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I. INTRODUCTION

The topology preservation map from a data mani-
fold M C V onto a lattice A of neural units 1 is one
of the advantages of the Kohonen's self-organizing
feature map (SOFM) (Kohonen 1984). This prop-
erty can be used in a variety of information process-
ing tasks, ranging from classification over robotics to
data reduction and knowledge processing. To each
neural unit ¢ of A a reference or synaptic weight
vector w; is assigned, defining the receptive field or
Voronoi polyhedron V; of each unit ¢ by the set of
all data points v € M which are matched best by
this reference vector. This mapping from the data
manifold M onto the lattice A is called topology
preserving, if neighbouring units i have receptive
fields V; which are adjacent on M. Under certain
conditions, Le., if a topological mismatch between
M and A exists, the lattice folds itself into V' and
the topology preservation may be lost (Ritter et al.
1992).

The most known measure for characterizing the

degree of topology preservation, the topographic prod-

uct was introduced by (Bauer and Pawelzik 1992).
Other methods are proposed by (Zrehen 1993), (Der
el al. 1993). All these approaches do not use the
data manifold itself for measuring and in this way
they can provide correct results only for linear sub-
manifolds M C V. If the manifold is nonlinear,
like it is the case in many practical applications of
SOFMs, all these approaches can not distinguish
a correct folding due to the folded data manifold
from a folding due to a topological mismatch be-
tween M and A. Particularly when using the SOFM
for non-linear principle component analysis one has
to have a means to distinguish between these two
cases. In this paper we give a new approach for
quantifying topology preservation using explicitly
the structure of the data manifold. It can be ap-
plied to linear and non-linear data manifolds M.
Further, this method allows to quantify the range
of folds. Our approach employes what we call the
topographic function, which is defined based on the
so-called masked Voronoi polyhedra V; = V, N M
which were introduced in (Martinetz 1993) for defin-

ing neighbourhood and topology preservation of fea-
ture maps.

1. Tue TorPoGRaPHIC PRODUCT APPLIED TO A
SOFM

Kohonen’s algorithm defines a self-organized fea-

ture map (SOFM) from a data manifold M em-

bedded in a ny-dimensional input space V onto a

ns-dimensional lattice A of neural units. With each

time step a stimulus vector v € M is presented. The

winner (best matching) unit i* is defined by
llwie —v|ly < ||lwi—vl||y, forall i€ A,

(1)

with |-y, denoting the Euclidean distance in V.
The reference vectors w; are adapted in a learning
step according to

Awi=c¢his;(v—w;) foral i1€A, (2)

with the neighbourhood function
hirg = exp (-1l 3)

207

determining the neighbourhood range in A. |||,
denotes the Euclidean distance in A. ¢ and o are
learning parameters. The most known method for
quantifying the topology preservation of a SOFM,
the topographic product P, has been introduced by
Bauer and Pawelzik (Bauer and Pawelzik 1992). It
measures the preservation of the neighbourhood be-
tween the neural units ¢ in A and their reference
vectors w; lying on M. However, the topographic
product does not consider the neighbourhood rela-
tions of the reference vectors lying in M, but only
the neighbourhood relations of the reference vectors
within the embedding space V. Hence, an approach
based on the topographic product is not able to dif-
ferentiate between correct foldings arising from a
nonlinear data manifold M and incorrect foldings
which may result from a dimensional conflict be-
tween M and A or an incorrect formation of the
map (topological defects, twists, kinks). An exam-
ple to illustrate the problem is shown in Fig.1. In
both the linear and nonlinear case of M the topo-
graphic product has the same value indicating a loss




of topology preservation. However in the nonlinear
case the map has been formed correctly.

I1I. THE ToPoGrAPHIC Funcrion ¥

In this chapter we define the topographic function
@ for measuring the topology preservation of a
SOTF'M, which considers explicitly the structure of
the data manifold M. It was first introduced in
(Villmann et al. 1994). Following (Martinetz 1993),
we define the receptive field of a neural unit 7 by

R =VinM, (4)

which corresponds to the masked Voronoi polyhe-
dron V; in (Martinetz 1993). The basic idea of our
approach is that we do not use the reference vectors
w; of the neural units ¢ but their receptive fields R;
to measure neighbourhood relations. In a perfectly
ordered SOFM only nearest lattice neighbours ' of
a unit ¢ have receptive fields R; which are adjacent
to ;. If there are other units which have adjacent
receptive fields, perfect topology preservation is lost.
Let A be a Ny x Ny x ... x N, , neuron lattice of
dimension n4. Then neural unit ¢ is indicated by
i=(i1,...,1n,). For each unit ¢ we define

fi(R) = #45 | |li = jllmax > & 3 Ri O R; # 0} (5)

with & = 1,..., Nmax, Neax = maxP4 [N, #{:}
denotes the cardinality of a set and ||-|| . denotes
the maximum norm. Looking at a neural unit i,
fi (k) determines the number of units j which have
receptive fields /%; adjacent to R; and, at the same
time, have a lattice distance to 7 larger than k. The
topographic function is then defined by

O (k)= 3" 5 (k). (®)
jeA

®M is a monotonically decreasing function, and we
obtain ®4 = 0 if and only if the SOFM is per-
fectly topology preserving. The largest k for which
@3 (k) # 0 holds yields the range of the largest
fold. As depicted in Fig.1 in the linear case we get
P4 (k) # 0 for all k-values, which indicates a mis-
match over the range of the whole net. In the non-
linear case we obtain the correct result ®¥ (k) = 0.
Choosing a normalized k, i.e., * = k/ Ny, and

choosing a normalized ®¥ | ie.,

ol = BY/N (N -3"4) (7)

with ¥ = [];2, Ni, allows to compare maps of dif-
ferent size.

IV. CoMPUTING THE TOPOGRAPHIC FUNCTION
(I,M
A
Computing @4 requires to determine whether two
receptive flelds R;, R; are adjacent on the given

manifold M. A way to delermine the adjacency of
two receptive fields B; = V; N M, Iy =V,nM
has been proposed in (Martinetz 1993). Lel C be
a connectivity matrix determining connections be-
tween units 7, j € A (in addition to the connectivity
matrix defined by the fixed lattice structure). Ini-
tially, tlie elements C;; of C are set to zero. Simply
by sequentially presenting input vectors v € M and
each time connecting (setting C;; = 1) those two
units i*, j*, the reference vectors w;. and wj. of
which are closest and second closest to v, leads to a
connectivity matrix C;; for which

lim C"J' =]

t—oo

& RiNR;#0 (8)

is valid. It can be shown (Martinetz 1993) that the
resulting connectivity structure connects units and
only units the receptive fields of which are adjacent.
This allows to rewrite eq.(5) to

fitk)y=#{| lli—jllmax > %5 Cij =1}

(9)
for k-values in the range of k = 1,..., Npax. After
a SOFM has been formed, we then can determine
&M by the following algorithm:

1. present an input vector v € M and determine
the two nearest reference vectors wj., wj-.

2. connect the units #*, §*, i.e, set C;.;. := 1 and
go to step 1.

After a sufficient number of input vectors v the
algorithm ylelds a connectivity matrix C for which
eq.(8) is valid. C can then be used to calculate the
topographic function @4 according to eq.(9) and
eq.(6).

V. COMPARISON OF THE TOPOGRAPHIC
FuncTiON WITH THE TOPOGRAPHIC
ProDUCT FOR VARIOUS EXAMPLES

We applied both the topographic function @4 and
the topographic product to various examples of lin-
ear and nonlinear data manifolds. In the linear cases
both approaches give the same result. In the non-
linear cases, however, only the topographic function
yields a correct result.
At first we investigate the logistic map
Epyy = SpA (L —a5) (10)
The states (2, 2n4+1) of the system form a nearly
linear submanifold M) for small values of A, but
a nonlinear one otherwise. For various cases of A
we trained a chain of 64 neural units to represent
M. We compute both the topographic product
and the topographic function and obtain in all cases
@M = (. The topographic product P decreases with




icreasing A

A= 050: P = 0.0009
A= 3.00: P = —0.002 (11)
A= 395 P = —0.015

The negative values of P indicate an increasing di-
mensional conflict (Bauer and Pawelzik 1992), the
submanifold, however, is real one-dimensional, i.c.
there 1s not a dimensional conflict.

The results of the next test demonstrate that the
stronger the nonlinearity is the lower is the value of
P. As an example we take the twice iterated logistic
map, 1i.c.

Lyt = Az;l,'ﬂ (]. - :L‘") (] — )t.-":n (]. b 33,1)) (12)
with A = 3.95. The submanifold is now generated
by the states (z,,z,42) of the system. For A = 3.00
and A = 3.95 we get P = —0.007 and P = —0.06,
respectively. The topographic function vanishes in
both cases.

If a real dimensional conflict occurs, i.e. the map
‘folds’ itself into the input space, the topographic
function indicates this situation very well. More-
over, it measures the scale of existing folds. As an
example we consider the map from a squared input
space onto a chain of 144 neural units. Then the
chain [olds itself into the input space like a Peano
curve, as shown in Fig. 2. The topographic func-
tion shows the various length scales of the folds. The
highest k-value k* for which ®% (k) # 0 indicates
the longest range, and we find k* ~ 130 (see Fig.2),
re. the range includes nearly the whole chain. In
the figure the k-values are not normalized. The to-
pographic product yields P = —0.07 indicating also
the dimensional conflict.

V1. CONCLUSION

We presented a novel approach to the problem of
measuring the topology preservation of a SOFM.
The approach is based on the neighbourhood rela-
tions between receptive fields. The introduced topo-
graphic function is an improvement over the topo-
graphic product suggested in (Bauer and Pawelzik
1992) since it determines the degree of topology
preservation by considering explicitly the given in-
put manifold M. This was demonstrated for various
examples of nonlinear input manifolds.

THE REPORTED RESULTS ARE BASED ON WORK
DONE IN THE PROJECT 'LADY’ SPONSORED BY
THE GERMAN FEDERAL MINISTRY OF RESEARCH
AND TECHNOLOGY (BMFT) UNDER GRANT 01 IN
106B/3.
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Figure 1: Example of a linear (left, M = V) and
nonlinear (rightt, M C V) data manifolds with the
hypothetical positions of the images of the neural
units
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Figure 2: The topographic function for a map of a
squared input space onto a chain of 144 neural units




