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Abstract

We deal with the analysis of eye movements made on natural movies in
free-viewing conditions. Saccades are detected and used to label two classes
of movie patches as attended and non-attended. Machine learning tech-
niques are then used to determine how well the two classes can be separated,
i.e. how predictable saccade targets are. Although very simple saliency mea-
sures are used and then averaged to obtain just one average value per scale,
the two classes can be separated with an ROC score of around 0.7, which is
higher than previously reported results. Moreover, predictability is analysed
for different representations to obtain indirect evidence for the likelihood of
a particular representation. It is shown that the predictability correlates with
the local intrinsic dimension in a movie.
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1 Introduction
The prediction of where people direct their eyes in natural scenes has long been
of interest to the vision community (Itti et al., 1998; Krieger et al., 2000; Yarbus,
1967; Zetzsche et al., 1998), and there are also applications in computer vision
(Paletta and Rome, 2007) and image compression (Geisler and Perry, 1998). The
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standard approach to saliency prediction is to design computational models of
bottom-up attention (Bruce et al., 2007; Guo et al., 2008; Itti et al., 1998). For
each location in the visual field, simple features such as edges, contrast, or colour
are stored in feature-activation maps; these maps are then combined to form a
saliency map, where each location is assigned a value of how salient or interesting
it is to an observer. Finally, the most salient locations are taken to predict human
fixations. Only more recently, saliency-based interest operators have been derived
from human fixation data by using machine learning techniques (Kienzle et al.,
2007).

In this paper, we analyse eye movements made on natural dynamic scenes and,
in particular, the extent to which these eye movements can be predicted by using
machine learning techniques that operate on different visual representations. We
use a data set in which local movie patches have been classified as attended and
non-attended locations by measuring eye movements from a large number of peo-
ple (see Section 2). We then use different representations of the movie patches
and machine learning techniques that operate on these representations to learn to
distinguish between these two classes. Finally, we argue that a representation that
yields better classification results is more likely to be used by the visual system
than a representation where the classification results are worse. Additional moti-
vation for our research comes from work on gaze guidance – see Section 5.2.

1.1 Remarks related to this special issue
Some years ago a few vision scientists, among them Terry Caelli, were interested
in understanding the spatio-temporal structure of the visual input, and the prob-
lems of efficient coding and object recognition, by the use of differential geometry,
e.g. Barth et al. (1993). Differential geometry was initially used in vision research
to describe invariant properties of object surfaces. Some principles of differential
geometry have been generalised later by the use of signal processing and could
then be applied to the problem of efficient coding. The insights gained from a
fusion of vision research, signal processing, and differential geometry have led to
the concept of intrinsic dimension (Zetzsche and Barth, 1990), the relationship to
higher-order statistical dependencies (Zetzsche et al., 1993), and to the uniqueness
proof (see Section 3.1.2).



2 Experimental setup
We collected data from 54 subjects freely viewing 18 high-resolution movie clips
of natural outdoor scenes of about 20 s duration each. Videos had a spatial resolu-
tion of 1280 by 720 pixels and a temporal resolution of 29.97 Hz (NTSC HDTV
standard); they were displayed at a visual angle of 48 by 27 degrees, so that the
maximum spatial frequency of the display was 13.3 cycles per degree.

The commercially available videographic eye tracker EyeLink II produced by
SR Research was used to record gaze data at 250 Hz. Trials where more than
5% of all samples were invalid (typically because the subject excessively blinked)
were discarded, leaving 844 recordings (between 37 and 52 per video sequence).
From these recordings, about 40000 saccades were extracted by a velocity-based
two-step procedure (Böhme et al., 2006): to improve noise resilience, gaze ve-
locity had to exceed a high threshold θ1=137.5 deg/s to initiate saccade detection;
saccade onset and offset then were determined by the first samples where gaze
velocity rose above or fell below a lower threshold θ2=17.5 deg/s, respectively.
Finally, several checks were performed for biological plausibility: minimal and
maximal saccade duration and average and maximal saccade velocity (the reason
being that impulse noise might lead to high sample-to-sample velocities).

3 Eye-movement modelling

3.1 Saliency computation
There are numerous methods for deriving measures of saliency for static im-
ages – for a review, see Itti (2005) – and fewer methods for movies (Carmi and
Itti, 2006; Kienzle et al., 2007; Meur et al., 2007). In our study we opted for a
simple measure, because we (a) wanted to introduce minimal bias, and (b) need
to make saliency-based predictions on high-resolution movies in real time. It is
well known that the visual input needs to change over space and in time in order
to attract eye movements (we seem not to like blank walls). Therefore, a simple
assumption one can make is that the more the visual signal changes, the more
salient it is. The degree to which a spatio-temporal signal changes is qualitatively
well described by the intrinsic dimension of the signal and we use this concept
as a simple measure of saliency. In case of images, the reasoning would be that
edges are more salient than uniform regions and curved edges more salient than
straight edges, and there is some evidence for that already (Zetzsche et al., 1998).



In case of movies, features that change over space and in time would be more
salient (see below). Such simple assumptions seem reasonable even though they
obviously cannot be sufficient to explain the complex nature of eye movements,
since top-down factors such as task demands clearly influence where people will
look. Nevertheless, we will show that eye movements are quite predictable even
with such simple saliency measures. In the following, we first motivate our ap-
proach to saliency and then describe how we compute saliency and how we define
the feature space in which we then apply the machine learning techniques.

3.1.1 Intrinsic dimension

A movie can be described by a function f : R3 → R. Given an (open) region Ω,
for all p = (x, y, t) ∈ Ω, the movie f is said to locally have intrinsic dimension
0, 1, 2, or 3 (i0D, i1D, i2D, i3D for short) depending on the number of directions
in which f changes. More formally, for a given region Ω, we choose a linear
subspace E ⊂ R3, of highest dimension, such that

f(p + v) = f(p) for all p,v such that p,p + v ∈ Ω, v ∈ E. (1)

The intrinsic dimension denotes the number of degrees of freedom that are locally
used and it is relevant to image coding due to the predominance of i0D and i1D
regions in natural images (Zetzsche et al., 1993) and the fact that images and
movies are fully determined by their i2D regions (see Section 3.1.2).

The intrinsic dimension of f is 3 − dim(E) for movies (and n − dim(E) for
n-dimensional signals).

3.1.2 Curvature and uniqueness of 2D regions

We here briefly discuss the geometrical intuition behind the concept of intrinsic
dimension and the uniqueness proof that creates a link between the geometry of
the visual input and its information content.

A movie f(x, y, t) can be embedded to obtain a movie surface {x, y, t, f}.
Curvature is then a prominent local geometric invariant of the surface. It is im-
portant to first mention the difference between the different types of curvature. In
case of n = 1 (curves), there is only one type of curvature and curves are either
straight or curved. In case of n = 2 (here image surfaces), we have mean and
Gaussian curvature (two very different concepts). A cylinder has mean curvature
but zero Gaussian curvature because it is flat, i.e. it can be mapped to a plane. In
case of images, straight edges have mean but no Gaussian curvature, only corners



and line ends etc. have Gaussian curvature. In case of n = 3 (here movie sur-
faces), we still have mean and Gaussian curvature but here the “true” curvature is
measured by the Riemann tensor – see Barth and Watson (2000).

The tools of differential geometry are quite useful since one can show that the
curved (i2D) regions of a surface S and thus of a movie f are unique, i.e. the
complete information in the movie is contained in the i2D regions (Barth et al.,
1993; Mota and Barth, 2000). We thus have a geometrical proof that i0D and i1D
regions of a movie (and of an image) are redundant; we would expect i2D and i3D
regions to be more informative and therefore more predictive of eye movements.

3.1.3 Invariants of the structure tensor

The intrinsic dimension can be estimated with different differential methods; here,
we will use the differential method based on the structure tensor. More general
non-differential approaches are based on the compensation principle (Zetzsche
and Barth, 1990) and the Volterra-Wiener theory of nonlinear systems (Krieger et al.,
1995).

A straightforward method to estimate the intrinsic dimension is based on the
equivalence in Ω of Eq. (1) and the constraint

∂f

∂v
= 0 for all v ∈ E . (2)

The subspace E can be estimated as the subspace spanned by the set of unity
vectors that minimise the energy functional

v =

∫
Ω

∣∣∣∂f

∂v

∣∣∣2 dΩ = vT Jv , (3)

where the structure tensor J is given by

J =

∫
Ω

∇f ⊗∇f dΩ =

∫
Ω

 f 2
x fxfy fxft

fxfy f 2
y fyft

fxft fyft f 2
t

 dΩ . (4)

In the above equation, the symbol ⊗ denotes the tensor product, and fx, fy, ft

are short notations for the partial derivatives ∂f/∂x, ∂f/∂y, ∂f/∂t. Therefore,
E is the eigenspace associated with the smallest eigenvalue of J, and the intrin-
sic dimension of f corresponds to the rank of J and may be obtained from the
eigenvalue analysis of J or, equivalently, from its symmetric invariants H , S, and
K (Mota et al., 2001):



H = 1/3 trace(J) = λ1 + λ2 + λ3

S = |M11|+ |M22|+ |M33| = λ1λ2 + λ2λ3 + λ1λ3

K = |J | = λ1λ2λ3

(5)

If K 6= 0, the intrinsic dimension is 3; if S 6= 0 it is at least 2; and if H 6= 0 it is
at least 1.

The structure tensor and its eigenvalue analysis are widely used in image
processing to estimate orientation and motion (Granlund and Knutsson, 1995;
Jähne et al., 1999). The method has later been extended to multiple orientations
and multiple motions (Mota et al., 2001; Mota et al., 2004) and to multispectral
images (Mota et al., 2006).

3.1.4 Multi-scale features

To extract salient features on different spatio-temporal scales, we constructed a 5-
level spatio-temporal isotropic Gaussian multiresolution pyramid, by successively
filtering the video sequence with a 5-tap binomial filter and downsampling it by a
factor of two in all three dimensions.

To obtain the structure tensor on each scale, we computed the spatio-temporal
derivatives using [-1, 0, 1] kernels after smoothing the input sequence with 5-tap
binomials in space and time. The lowpass filter that integrates over the neigh-
bourhood Ω was another spatio-temporal 5-tap binomial. The invariants H , S,
and K were raised to the power of six, three, and two, respectively, to map them
to the same dynamic range (since they contain products of one, two, and three
eigenvalues, respectively) (Mota et al., 2001).

To make the H , S, and K saliency measures equally sparse, we defined a
threshold θ that was 5 percent of the maximum value in K (the sparsest repre-
sentation); all pixel values below this threshold were set to zero, so that a certain
amount of non-zero pixels remained in K; H and S were also thresholded so
that the same number of non-zero pixels remained as well. Note that without
this adaptive thresholding, the differences between the representations as reported
below are even larger.

3.2 Machine learning and classification
The analysis of eye movements and their predictability was embedded into a clas-
sification framework. This required a set of positive, attended, i.e. salient video
locations and a set of negative, non-attended locations. The set of salient locations



consisted of the landing points of the saccades that preceded each fixation. Ad-
ditionally, a temporal offset of 70 ms (prior to the fixation) was introduced to ac-
count for the delay the human visual system exhibits until it can react to an event
in the world. This time lag was determined by cross-correlating the analytical
saliency measures based on the geometric invariants with an ‘empirical saliency’
measure based on real gaze data. The offset with the maximal correlation denoted
the average latency in our natural outdoor scenes.

A common method used for the selection of non-attended movie regions is
shuffling the scanpaths and the videos among each other. This means that the
non-attended locations of a selected video clip are determined using the scan-
paths of a different, randomly selected video. This method has been proposed to
remove artifacts due to non-uniform scene viewing, such as the central fixation
bias (Reinagel and Zador, 1999; Tatler et al., 2005), and in the meantime, assures
that the spatial and temporal distribution of the non-attended locations (over all
movies) is identical to the distribution of the fixations.

To compensate for the possible inaccuracies inherent in both the human vi-
sual system and the eye-tracking devices, local feature-based methods of saliency
prediction also need to take into consideration a neighbourhood of a certain size
around each saccade target. However, using raw pixel information of a reason-
ably-sized image patch is computationally not feasible as it results in dimension-
ality explosion: e.g. for a window with a size of 64×64 pixels (i.e. less than 3×3
degrees) the feature space already has more than 4000 dimensions. We therefore
reduced the features to just one value per movie patch and scale. At each fixated
and non-fixated location we extracted a square patch, from the current frame, cen-
tred around the saccade landing point, and computed the mean energy per pixel
(i.e. the square root of averaged squares) in that window. The computations were
performed on each spatio-temporal level of the above saliency representations,
but in a window whose size was decreased by a factor of two per level in the
spatial domain so that the spatial envelope was kept constant. In time, one frame
of a lower level corresponded to several frames on the original level, so that the
time window was about half a second. The feature energy was thus computed as
follows:

el =

√√√√ 1

W 2
l

Wl∑
i,j

I2
l (i, j) , (6)

where Wl is the window size and Il is a video frame of the l-th spatio-temporal
level of the saliency pyramid.

For each location, we thus obtained a feature vector containing the energy



information (in a specific neighbourhood of the location) on the different spatio-
temporal levels of the invariants H, S, and K. Together with the associated labels
(attended or non-attended), these vectors comprised the input data of the classi-
fier. Note that the dimensionality of the feature space is determined only by the
number of spatio-temporal levels the Gaussian pyramid has (in our case, 5), and
is independent of the patch size.

We divided the set of all attended and non-attended locations into a training set
that contained the fixations of two-thirds of all subjects, and a test set, containing
the fixations of the remaining one-third of the subjects. Gaze data from all 18
movies were used both for training and testing, but for the sake of generality, the
fixations of a subject on a given movie were only present in one of the two data
sets.

For the classification we used an efficient learning tool from machine learning,
namely a soft-margin Support Vector Machine (Schölkopf and Smola, 2002). The
kernel function was a Gaussian whose gamma parameter and the penalty term C,
which controlled the softness, were found by 5-fold cross-validation. For our anal-
ysis, we used the publicly available LIBSVM implementation of SVMs (Chang
and Lin, 2001). Hypothesis testing requires a large number of realisations to ob-
tain stable results; we therefore ran the algorithm on 30 random subdivisions of
the data into a training and a test set.

4 Results
One of the standard metrics used for saliency prediction is the ROC (Receiver Op-
erator Characteristic) score, also referred to as the Area Under the Curve (AUC)
(Tatler et al., 2005). This measure illustrates the discriminating ability of the clas-
sifier over the entire range of prediction rates. An ROC score of 0.5 corresponds
to a random classifier, whereas for perfect discrimination the score will be 1.0.

Quantitative differences in the distribution of prediction rates (ROC scores)
for saliency measures based on the invariants H , S, and K are plotted in Fig. 1.
Due to the spatial and temporal uncertainty of both the target locations (see e.g.
Becker (1991) for saccadic accuracy) and of the eye tracking system, and taking
into consideration the fact that receptive field sizes are in the order of up to several
degrees, we ran our prediction algorithm on multiple window sizes, ranging from
one degree up to a window that covered the full screen (at the screen boundaries,
if required, windows exceeding the dimensions of the screen were clipped to the
size of the overlap). Figure 1 shows the results obtained for a patch size of about
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Figure 1: Box plot comparing ROC scores of the invariants H, S, and K over all
30 training and test set realisations (for a window size of about 5 degrees). Hori-
zontal lines indicate the median, the lower and upper quartiles, and the minimum
and maximum values of the specific result set. Crosses represent outliers. Com-
parison of the prediction performances was done by Wilcoxon’s signed rank test.
Statistical significance obtained at p << 0.001 for H–S and H–K, and p < 0.0314
for S–K.



5 degrees (128 pixels, that is 4.8 degrees).
For all three invariants H, S, and K, ROC scores were significantly higher than

chance, indicating that any of these representations could be a reasonable measure
for bottom-up visual saliency. Interestingly, for a large window covering the full
screen the prediction rate was still above chance, which means that the global
energy measure is predictive by its temporal sequence alone (data not shown).

In case of invariant K, fixated and non-fixated locations were the most dis-
criminable at about 5 degrees window size reaching a median AUC of 0.71, fol-
lowed by S with a median AUC of 0.70, whereas the worst performing was H
having a median ROC score of 0.69. To test the significance of the above ranking
assumptions, we performed a paired non-parametric Wilcoxon signed rank test on
the ROC results of each invariant pair H–S, H–K, and S–K. We found that in all
three cases the differences in saliency predictability were statistically significant
(see Fig. 1).

For window sizes up to 5 degrees, invariant K was consistently the most pre-
dictive, and it was followed by invariant S, which performed better than invariant
H . With larger windows, in the sparser representations such as K the signal-to-
noise ratio decreased significantly, hence their performance dropped more sud-
denly, and no consistent ranking could be observed between the predictability of
H and S.

5 Discussion and conclusion

5.1 Predictability of eye movements
In the context of existing models of saliency prediction, the predictability that
we obtain is higher than previously reported results on both static and dynamic
scenes. The state-of-the-art model of Itti et al. (1998) for still images yields
an ROC score of 0.65 (Peters et al., 2005); however, the use of a more com-
plex model incorporating detailed physiological mechanisms (e.g. eccentricity-
dependent processing) improves its accuracy to about 0.70 AUC. A more recent
study by Kienzle et al. (2007) makes also use of machine learning algorithms to
predict where an observer would look in a video. Their learned interest point
detector achieves an ROC score of 0.63.

Most of the existing computational models of saliency operate on video patch-
es of a certain size in the spatio-temporal pixel domain. Therefore, their pre-
diction performance depends on the dimensionality of these patches; especially



when multiple scales are used, the number of dimensions can easily become very
large. In order to overcome the limitations of the existing machine learning meth-
ods (i.e. that their performance drops significantly when the dimensionality of
the data is high relative to the number of training samples), we have opted for a
low-dimensional representation. We reduced the number of dimensions to only
one value per movie patch, namely the mean feature energy, computed on each
scale. Even though we are aware of the amount of information loss we introduce
by such a notable reduction, we argue that this is a good trade-off between the
incapabilities of learning algorithms to cope with dimensionality explosion and
the information present in the video patches.

However, we do not claim that the low-dimensional representation presented
here is optimal. We expect even higher prediction rates for representations that
incorporate more information at the cost of a moderate increase in number of di-
mensions. Indeed, preliminary results obtained on an anisotropic Gaussian pyra-
mid (with 25 instead of 5 levels at which the invariants H, S, and K have been
extracted) already indicate a significant improvement in prediction, reaching an
AUC of almost 0.80 (compared to the here presented best result of 0.71).

The invariants S and K can account for the fact that moving objects are more
salient since they encode spatio-temporal changes. However, we have ignored a
number of image attributes such as colour and contrast (divisive normalisation)
that certainly do influence the saliency of a movie patch.

Overall, there are a number of reasons why the predictability that we obtain is
higher than one would expect from earlier results. First, our input data are high-
resolution natural movies as opposed to static images or small movies. Second, it
seems that our spatio-temporal features capture the saliency quite well, and third,
we use state-of-the-art machine learning techniques in combination with a very
large data set.

5.2 Gaze guidance
Our interest in the low-level features contributing to saccade target selection de-
rives from our goal to integrate gaze into future visual communication systems by
measuring and guiding eye movements.

One major limitation of our visual communication capabilities is that we can
attend to only a very limited number of features and events at any one time. In
an attempt to overcome these limitations, we propose to guide the observer’s gaze
by designing gaze-contingent interactive displays that change, in real time, the
saliency distribution of the visual scene (Barth et al., 2006). To perform gaze



guidance, we first predict a limited number of candidate locations that would at-
tract the user’s gaze, increase the saliency at the location that is selected for being
attended and, at the same time, decrease saliency at all possible distractors.

To derive such transformations between the two classes of fixated and non-
fixated image patches (making an image region more or less salient), we first
need to find an appropriate feature space with good inter-class separability. Our
low-dimensional representation of the energy vectors computed on a number of
spatio-temporal scales of the invariants seems to be a good candidate for such a
feature space. Using again algorithms from machine learning, rules can now be
derived to manipulate local feature energy at candidate locations in such a manner
that would alter the saliency of that area1.

5.3 Efficient coding and intrinsic dimension
The existence of a linear subspace E (see Eq. 2) already implies the redundancy
of signals with low intrinsic dimension, because the signal is constant and thus
predictable in that subspace. Moreover, the intrinsic dimension of a movie f
is closely related to the curvature of the movie surface {x, y, t, f}. If a signal
is curved it is at least i2D (it cannot be i0D or i1D) and therefore signals with
intrinsic dimensions less than 2 are redundant, because the curved image regions
are unique (see Section 3.1.2).

5.4 Efficient coding and saliency
Our prediction is that the brain may have been able to learn that those regions
in the visual input that are curved, and where the intrinsic dimension is higher,
are more informative and may have used that to obtain a more efficient code.
Previous work has argued in favour of the above argument based on the existence
of end-stopped and motion-selective neurons, and on a number of psychophysical
results – see for example Zetzsche and Barth (1990). Here we have presented
some indirect evidence based on the analysis of eye movements.

1For further information see Barth et al. (2006) or visit http://www.gazecom.eu and
http://www.inb.uni-luebeck.de/research/itap.



5.5 Conclusions
We have shown that eye movements on natural dynamic scenes are quite pre-
dictable even with a very simple low-dimensional feature space. Moreover, we
have differentiated among different types of features based on the intrinsic dimen-
sion of the visual input and have shown that the predictability correlates with the
intrinsic dimension: the higher the intrinsic dimension, the higher the saliency.
Finally, we have discussed how the results relate to the geometry of the input sig-
nal and the principle of efficient coding. We can conclude that the principle of
efficient coding seems to be reflected in the way our observers have decided to
direct their gaze.
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