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1 Introduction

Kohonen's self-organizing feature map (SOFM) (Kohonen 1984) creales a topol-
ogy preserving map from a data manifold M C V onto a lattice A of neural
units . The topology preserving property can be employed in a variety of
information processing tasks, ranging from classification over robotics to data
reduction and knowledge processing. To each neural unit i of A a reference or
synaptic weight vector w; is assigned, defining the receptive field or Voronoi
polyhedron V; of each unit i by the set of all data points v € M which are
matched best by this reference vector. This mapping from the data manifold
M onto the lattice A is called topology preserving, il neighbouring units i have
receptive fields V; which are adjacent on M. Under certain conditions, i.e., if
a topological mismatch between M and A exists, the lattice folds itself into V'
and the topology preservation may be lost (Ritter et al. 1992).

Various qualitative and quantitative methods for characterizing the degree
of topology preservation (Bauer and Pawelzik 1992), (Zrehen 1993), (Der et al.
1993) have been proposed. All these approaches, however, can provide correct
results only for linear submanifolds M C V. If the manifold is nonlinear, like it
1s the case in many practical applications of SOF'Ms, all these approaches can
not distinguish a correct folding due to the folded data manifold from a folding
due to a topological mismatch between M and A. Particularly when using the
SOFM for non-linear principle component analysis one has to have a means
to distingnish between these two cases. In this paper we introduce a method
for quantifying topology preservation which can be applied to linear and non-
linear data manifolds M. Further, this method allows to quaniify the range of
folds. Our approach employes what we call the topographic function, which is
defined based on the so-called masked Voronoi polyhedra V; = V; N M which
were introduced in (Martinetz 1993) for defining neighbourhood and topology
preservation of feature maps.
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Figure 1: Example of a linear (left, M = V) and nonlinear (right, M C V) data
manifolds with the hypothetical positions of the images of the neural units

2 The Topographic Product of a SOFM

The SOFM algorithm definesamap FF': V O M +—— A, where the dimension
of V is ny and A is a n4-dimensional lattice of neural units. With each time
step a stimulus vector v € M is presented. The winner (best matching) unit i*
is defined by

[[wie — vy <|lwi =]y forall i€ A, (1)

with |||, denoting the Euclidean distance in V. The reference vectors w; are
adapted in a learning step according to

Awi=ehpi(v—w) forall ie A, (?)

with the neighbourhood function

A (_Ui'_;"fh) 3
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determining the neighbourhood range in A. |||, denotes the Euclidean dis-
tance in A. ¢ and ¢ are learning parameters. An interesting quantity for
measuring the topology preservation, the topographic product P, has been in-
droduced by Bauer and Pawelzik (Bauer and Pawelzik 1992). It measures the
preservation of the neighbourhood between the neural units i in A and their
reference vectors w; lying on M. However, the topographic product does not
consider the neighbourhood relations of the reference vectors lying in M, but
only the neighbourhood relations of the reference vectors within the embedding
space V. Therefore, an approach based on the topographic product is not able
to differentiate between correct foldings arising from a nonlinear data manifold
M and incorrect foldings which may result from a dimensional conflict between
M and A or an incorrect formation of the map (topological defects, twists,
kinks). An example is shown in Fig.1. In both the linear and nonlinear case
of M the topographic product has the same value indicating a loss of topology
preservation. However in the nonlinear case the map has been formed correctly.



3 The Topographic Function ®%

In this chapter we introduce the topographic function ®4 for measuring the
topology preservation of a SOFM, which considers explicitely the structure of
the data manifold M. Tollowing (Martinetz 1993), we define the receptive field
of a neural unit 7 by

I = Vin M, (1)

which corresponds to the masked Voronoi polyhedron V; in (Martinetz 1993).
The basic idea of our approach is that we do not use the reference vectors wy;
of the neural units 7 but their receptive fields R; to measure neighbourhood
relations. Tn a perfectly ordered SOFM only nearest lattice neighbours i of a
unit 7 have receptive fields R; which are adjecent to ;. If there are other units
which have adjacent receptive fields, perfect topology preservation is lost. Let
Abea Ny x Ny x...xN,, neuron lattice of dimension n4. Then neural unit
i is indicated by i = (41, ...,7,,). For each unit i we define

Ji(R) = #1451 i = il > 3 10 1 # 0} (5)

with kb = 1,..., Nyax, Nmax = maxP4 |N;|. # {-} denotes the cardinality of
a set and ||| ... denotes the maximum norm. Looking at a neural unit 1,
fi (k) determines the number of units j which have receptive fields I?; adjacent
to I7; and, at the same time, have a lattice distance to i larger than k. The
topographic function is then defined by

Y (k)= fi (k). (6)
jeA

®4 is a monotonically decreasing function, and we obtain ¥ = 0 if and only if
the SOF'M is perfectly topology preserving. The largest k for which ®3 (k) # 0
holds yields the range of the largest fold. As depicted in Fig.1 in the linear case
we get @Y (k) £ 0 for all k-values, which indicates a mismatch over the range
of the whole net. In the nonlinear case we obtain the correct result &% (k) = 0.
Choosing a normalized £, i.e., k* = k/Ny,ax, and choosing a normalized d’i\f,

ie, &4 = M /N (N — 374) with N = [1%2, Nk, allows to compare maps of
different, size.

4 Computing the Topographic Function %

Computing @j}..f requires to determine whether two receptive fields Ry, R; are
adjacent on the given manifold M. A way to determine the adjacency of two
receptive fields Ry = Vi M, R; = V; N M has been propnsed in (Martinetz
1993). Let C be a connectivity matrix determining connections between units
i,j € A (in addition to the connectivity matrix defined by the fixed lattice
structure). Initially, the clements Cj; of C are set to zero. Simply by se-
quentially presenting input vectors v € M and each time connecting (setting
Cij = 1) those two units i*, j*, the reference vectors w;. and wj. of which are
closest, and sccond closest to v, leads to a connectivity matrix C;; for which

lim Cg_,‘ =, gy R-,; M RJ 7’3 @ [T)
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is valid. It can be shown (Martinetz 1993) that the resulting connectivity strue-
ture connects units and only units the receptive fields of which are adjacent.
This allows to rewrite eq.(5) to

Flkb=#4 | [F=9llp BhiCe=1} il vy Nvmes (8)

After a SOFM has been formed, we then can determine ®% by the following
algorithm:

1. present an input vector v € M and delermine the two nearest reference

vectors wi., wj..

2. connect the units i*, j*, ie., sel Cieje :=1 and go to step | .

After a sufficient number of input vectors v the algorithm yields a connec-
tivity matrix C for which eq.(7) is valid. C can then be used to calculate the
topographic function ®4 according to eq.(8) and eq.(6).

5 Conclusion

We presented a novel approach to the problem of measuring the topology preser-
vation of a SOIF'M. The approach is based on the neighourhood relations be-
tween receptive fields. The introduced topographic function is an improvement,
over the topographic product suggested in (Bauer and Pawelzik 1992) since it
determines the degree of topology preservation by cousidering explicitely the
given inpul manifold M.

THE REPORTED RESULTS ARE BASED ON WORK DONE IN THE PROJECT 'LADY
SPONSORED BY THE GERMAN ["EDERAL MINISTRY OF RESEARCH AND TECH-
NoLoGY (BMET) uNDER GrANT 01 IN 10613/3.
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