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Abstract — We implemented a neural network algorithm for visuo-
motor control of an industrial robot (Puma 562). The algorithm
uses a new vector quantization technique, the “neural-gas” network,
together with an error correction scheme based on a Widrow-Hoff-
type learning rule. Based on visual information provided by two
cameras, the robot. learns to position its end effector without an
external teacher. Within only 3000 training steps, the “closed”
robot—camera system is capable of reducing the positioning error of
the robot’s end effector to approximately 0.2 percent of the linear
dimension of the work space. By employing immediate feedback the
robot succeeds in compensating not only slow calibration erosion,
but also sudden.changes in its geometry. Some hardware aspects of
the robot—camera system are also discussed.

1. Introduction

The adaptive capabilities of motion control of biological organisms are very much superior to
capabilities of current robot systems. Various neural network models have been developed that
apply biologically inspired control mechanisms (1, 4, 5, 7, 8, 10] to robot control tasks. During the
last two years it has been demonstrated by means of robot simulations that the neural network
model described in [7, 8], that is based on Kohonen’s algorithm for self-organizing maps [3], can be
utilized for visuo-motor control. In the present paper we will report on an actual implementation of
a new version of this network for the system of two cameras and a PUMA 562, a robot arm widely
used for industrial manufacturing. The algorithm now uses the socalled “neural-gas” network, a
network suggested recently [9], which has been inspired by Kohonen'’s feature map algorithm [2, 3].
The objective is to teach the system to position its end effector using solely information gained from
the pair of cameras. Neither an external teacher nor any prior information about the geometry of
the robot arm or the cameras will be employed.

To train the robot we employed a network of 300 neural units. Despite this small number of
units, the robot accomplished a positioning accuracy limited only by the resolution of the two
cameras providing information about the spatial location of the target object. Furthermore, the
robot system succeeded in quickly adapting to sudden, drastic changes in its environment. A change
of the length of one of the arm segments was partially compensated immediately. Subsequently
the neural network slowly regained its previous accuracy. This adaptablitiy is a major advantage
compared to common commercial robot applications which depend on precise calibration of all
system components: any distortion in the geometric arrangement of their mechanical components
requires a recalibration of the robot system.



2. The Algorithm

The robot-camera system is presented schematically in Figure 1 (bottom right). For each
training step a target location is presented at a randomly chosen location within the workspace of the
robot. A pair of cameras monitors the scene and a preprocessing unit extracts for each camera a pair
of coordinates (z, y) that denote the 2D-location of the target in the camera’s “retina.” The two pairs
of camera coordinates are grouped to a four-dimensional vector Uiarget = (Zieft, Yieft, Trights y,.,-ght)T
in the input space.

To be able to position its end effector correctly, the robot system has to know the transformation
from uarge: to the corresponding set of joint angle motor commands §(utarget). The transformation
depends on the geometry of all the robot arm segments as well as on the position and the optical
mapping properties of the cameras. The objective is to learn the transformation ] (Utarget) Without
an external teacher. In this work we consider the non-redundant case of a robot arm with three
degrees of freedom and a rigid wrist (for a more detailed discussion see [7, 11]).

The principle idea behind our approach is the following: the input space is discretized into a
set of disjoint cells p € {1,2,... N} with centers w, in the target space, one neural unit being
allocated for each cell. Two outputs are assigned to every neural unit, namely a vector 6.'.,1 and a
3x4-matrix A, which constitute a linear Taylor expansion of 5(u,arget) around the discretization
point or “reference vector” wy,

é‘(utarget) = 67‘ + Ap(utarget - W#). | (1)

Both the choice of the discretization cells and the adaptive learning of their output values is
done by the “neural-gas” network [9]. This network consists of a set of N neural units, labeled
by their index px and assigned to the location w,. The degree to which each neural unit becomes
involved in the current positioning step is determined by the rank of its closeness (in the input
space) to the given input stimulus ujsrger. For each new target location we assess the sequence
(10, 1, ..., uN—1) of neural units in increasing order of their distance to the input vector Uiarget,
defined by ‘

"wp.() - utarget" < "wll'l - utarget” < <L ”w,UN._l - utarget"- (2)

The transformation g(utarget) is locally approximated by (1). For the positioning movement,
however, not only the linear approximation associated with the unit ug “closest” to Wiarge: de-
termines the joint angles, but the output of a whole subset of neural units with their vectors w,
neighboring to Usarge: is taken into account. This is achieved by averaging (1) over all neural units
Uk, weighted by a function ¢g™**(u;) which accounts for the “degree of closeness” of wy, to the
input signal ugerger. The function g™ (ui) = g™ (k) depends on the number k of neural units
with their vectors w, closer to uarger than - It has its maximurp at ¢™**(k = 0) and decreases to
zero as k increases. A convenient choice is ¢™"* (k) = exp(—k/A™*). The joint angles the network
produces to reach the target are then given by

-

Oinitiat = s~ ngi”(k) (é:uk + Ay (Warget — w“k)) , normalized by s = ng”(k). (3)
k k

The positioning of the robot arm consists of two phases. The first phase consists of the coarse
movement to the initial joint angle set ginitial given by (3). The resulting end effector location seen
by the cameras is denoted by Vinitiai. In a second phase the residual deviation from the desired
target location (Uiarget — Vinitial) is transformed into a correctional movement using the Jacobian
A(Vinitiat). To determine A(Vinitia) we take the average of all Jacobian matrices A, weighted
again by g™, Similar to (3), the neural unit pg with its Wy, closest to Uurger contributes the
most, for the unit p) with its w,, second closest to uerge: the contribution is second largest, and
so forth. This yields the joint angle adjustment

A§= 8—1 . Z gmiw(k)A/I,k(“target - vim’tial) (4)
k



and leads the end effector to the final position vf;nq seen by the cameras.

For a successful operation of the system suitable values for w,,, é;l and A, must be determined.
This is done adaptively during the learning phase of the system: after completion of a trial all the
neural units are adjusted according to

W?fkw = Wﬁ: +e-g(k)- (utarget Wﬁg) (5)

Opsier Ap)™” = B, A )™+ - ¢ (k) - (A, AA ). (6)

Here ¢ and ¢’ scale the overall size of the adaptation step, and g(k) and ¢/(k) are, analogous to
g™, functions of the “closeness ranking” index k. They have their maximum at unity for the closest
neural unit, i.e. gu(p0) = g(0) = 1 and g}, (o) = ¢'(0) = 1, and decrease to zero as k increases.
The effect is an adaptation of a whole subset of neural units in the “neighborhood region” of the
closest unit ug, thus increasing the rate of convergence. The neighborhood region contains only
neural units that have to learn similar parameter values, and, therefore, may profitably participate
in the same adjustment step.

A convenient choice is g(k) = exp(—k/A) and likewise ¢'(k) = exp(—k/)\). Here A and )\
determine the size of the neighborhood region. Initially, their value is chosen fairly large for rapid,
coarse adaption of many neural units at each adaptation step and gradually decreases for the
fine-tuning of the system.

Procedure (5) generates a homogeneous discretization of the relevant submanifold of the input
space as explained in more detail in [9]. AA,, in (6) is given by an error correction rule of Widrow-
Hoff type [12]

AA, = (A(f - A“Av) lav)~2 av7T (7)

which minimizes the quadratic cost function
= (A§— A AV)?  with AV = Viina — Vinitial. (8)

To obtain A0 for the correction of the 0 we employ the locally valid relation Ommal 9;}‘ =
A, (Vinitial — w,) with 9“ as the new estimate for the desired value of 0#. This yields

- -

Af, =0, ~ 8. = finitiar — 0,7 — Ay (Vinitiat — W) (9)

which completes our description of the algorithm.

3. The Set-up

Complex control algorithms for a robot require the capability to quickly process and respond
to high bandwidth sensory input. The design of a robot vision lab to provide a testbed for neural
algorithms has to overcome the limitations of today’s commercially available robot controllers with
respect to computational power and especially to the transparency of their programming languages.
In our implementation we chose to employ a Unix workstation to directly control a Westinghouse
Robot Puma 562 in real-time via a high speed communication link.

Figure 1 illustrates the main hardware components of our implementation. The Puma 6 DOF
manipulator is connected to the Unimation Controller (MarkIII, bottom left) which itself contains
several controllers. The separate servo controllers for each revolute joint are commanded by a
main controller CPU. This CPU usually runs the industrial robot software VAL II which is rather
inflexible for our purpose, as it does not support control by an auxiliary computer. To achieve real-
time control through an Unix workstation we employed the powerful software package RCCL/RCI
(Robot-Control-C-Library and Real-time Control Interface) [6].

The Unix workstation is a VME based SUN 4/370, which hosts some interfacing hardware and
two image processing boards (ICS-400, Androx Inc.), each based on four digital signal processors.
These boards provide the computing power for fast data extraction. The sensory input comes from
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Fig.1: The main hardware components of the robot system.

two monochrome CCD cameras (560x480 resolution), oriented towards the robot’s workspace with
a disparity angle of about 50°.

All subsystems are directed by the adaptive control program (“planning t;a.sk”), written and
executed as an ordinary C program in a Unix environment. The program issues motion requests
to the trajectory control level. The control task is executed periodically at a high priority and
is responsible for reading input data, generating intermediate joint setpoints, and carrying out a
“watchdog” function (collision avoidance). During each control cycle (typically 50 Hz) a command
package is sent via the parallel port to the robot controller. The main controller CPU is repro-
grammed to dispatch commands to the Jomt servos, collect feedback data and perform elementary
safety checks.

To keep the problem of image segmentation simple, during the initial stage of our reseach, we
mounted a miniature lamp on the gripper hand (lamp power controlled by software). This object
is well defined and the device can be easily discriminated against any background. To identify the
location of the lamp in one of the two camera images, the set II,q; of the brightest pixels in the
video frame is determined, and the center of the minimal rectangle Il ¢ enclosing Il q. is taken to
approximate the exact target location in image coordinates. A subsequent consistency test assures
identification of the lamp rather than a spurious reflex. It includes checking the geometrical size of
Mmae, minimal covering ratio of Ilyeet by Iimae, bounded maximal brightness Poe® and, in dubious
cases, minimal response G — Boff to turning off the lamp.

During the learning phase several hundred targets randomly chosen within the workspace must
be presented the robot. This can be achieved very conveniantly by operating the robot in a “split
brain” fashion: the controlling program alternates between the following two modes without passing
any information but the camera input.

e Set target mode: The target location is given by moving the arm’s end effector to a position
which is randomly chosen with a uniform distribution in joint angle configuration space. The
cameras view the resulting position of the end effector and the arm may return to its previous



configuration.

e Retrieve position from camera information: After this setting of the target the neural-gas al-
gorithm computes joint angles for the coarse movement, followed by the fine movement to approach
the target position more accurately.

Each trial takes on average 8 seconds to complete. The performance of the algorithm is moni-
tored by computing the average Euclidian distance between target and end effector position. This
can be done with sufficient accuracy by evaluating the known geometry of the robot and the joint
angles, read from the calibrated built-in encoders.

4. Experimental Results

In this section we present the experimental results obtained by applying a ”‘neural gas”’ network
with N = 300 units. The parameters €,¢' and the widths A, A, A™® all had the same time
dependence p(t) = pi(p f/p,-)‘/ tmez with ¢ as the number of already performed learning steps and
tmaz = 4000. The values were chosen as ¢; = 0.3, = 0.05,¢} = ¢}, = 0.9, \; = 150, X} = A7"® = 50
and Ay = /\} = z\}""" = 1. The Jacobians A, are initialized by assigning a random value from the

interval [:1:;%] to each element. A similar procedure was used for the initialization of the 5#.

Figure 2 presents a sequence of learning states after t = 0, ¢ = 100, ¢ = 300, ¢ = 1500, and
tmaz = 4000 positioning trials. The reference vector of each neural unit is visualized by projecting
w onto the image plane of each camera. Initially, the vectors w are distributed randomly in the
image of the cameras. After about 2000 learning steps the initial distribution has retracted from the
four-dimensional input space to the relevant three-dimensional subspace corresponding to the actual
workspace. Finally, a regular distribution of the neural units emerged, reflecting the economical
and demand-driven allocation of computational resources effected by the neural network.

A very important advantage of self-learning algorithms is their ability to adapt to different and
changing environments. To demonstrate the adaptability of the presented network, we interrupted
the learning procedure after 3000 training steps and extended the last arm segment by 100 mm.
Figure 3 displays how the algorithm responded.

The thin upper curve shows the positioning capability after the “coarse movement” (open loop
system), and the lower bold line indicates the result after the correcting “fine movement” (one time
closed loop), both plotted versus the number of adaptation steps. A comparison of the two curves
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Fig. 2: The development of the network seen
as a projection of the reference vectors w onto the
image planes of the cameras. Shown are the states
after ¢ learning steps, with ¢t = 1, ¢t = 100, t = 300,
t = 1500 (right camera) and ¢ = t;nq; = 4000 (both
cameras, bottom pictures).



illustrates the substantial improvement of using visual feedback. With the first 3000 trials the
error after the fine movement decreased very rapidly to an asymptotic value of 2.2 mm. After the
drastic change of the robot’s geometry only 300 further iteration steps were necessary to readapt
the network for reaching the robot’s previous positioning accuracy.

We now want to ask how much does the collective adaptation of the output of neighboring
neural units influence the learning capabilities of the system? To answer this question we compare
two learning cycles, one regular cycle and one with a non-shared output learning scheme (X' = 0).
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Fig. 4: Positioning ability with (right) and without (left) collective learning of the output values. Plotted
is the probability P;(R) to keep a given error tolerance R at different learning stages t.

When positioning skills are poor — as they are in the the early learning phase, and remain
in the latter cycle — the network might request motor commands which would drive the robot
arm into prohibited areas, like the table zone. These requests are rejected. Consequently, these
deficient trials can not be recorded by averaging the absolute positioning errors as shown in Figure 3.
To obtain a performance measure that also accounts for these faulty trials, we now consider the
probability P;(R) to keep a given error tolerance R at time t. P;(R) can be written as

R
P:(R) = /0 pi(r)dr with r = Euclidian positioning error, (10)

here p;(r)dr is the probability that for a trial at time ¢ the error is found in the interval [r,r +dr].

Figure 4 presents at the left side a system of units learning independently (M = 0). The
positioning skill, shown at ¢ = 500, ¢ = 1000, t = 2000, and after ¢ = t,,q; = 4000, increases rather
slowly. The resulting control is still insufficient, each third effort is erroneous. The figure on the
right side depicts a system of neural gas units with collective learning among neighboring units.
After a few hundred trials the algorithm already performs better than the independent learning
system ever achieves. The results for ¢ = 500, ¢t = 1000, ¢t = 1500, t = 2000, and tme = 4000
demonstrate that the positioning skill develops rapidly in the beginning and achieves asymptotically
an accurate performace.

5. Conclusions

We implemented a new visuomotor control algorithm for the positioning task on an industrial
robot system. We were able to achieve a final positioning accuracy of 2.2mm or 0.2% of the
linear dimension of the workspace of the robot arm. Furthermore, the system succeeded to rapidly
adapt to drastically changing situations. The accuracy is currently limited by the image processing
resolution and not by the control algorithm. Yet, this algorithm achieves a precision that is higher
by one order of magnitude than earlier neural network implementations, like Kuperstein’s system
with 4 % average deviation [5]. Compared to the predecessor version [7] of the introduced learning
algorithm a roughly ten-fold learning rate was accomplished. This reduction of the required number



of trial movements is partly due to the employment of the “neural-gas” network, which saves
the learning steps which are necessary for the initial topological ordering of the neural units of
the Kohonen network used in [7]. Learning steps are shared by a whole subset of neural units,
determined by their neighborhood relation in the input space rather than indirectly by their relative
location in a prestructured array. We found that the collective learning greatly enhances the
algorithm’s performance with respect to robustness as well as the rate of convergence.
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