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ABSTRACT

The imaging properties of small cameras in mobile devices exclude restricted depth-of-field and range-dependent
blur that may provide a sensation of depth. Algorithmic solutions to this problem usually fail because high-
quality, dense range maps are hard to obtain, especially with a mobile device. However, methods like stereo,
shape from focus stacks, and the use of flashlights may yield coarse and sparse range maps. A standard procedure
is to regularize such range maps to make them dense and more accurate. In most cases, regularization leads to
insufficient localization, and sharp edges in depth cannot be handled well. In a wavelet basis, an image is defined
by its significant wavelet coefficients, only these need to be encoded. If we wish to perform range-dependent
image processing, we only need to know the range for the significant wavelet coefficients. We therefore propose
a method that determines a sparse range map only for significant wavelet coefficients, then weights the wavelet
coefficients depending on the associate range information. The image reconstructed from the resulting wavelet
representation exhibits space-variant, range-dependent blur. We present results based on images and range maps
obtained with a consumer stereo camera and a stereo mobile phone.

Keywords: Mobile computational photography, stereo cameras, depth-of-field, bokeh, image quality, wavelet
transforms, range maps

1. INTRODUCTION

The image quality of small cameras in mobile devices has been improving continuously, but many photographers
still buy large cameras instead of using their mobile phones. One important reason is that small cameras do
not offer a restricted depth-of-field. Even larger cameras, that do permit significant out-of-focus imaging, often
have an unpleasant bokeh, i.e. an unpleasant rendering of out-of-focus regions, compared to cameras with larger
sensors and well-designed, fast lenses.1

Therefore, a series of attempts have been made to selectively blur images after they have been taken. The
probably best known recent application is the SynthCam app created by Marc Levoy.2 The algorithm is simple
and yields good results, but the user needs some practice and must record a video over 15 seconds. Other
approaches attempt to segment foreground and background and then blur the background only. Such approaches
often yield unpleasant results because imprecise segmentations may lead to artifacts, or because the binary
treatment of foreground and background looks unnatural. Images taken with large cameras are nicer not only
because the background may be blurred, but because the variation of optical blur as a function of distance
generates depth cues and therefore a sensation of depth, a ’3D-effect’.

Instead of segmenting foreground and background, one would therefore prefer to use a continuous range map
to blur images as a function of the space-variant range information. However, high-resolution range maps are
hard to obtain, especially with a mobile device. There are, however, a few techniques, like stereo, shape from
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focus stacks, and the use of flash lights which may produce coarse and sparse range maps. A standard procedure
is to regularize such range maps to make them dense and more accurate. In most cases, regularization leads
to insufficient localization, and sharp edges in depth cannot be handled well. Therefore, photographers still
use manual controls and segmentations for selective blurring. Nevertheless, a few attempts have been made to
manipulate the depth-of-field without user interventions. A focus stack has been used, for example, by Binder
et al.3 to extend the depth-of-field and by Jacobs et al.4 to both extend and reduce it. Methods that make use
of specialized hardware may provide a much more flexible control of the depth-of-field.5–9

In the computer-graphics community similar problems are encountered when images of 3D scenes need to
be rendered with realistic camera models. One of the first approaches for rendering with range-dependent blur
was due to Potmesil et al.,10 and various improvements have been proposed (see Barsky et al. for a more recent
overview11) .

Our approach differs based on the following rationale: often, especially with stereo, the range map is sparse
because range can only be estimated given sufficient image structure; but if there is no structure, we must not
blur. This argument is not exact because straight edges and periodic structures may not deliver a valid range
value but would still have to be blurred; however, problems with uniform regions are more severe and thus the
idea seems worth exploring. From the statistics of natural images we know that structured regions are rather
rare. This fact is the basis of image compression, which is most effectively implemented based on a wavelet
transform as in, e.g., the JPEG 2000 Standard. So, from the perspective of image compression, an image is
defined by its significant wavelet coefficients, only these need to be encoded. In other words, if we wish to
perform range-dependent image processing, we only need to know the range values for the significant wavelet
coefficients. Therefore, the problem of estimating range is very different here from the case where we need range
for other purposes like navigation, obstacle avoidance, and 3D measurements.

We therefore propose a method that first computes a wavelet transform, then determines a sparse range map
only for the significant wavelet coefficients, and finally weights the wavelet coefficients depending on the associate
range information before computing the inverse wavelet transform. As our results demonstrate, the resulting
image exhibits space-variant, range-dependent blur, but also some undesired artifacts.

2. HARDWARE

Our work is partially motivated by the fact that, as a rather recent development, low-cost stereo cameras have
been launched driven by the interest in 3D stereo displays and the lack, especially on the mass market, of devices
that would allow for the creation of 3D content. Notable examples of such devices are the digital camera Fuji
Finepix 3DW3 and the mobile phone LG P920 3D. We have used both cameras in our workflow that is described
in Fig. 1. The rational was that once such devices are on the market, and in different development pipelines,
one should consider also their potential for traditional 2D photography and video. We are therefore somehow
misusing these cameras and our results are indeed limited by the fact that the cameras have not been designed
for delivering range data. Nevertheless, the results are promising and future devices might as well be optimized
for these kind of applications, given that two small cameras will, in general, be smaller, lighter and cheaper than
one big camera.

3. ALGORITHM DESCRIPTION

We here describe our algorithm that consists of different modules as shown in Fig. 1. The input to our algorithm
is one pair of stereo images denoted by IL for the image of the left camera and IR for the image of the right
camera. Thus, (IL, IR) is our stereo-image pair.

3.1 Camera calibration

In order to compute disparity information from a pair of stereo images, specific stereo-camera parameters have
to be known. As an essential preprocessing step, the cameras are calibrated and the camera parameters are
used to rectify the image pair and correct for distortions. First, we need to estimate the transformation, i.e., the
translation and rotation, between the two stereo cameras. The devices we have used have either fixed camera
positions regarding both the disparity and the orientation of the two cameras, or the relative camera positions



Figure 1. System overview, see text for the description of the modules.

have been fixed to a particular orientation. We used a standard calibration method based on a chessboard pattern
and obtained a translation vector T and a rotation matrix R for the relative camera positions. In addition we
computed the distortion vectors Dn for each camera using the known geometry of the chessboard pattern and a
set of n stereo image pairs of the chessboard. Finaly, we computed the rectified and undistorted versions of our
stereo image pairs (IL, IR), which are denoted by (I∗L, I

∗
R).12

3.2 Wavelet Transform

As mentioned in the introduction, the range-dependent filtering is performed in the wavelet domain. We have
chosen the 2D dual-tree complex wavelet transform (DTCWT) introduced by Kingsbury.13,14 The wavelet
transform is denoted by a = W (I), where W is the wavelet transformation, I is the input image and a are the
wavelet coefficients. The wavelet transform has been implemented by using the filtering coefficients introduced
by Farras, Selesnick, and Kingsbury.15,16 The DTCWT is insensitive to shifts,14,17 it is directionally selective
in two and higher dimensions, and has been already applied successfully in computational photography for focus
stacking and image fusion.3

The wavelet transform W maps any image I to ap∈P ∈ C#P , which is a vector of dimension #P that
contains the complex wavelet coefficients. We use m = 1, ...,M to denote the available levels (resolutions) of the
transform. The band-pass wavelet coefficients within each scale are enumerated by the sets

Qm = {m} × {1, 2, 3, 4, 5, 6} × Sm ⊆ N4, m = 1, ...,M, (1)

where k = 1, ..., 6 denotes one of six directional sub-bands and Sm is the set of all spatial positions (u, v) within
sub-band k of level m. The set Q = ∪Mm=1Qm indexes all wavelet high-pass coefficients. Joining P = Q ∪ R



we obtain the whole wavelet domain, where R = SM represents the DC component of the wavelet transform.
Finally, QMag denotes the magnitude of the complex wavelet coefficient Q.

3.3 Clipping of small wavelet coefficients

According to our strategy outlined above, we would like to operate only on the significant wavelet coefficients.
Since in the wavelet domain the informative part of the signal is encoded in large coefficients, we are clipping
small coefficients that are below a threshold T :

QMag(m,k,u,v)
=

{
QMag(m,k,u,v)

, if QMag(m,k,u,v)
> T,

0, otherwise .
(2)

In our examples, the threshold has been chosen such that 40 percent of the coefficients have been set to zero
at each level. Note that such small coefficients are predominantly found in homogeneous image regions. The
clipping operation has the additional benefit of denoising the images. The images of these small cameras are
rather noisy and the noise may cause problems for the disparity estimation. Also, the significant coefficients in
the two images are more similar than the image intensities themselves, since the latter may vary due to differences
in exposure and focus setting.

3.4 Disparity estimation

The disparity of the wavelet coefficients in the two images is determined by block matching. The search for
the corresponding blocks can be simplified by using the constraints of the stereo setup. After calibration and
rectification, we can assume that a template of the left image and the corresponding image block in the right
image are on the same horizontal line, i.e., image row. Furthermore, in our examples, we only deal with static
objects that are all behind the intersection of the optical axes. We can therefore assume that the disparity has
the same sign for all objects in the scene. To obtain a disparity value d for all locations in IL one has to match
a template B(uL,vL) in a region C(uR,vR) for all center pixels (uL, vL), with the additional constraint uR ≥ uL

and vR = vL. Disparity maps d(m,k) are first computed for each level m and each direction k by using the
magnitudes of the wavelet coefficients. Then, maps of the same resolution are fused by computing the average
over the different directions resulting in the range maps d(m=1,...,M) for each level. The maps are normalized to
the range [0, 1]. The disparity is set to zero for the clipped coefficients, which have zero magnitude. Since there
is no structure in the image at these positions it should not matter whether we blur the image or not.

3.5 Manipulating the depth-of-field in the wavelet domain

Given the wavelet coefficients QMag of aL = W (IL) of the left input image and the disparity maps d(1,...,M) for
each resolution m ∈M we compute the new, weighted coefficients Q∗Mag as

Q∗Mag(m,k,u,v)
= QMag(m,k,u,v)

× (1− d(m,u,v)), (3)

i.e., we simply multiply the coefficients by the normalized and inverted disparity map. Alternative weighting
schemes may be used, especially after gaining more insight into the perceptual issues related to the quality of
the blur and its desired dependence on range.

Note that objects in the foreground do not change their position relative to IL and IR and therefore have
a disparity d(m,u,v) = 0, which keeps their coefficients unchanged. Objects in the background have a disparity
d(m,u,v) > 0 which results in a reduction of the corresponding coefficients. This is due to the way the two cameras
are adjusted: they are tilted towards each other and therefore their optical axes cross as shown in Fig. 2. The
gray square in Fig. 2 is in front of the point of intersection and therefore seems to move to the left. The black
square is located beyond the point of intersection and therefore seems to move to the right. In the example
images we took, all objects were behind the point of intersection.

3.6 Image reconstruction

Images are reconstructed from the manipulated wavelet coefficients simply by performing the inverse wavelet
transform.



Figure 2. Schematic stereo-camera setup and resulting stereo images of the shown scene. See text for details.

4. RESULTS

The results presented in Figures 3 and 4 use the same format and differ only in the subject and the camera: the
subject in Fig. 3 (Lisa) has been photographed by one of the authors with the Fuji camera and the subject in
Fig. 4 (Schwalbe) with the LG phone. The top two images (a) are the stereo pair as it comes out of the cameras.
The left image below (b) is the left rectified and cropped image, which is input to the algorithm. To simplify
computations, the images have been converted to grey-scale images. This image and the corresponding right
image are used to estimate the disparities of their wavelet coefficients. The wavelet coefficients of the left image
are then weighted by the normalized disparity. The resulting image, obtained with the inverse wavelet transform
of the weighted coefficients, is shown on the right (c). The inverted disparity maps of the wavelet coefficients at
different levels and orientations of the wavelet transform are shown at the bottom (d).

In print, the visible effect of filtering in the resulting images might be small due to the small size of the images.
When enlarging the images in the electronic version of the paper, however, the effect should be apparent. Note
that the blur effect as such is natural and pleasing. It can be further adjusted by changing the weighting function
in Eq. 3 and the number of scales that are used. Also note, however, that there are a number of artifacts, mainly
due to the fact that certain parts of the background are not blurred. This effect is more pronounced in those
image regions which have been occluded in the right image and can therefore be observed at the left borders of
the foreground objects. Note that in case of the Lisa image, the effect also appears in non-occluded regions due
to the repetitive nature of the background, which causes false disparity matches.

5. DISCUSSION

We have presented an efficient method for producing shallower depth-of-field 2D images with low-cost 3D stereo
cameras. The method can be integrated with image compression since it operates on the wavelet coefficients of
the stereo-image pair. The preliminary results are promising. They are presented without any post-processing
and contain some undesired artifacts. The major problem is that for those parts of the background, which are
occluded in one of the stereo images, we cannot obtain accurate disparity values and thus the corresponding
wavelet coefficients cannot be modulated correctly. As a consequence, some parts of the background will not
be blurred. Depending on the background, this may be more or less of a problem. In the computer vision
and graphics literature, there a number of methods, some cited above, for improving the quality of a range
map by segmenting and filling-in occluded regions. We have not systematically explored these options yet. We
have, however, obtained good results with additional segmentation methods, like flash-no-flash exposures and
multilinear filtering, which are beyond the scope of this paper. A major problem with the further development
of these methods is that we lack a good perceptual model of perceived image defocus and the associated human
preferences. Nevertheless, the method presented here can become a useful algorithmic component for mobile
computational photography and the design of compact cameras with a pleasing balance of image focus and
defocus. An additional benefit is that blurred regions, i.e. reduced wavelet coefficients, can be further compressed,



thus reducing the worldwide quite large amount of stored clutter, such as the one in the background of the Lisa
image.
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Figure 3. Results obtained with the Fuji camera: (a) original stereo images; (b) rectified, corrected, and cropped black-
and-white image IL; (c) result after inverse-DTCWT; (d) disparity map for the different levels and directions (see text).
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Figure 4. Results obtained with the LG phone: (a) original stereo images; (b) rectified, corrected, and cropped black-and-
white image IL; (c) result after inverse-DTCWT; (d) disparity map for the different levels and directions (see text).


