7b):
Sham (PLI = 0.4826 = 0.0306), cueing a
local group of neurons (local cue) at
the optimal stimulation phase (PLI =
0.6387 = 0297), and cueing a broad group
of neurons (broad cue) at the optimal
stimulation phase (PLI = 0.5793 =
0.0166). We found that PLI for the Sham
group was significantly lower than for the
model using local stimulation at site A
only (p = 1.72 X 10 >, one-way ANOVA Bonferroni correc-
tions) as well as for the model using broad stimulation (p =
4.06 X 10 '°, one-way ANOVA Bonferroni corrections).

We next calculated cross-correlations between all possible
LFP pairs and plotted the distribution of the time lags to the peak
(Fig. 7¢). In the Sham condition, the distribution was relatively
broad with multiple local peaks (Fig. 7c, left), suggesting that
many different network sites could lead to transitions from Down
to Up states at different SO cycles or even during any one cycle of
SO. When the local stimulation was applied at the optimal phase,
the lags peaked ~—100 ms (Fig. 7¢, middle), suggesting the pat-
tern of propagation of the slow waves from one preferential loca-
tion, which can be explained by the locally stimulated region
being the main initiation site. When the stimulation was applied
across a broad region at the optimal phase, the lags peaked ~0 ms

Time (s)
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(Fig. 7¢, right), indicating that the broad
stimulation increased network synchroni-
zation with zero lag.

Selective stimulation targets specific
memories during sleep replay

To test how the targeted stimulation dur-
ing sleep affects only one memory when
several memories are trained, we trained
two independent sequences at two differ-
ent network locations (Fig. 8a). We used
long enough initial training time for both
sequences to ensure that they replay and
consolidate during SWS regardless of the
interference effects (Wei et al., 2018). In
the model, two sequences were trained by
sequentially presenting stimuli at Group
A, (#50-54), B, (#55-59), C, (#60—64),
D, (#65-69),E, (#70-74) for Seql, and at
Group E, (#146-150), D, (#141-145), C,
(#136-140), B, (#131-135), A, (#126—
130) for Seq2, respectively (Fig. 8b, left).
Each sequence was paired with a different
sensory cue. During test sessions, as be-
fore, the recall performance for each se-
quence was measured based on the
network response by stimulating only the
first group of neurons in each sequence:
Group A, or Group E, (Fig. 8b, right).
When two sequences were trained for the
same duration of 80 s, and no cues were
presented during sleep, recall perfor-
mance was similar for both tasks (Fig.
8c,d, left, Uncued). Specifically, the per-
formance for recalling Seq1 before train-
ing, after training before sleep, and after
sleep was 17.9 = 1.37%, 27.4 = 1.43%,
and 44.7 = 2.02%, respectively (Fig. 8¢,
top), whereas the performance for recall-
ing Seq2 before training, after training be-
fore sleep, and after sleep was 17.5 *+
0.96%, 32.6 = 1.72%, and 49.8 * 2.46%,
respectively (Fig. 8¢, bottom). For Seql,
the performance was significantly in-
creased after training compared with be-
fore training (p = 3.78 X 10 *, one-way
ANOVA, Bonferroni corrections), and
further significantly improved after sleep
compared with before sleep after training
(p = 144 X 10 °, one-way ANOVA,
Bonferroni corrections). For Seq2, the
performance was significantly increased
after training compared with before train-
ing (p = 6.94 X 10 7, one-way ANOVA,
Bonferroni corrections), and further sig-
nificantly improved after sleep compared
with before sleep after training (p =
3.12 X 10 %, one-way ANOVA, Bonfer-
roni corrections).

While both sequences revealed similar
performances when they were trained for
the same duration without presenting any
cues during sleep, results changed when
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sequence without significantly interfer-
ing with the consolidation of another
; memory sequence.
" S We next used different training times
E for two sequences: Seq2 was trained less
70 than Seql (Fig. 8d, middle). This differ-
ence (Seq2 has higher performance than
Seql) remained after sleep in uncued con-
dition (Fig. 84, middle, Uncued). In such
case, when the cue associated with Seql
was presented during sleep, AP for Seq2
was significantly reduced compared with
the uncued condition (Cued Seql vs Un-
cued: —10.5 + 1.97% vs 4.1 = 2.66%, 33,
=—4.4112,p=8.19X 10 °, two-sample
t test; Fig. 8d, middle, purple bar) and
even became negative, indicating that
weaker memory of Seq2 was partially
erased due to the strong reactivation of
Seql. When the cue associated with
weaker Seq2 was presented, AP for Seq2
was significantly increased (Uncued vs
Cued Seq2: 4.1 * 2.66% vs 11.9 * 2.21%,

After

el Seqt Gl tsg = —2.2537, p = 0.03, two-sample ¢
Seq2 Seq2 Seq2 A : .
40 P HiS N.S. test; Fig. 8d, middle, purple bar), without
ok N.S. 0 40 I .. A
- %] significant impact on Seq 1 performance.
&30 [L| %0 sokok * S0 Last, we trained Seq2 longer than Seql;
% 20 20 ' 1 20 therefore, the initial (before sleep) mem-
E 10 10 10 ory strenth of Seq2 was higher thap that
- of Seql (Fig. 84, right). After sleep, in un-
e o 0 0 by :
= cued condition, Seq 2 showed a very sig-
=10 -10 -10 nificant performance increase, whereas
Cued  Uncued Cued Cued  Uncued Cued Cued  Uncued Cued Seq 1 improvement was relatively reduced
Seqt Seq2 Seqt Seq2 Seq1 Seq2

Figure8. Thecuecanselectively enhance the specific memory. a, The model of transitions between awake and N3 sleep (SWS).
Two spike sequences were trained during awake. Orange and purple bars represent the duration of training for Seq1 and Seq2,
respectively. b, Characteristic example of training and testing of Seq1 (A,, B,, C,, D, E,) and Seq2 (E,, D,, C,, B,, A,). The test was
applied by stimulating only Group A, for Seq1and Group E, for Seq2. Seq1and Seq2 started at neuron #50 and #150, respectively.
¢, Bar plots of performance for Seq1and Seq2 during test sessions. Error bars indicate SEM. d, Performance improvement due to
sleep (A performance) for Seq1(orange) and Seq2 (purple) in three cases: (1) Seq2 was trained for the same durationas Seq1 (left);
(2) Seq2 was trained less than Seq1 (middle); and (3) Seq2 was trained more than Seq1 (right). In each condition, we show results
of three experiments: (1) Uncued — noneof the sequences were cued during sleep; (2) Cued Seq1 — only the cue associated with
Seq1waspresented during sleep; and (3) Cued Seq2 — only the cue associated with Seq2 was presented during sleep. *p << 0.05.

*p << 0.01.%*p << 0.001. N.S. represents no significance.

the sensory cue was applied during sleep (Fig. 84, left). Here, we
defined AP as the performance after sleep minus the performance
before sleep, indicating the performance improvement due to
sleep. If only the cue associated with Seq1 was presented during
sleep, AP for Seql was significantly increased (Uncued vs Cued
Seql: 17.3 £ 2.48% vs 28.7 £ 3.20%, t35) = 2.877, p = 0.0076,
two-sample t test; Fig. 84, left, orange bar), whereas AP for Seq2
was reduced, but not significantly (Uncued vs Cued Seql:17.2 =
2.90% vs 10.7 = 3.38%, t 35y = — 1.4614, p = 0.1521, two-sample
t test; Fig. 84, left, purple bar). If only the cue associated with Seq2
was presented during sleep, AP for Seq2 was significantly in-
creased (Uncued vs Cued Seq2: 17.2 = 2.90% vs 27.3 = 1.74%,
t3g) = —2.9881, p = 0.0049, two-sample t test; Fig. 84, left, purple
bar), whereas AP for Seql was reduced, but not significantly (Un-
cued vs Cued Seq2: 17.3 = 2.48% vs 0.3 = 3.53%, (34, = 1.624,
p = 0.1127, two-sample ¢ test; Fig. 84, left, orange bar). These
results suggest that presenting the cue associated with one spe-
cific memory sequence accelerates the consolidation of that

(compare Fig. 8, right, Uncued to Fig. 84,
left, Uncued) likely because of the inter-
ference between two sequences during
sleep replay (Wei et al., 2018). If only the
cue associated with Seql was presented,
AP for Seql was increased significantly,
but AP for Seq 2 was similar to that after
uncued sleep. If only the cue associated
with Seq2 was presented, AP for both Seql
and Seq2 was also not significantly differ-
ent compared with uncued sleep (Uncued
vs Cued Seq2: 30.7 * 2.33% vs 34 =
2.58%, t35 = —0.9483, p = 0.349, two-sample ¢ test, Fig. 84,
right, purple bar), indicating that consolidation of the stronger
Seq2 does not have room to further increase in the presence of a
cue. Overall, these results suggest the following: (1) cues during
SWS are particularly effective to improve consolidation of weak
memories; and (2) applying cues associated with one specific
memory may lead to performance degradation for other, partic-
ularly weak memories, that are not cued.

Discussion

In this study, using a realistic computational model of the
thalamocortical network implementing sleep stages (Krishnan et
al, 2016) and synaptic plasticity (Wei et al., 2016, 2018), we
aimed at developing a better understanding of how exogenous
stimulation during sleep can enhance memory consolidation.
Our study suggests that both training-associated cues or auditory
stimulation during SWS can promote spike sequence replay and
enhance memory performance after sleep. The cues only



822 - J. Neurosci., January 22, 2020 - 40(4):811-824

strengthened the memory traces when delivered at or near the
optimal phase, just before the Down to Up state transition of the
slowwaves. The same phase relationship also applied for auditory
stimulation, not previously related to the learning context. In
both cases, consolidation was improved because stimulation was
able to shape the spatiotemporal pattern of sleep slow waves to
promote Up state initiation near the site when trained memory
was encoded. When multiple memories were trained and one
memory was associated with a specific cue during training, sen-
sory cues during SWS could selectively strengthen the associated
memories but could also lead to performance degradation for
other, particularly weak, memories.

The mechanisms of strengthening memories by stimulation
during NREM sleep

Synaptic plasticity is believed to be the cellular mechanism of
learning and memory in the brain (Ho et al., 2011). Evidence is
accumulating that recent memories are consolidated during
NREM sleep (Walker and Stickgold, 2004; Diekelmann and
Born, 2010; Born and Wilhelm, 2012; Rasch and Born, 2013)
through replay of sequences of cell-firing patterns that occur dur-
ing waking (Euston et al., 2007; Ji and Wilson, 2007; Peyrache et
al., 2009). This replay is thought to be orchestrated by hippocam-
pal and thalamocortical patterns of activity (Marshall etal., 2006;
Girardeau et al., 2009; Ego-Stengel and Wilson, 2010; Ngo et al.,
2013;Maingret etal., 2016). We recently showed, using computer
models, that sequences of cortical neurons trained in awake are
replayed spontaneously during NREM sleep; this enhances the
synaptic connections associated with the trained memory result-
ing in memory improvement (Wei et al., 2018). Furthermore,
sleep replay during SWS is able to protect old memories from
catastrophic forgetting associated with new learning (Gonzailez et
al., 2019; Krishnan etal., 2019). In this present study, we explored
how external stimulation augments an internal and naturally oc-
curring mechanism of memory reactivation, resulting in an en-
hanced memory consolidation process.

Recently, empirical studies revealed a powerful new tool to
augment the memory consolidation process: TMR during sleep
(for review, see Oudiette and Paller, 2013; Schouten et al., 2017).
In these experiments, the stimuli (e.g., sounds or odors) presum-
ably enhance reactivation of the relevant neuronal representa-
tions that improve memory consolidation. TMR was shown to
improve both hippocampus-independent procedural memories
(Antony et al., 2012; Cousins et al., 2014, 2016; Schonauer et al.,
2014) and hippocampus-dependent declarative memories (Ra-
schetal., 2007; Rudoy et al., 2009; Batterink et al., 2016; Oyarzun
et al., 2017). In one experiment, an odor was associated with
learning a spatial card location task; subsequent presentation of
the odor cue during sleep led to selective enhancement of this
memory compared with the sleep without cueing (Rasch et al.,
2007). Similarly, auditory cues that were paired with visual input
during learning enhanced memory consolidation when pre-
sented during subsequent sleep (Rudoy et al., 2009). The timing
of the stimulation with respect to ongoing sleep SO determined
the effect of a cue on memory consolidation (Batterink et al.,
2016; Santostasi et al., 2016). Specifically, the closed-loop stimu-
lation presented during the Down state, just before transition
from the Down to Up state of SOs, had high impact on memory
consolidation compared with other stimulation phases. For over-
lapping memories, whether the auditory cues strengthen or
weaken a memory also depended on the memory strength (Oyar-
zun et al., 2017). Notably, the beneficial effect of external reacti-
vation only occurred during sleep. Presenting the same cues
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during wakefulness was not effective for either declarative mem-
ories (Rasch et al., 2007) or procedural memories (Schénauer et
al,, 2014).

We recently reported, using biophysical models of the
thalamocortical system, that sleep reactivation occurs during Up
states of the SO (Wei etal., 2018). When the synaptic connectivity
matrix was modified in the awake state by sequence training, the
trained sequences were spontaneously replayed during Down to
Up state transitions and also during early phases of the Up state,
leading to further changes in synaptic weights (consolidation).
For memories represented by the sequences of neuronal activa-
tion (asin this study), the beginning of a sequence was commonly
also a site where local spontaneous Up states were initiated. In
this new study, we showed that the effect of stimulation on mem-
ory replay depends on the ability of stimuli to affect, at least
locally, the spatiotemporal pattern of sleep slow waves. When a
local stimulus was delivered at the “correct” phase of the SO
(during Down states but close to the transition to Up states) and
to the “correct” network location (near the trained sequence), it
effectively triggered local Up state initiation and promoted replay
of a sequence associated with this stimulation site. Stimuli deliv-
ered at “wrong” timing (e.g., when the network was already active
or just transited to the Down state) or “wrong” location (e.g., far
away from the beginning of a sequence in question) could not
facilitate replay of that sequence.

Mechanisms of sequence replay

Synaptic plasticity is believed to be the cellular mechanism of
learning and memory in the brain. A large body of studies sup-
ports the idea that the spike sequences of cortical neurons evoked
by awake learning are spontaneously replayed during sleep, lead-
ing to consolidation of memory (Euston et al., 2007; Ji and Wil-
son, 2007; Peyrache et al,, 2009; Barnes and Wilson, 2014;
Ramanathan et al.,, 2015). Presently, many studies showed that
stimulation, such as training-associated cues (Rasch et al., 2007;
Rudoy et al., 2009; Antony et al., 2012; Cousins et al., 2014, 2016;
Schonauer et al., 2014), or auditory stimulation (Ngo et al., 2013,
2015), presented during sleep can augment consolidation of the
newly encoded memories.

The nature of performance improvement in the model pre-
sented in this new study is linked to the effect of STDP on synaptic
weights during sequential spiking. Initial training led to sequen-
tial activation in groups of neurons (e.g, A—B—C—D—E),
which created asymmetric weight configurations within trained
regions where all the weights in the direction of sequence training
(e.g., A—B) increased and the weights in the opposite direction
(e.g., B—A) decreased. During SWS, local waves traveling in di-
rection of sequence training further increased this synaptic
weight asymmetry; therefore, performance increased after sleep.
This effect extended beyond initial wave front propagation as the
neurons largely preserved “correct” timing within the entire Up
state. However, in the Sham condition, without external stimu-
lation, many slow waves were initiated randomly, and thislimited
replay. In the model simulating sensory stimulation, input from
the sensory network increased the likelihood of the local Up state
activation at the network site near the beginning of the sequence
location (e.g., A). Effectively, it increased replay and led to per-
formance improvement after sleep with cues.

Closed-loop auditory stimulation during sleep: local or

broad cue?

Different types of auditory stimulation, represented either by the
learning-specific cues (Batterink et al., 2016) or pink noise (Ngo
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et al,, 2013, 2015; Santostasi et al., 2016), are all able to enhance
memory consolidation. We found, however, that the optimal
phase and the mechanisms were somewhat different for these two
different types of sensory stimulation.

For the learning-specific cue, we hypothesized that the cue
only affects a small population of neurons (local cue). This may
explain why stimulation is only effective in vivo when it was ap-
plied at specific phase of the slow waves (Batterink et al., 2016). In
our study, we identified that the optimal phase depends on the
influence of the stimuli on the Up state initiation. When stimulus
is delivered just before Down to Up state transitions when the
network s sensitive to external perturbations, the stimulus affects
(possibly locally) the spatiotemporal pattern of slow waves pro-
moting the sequence replay and increase in synaptic weights as-
sociated with the trained sequence in question.

For the pink noise auditory stimulation, stimulation can po-
tentially activate a broad group of neurons (broad cue). It was
shown in vivo that such broad stimuli could enhance memory
consolidation by enhancing the SO (Ngo et al., 2013, 2015). Im-
portantly, the pink auditory stimulation was effective in vivo
when the sound occurred in synchrony with SO Up states (Ngo et
al., 2013). In the model, broader stimulation led to a higher in-
crease in memory performance compared with the local one.
Also, while the peak performance was still achieved for stimuli
delivered at the network transition from Down to Up states, the
difference was smaller between optimal and suboptimal stimula-
tions. In all cases, an increase in performance was linked to a
significant increase in amplitude and synchrony of SOs, in agree-
ment with in vivo data. Considering that in vivo the SO is not
necessarily well synchronized across the entire cortex (and defi-
nitely less synchronized than that in our model) (Nir etal., 2011),
we predict that, for broader stimuli, the optimal stimulation
would be during the early phase of an Up state when it is most
capable of inducing high-amplitude synchronized slow wave
across large populations of the cortical neurons.

Together, our study provides insight into how memory con-
solidation may be affected by stimulation applied during SWS.
We consider stimulation both as a tool to manipulate the sleep
rhythms to understand mechanisms behind the role of sleep in
memory consolidation and as an approach to develop clinical
interventions with a goal of enhancing memory and learning. The
auditory stimulation duringsleep has the potential application to
enhance sleep-dependent effects on memory in cognitively
healthy human subjects and in those with amnestic mild cogni-
tive impairment.
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