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Topology Preservation in Self-Organizing Feature
Maps: Exact Definition and Measurement

Thomas Villmann, Ralf Der, Michael Herrmann, and Thomas M. Martinetz

Abstract— The neighborhood preservation of self-organizing
feature maps like the Kohonen map is an important property
which is exploited in many applications. However, if a dimen-
sional conflict arises this property is lost. Various qualitative and
quantitative approaches are known for measuring the degree of
topology preservation. They are based on using the locations of
the synaptic weight vectors. These approaches, however, may fail
in case of nonlinear data manifolds. To overcome this problem,
in this paper we present an approach which uses what we
call the induced receptive fields for determining the degree of
topology preservation. We first introduce a precise definition of
topology preservation and then propose a tool for measuring it,
the topographic function. The topographic function vanishes if
and only if the map is topology preserving. We demonstrate the
power of this tool for various examples of data manifolds.

Index Terms—Feature maps, Kohonen map, neural networks,
topology.

I. INTRODUCTION

ASED on a lattice A of N neural units ¢ € A, Kohonen’s
self-organizing feature map algorithm (SOFM) is able
to form a topology preserving map M4 of a data manifold
M C R¢ [1]. This property can be employed in a variety of
information processing tasks, ranging from speech and image
processing over robotics to data reduction and knowledge
processing [2]-[10]. To each neural unit 7 € A a reference
or synaptic weight vector w; € R is assigned. The map
My = (Ya_n,¥Yry—a) of M formed by A is then defined
by the mapping ¥ s, 4 from M to A and the inverse mapping
W 4, from A to M. These two mappings are determined by
Upys M= A, veEeMHi*(v)EA
My = (D
Uy m:A-M; icA-w; €M
with i*(v) as the neural unit with its synaptic weight vector
W;- () closest to v, i.e., with

llwi+ o) = vll € llwj — ol Vi€ A. @)
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Starting from a fixed lattice structure A, Kohonen’s self-
organizing feature map algorithm distributes the synaptic
weighl vectors w; such, that the map M4 of M formed by A
is as topology preserving as possible. The reference vectors
w; are adapted in a learning step according to

A’UJ-,' o 6’7,1'—’,'(’0 s 'U/") forallie A (3)

where v € M is the presented stimulus vector, i*(v) is defined
again by (2), and the neighborhood function

i — |
hi« i = exp ('”—ZUTHA)

determines the neighborhood range in A by the choice of the
radius 0. || - || 4 denotes the Euclidean distance in A. € is the
learning parameter.

To what degree the topology is preserved depends on the
choice of the lattice structure A. Depending on the form of the
manifold M, a one-dimensional, two-dimensional, etc. lattice
has to be chosen to obtain the best result. In most applications,
however, the form of the manifold M is not known and,
hence, it is not clear a priori which lattice structure one should
choose. One has to try different lattice structures and determine
somehow which lattice yields the highest degree of topology
preservation.

Various qualitative and quantitative methods for character-
izing the degree of topology preservation have been proposed
[11]-{17]. All these approaches are based on the evaluations
of the position of the neurons in the lattice and, on the
other hand, on the evaluations of the position of their weight
vectors only. However, none of these approaches take the
form of the data manifold into the measurement. This can not
provide correct results in the case of nonlinear submanifolds
M C R¢ Figs. 1 and 2 show examples of a linear and a
nonlinear data manifold, respectively. In both the linear and
the nonlinear case the positions of the reference vectors are
identical. Hence, none of the above approaches can distinguish
a correct folding due to the folded nonlinear data manifold
from a folding due to a topological mismatch between M and
A as in the linear case, because only the weight vectors are
considered. In particular, when using the SOFM for nonlinear
principle component analysis (PCA) one has to have a means
to differentiate between these two cases.

In our paper we give a new approach for quantifying
topology preservation which explicitly takes the structure of
the data manifold into account. This approach, which employs
what we call the topographic function, can be applied to linear

(C)
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Fig. 1. Example of a linear (M = V) data manifold together with the
hypothetical positions of the images of the neural units. The induced receptive
fields are drawn by dashed lines.
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Fig. 2. Example of a nonlinear (M C V) data manifold together with the
hypothetical positions of the images of the neural units. The induced receptive
fields are drawn by dashed lines.

and nonlinear data manifolds M and, further, allows us to
quantify the range of the folds. This paper is structured as
follows.

In Section II we introduce a mathematical definition of
topology preservation for rectangular lattices A, which in
Section III leads to the so-called topographic function as a
measure for the degree of topology preservation of a map
M, of M. It is shown how the topographic function can
be evaluated by a simple mechanism based on the “compet-
itive Hebbian rule,” which was introduced in [18], [19]. In
Section IV we demonstrate via examples, ranging from the
logistic map over speech data to satellite images, the potential
of the topographic function not only as a measure for the
degree of topology preservation but as a general means for
obtaining information about the dimensionality and structure
of the data manifold M. The results are compared with the
results provided by the so-called topographic product, which
was proposed by [11] as an alternative method for measuring
the degree of topology preservation. In the last section, we
show how the mathematical definition of topology preservation

for rectangular lattices can be extended to more general lattice
structures. :

II. A DEFINITION OF TOPOLOGY
PRESERVATION FOR RECTANGULAR LATTICES

We want to call a map Mg = (Pa_p,Up—a) of M
“topology*preserving,” if both the mapping ¥as_, 4 from M
to A as well as the inverse mapping V4,5 from A to M
is neighborhood preserving. Hence, to determine whether a
SOFM is topology preserving we have to measure these two
neighborhood preservations. Yet, it is not clear what in general
neighborhood preservation means [12]. Therefore, to be able
to measure these two neighborhood preservations we first have
to define them. Per definition we regard the mapping ¥ s, 4
from M to A as being neighborhood preserving if reference
vectors w;, w;, which are adjacent on M, belong to vertices
1, J, which are neighbors in A. On the other hand, the inverse
mapping ¥ 4,5 from A to M is neighborhood preserving if
adjacent vertices %, j are mapped onto locations w;, w; which
are neighbors on M. How can we define neighborhood of
vertices 1, j in A and neighborhood of reference vectors w;, w;
on M in a way that the intuitive understanding of topology
preservation of a SOFM is captured?

A reasonable definition for neighborhood of reference vec-
tors w;,w; on M was given in [18] and [19] based on
the masked Voronoi polyhedra of w; and w;. Two synaptic
weight vectors w;,w; are adjacent on M if and only if their
receptive fields R;, R; on M, determined by the masked
Voronoi polyhedra R; = ffi, R; = 17, with

Vi={veM||lv-will <|lv-will VieA} ()

are adjacent, i.e., if and only if R; N R; # 0. We notice that
the definition of adjacency by the nonvanishing intersections
makes sense, because the 17, are defined as closed sets.

Two vertices i = (i1, " %dy )y J = (J1,*,Jda) Of a rect-
angular d 4-dimensional lattice are adjacent in A if and only
if they are nearest neighbors in the lattice A. Obviously, this
demands vertices which are adjacent in the lattice according

to the Euclidean norm || - ||g or the summation-norm
def <>
€
I-le = Y 10)il (6)
i=1

to be assigned to neighboring locations w;. However, a proper
definition of the two neighborhood preservations requires us
to take into account a second neighborhood. This is illustrated
in Figs. 3 and 4, which show a two-dimensional rectangular
lattice representing a square in an ideal state and with small
distortions, respectively. To be able to discern the adjacency
of reference vectors w; their receptive fields, i.e., their masked
Voronoi polygons V;, are depicted. Of course, the maps in both
Figs. 3 and 4 are topology preserving. This means, adjacent
locations w; have to belong to adjacent vertices. However this
is not the case, at least not according to the Euclidean norm
Il £, as we can discern from Fig. 4. However, also in the ideal
case of Fig. 3 one can find violations of topology preservation
in the above sense: the receptive fields of vertices which are
diagonal neighbors in A have a nonvanishing intersection, i.e.,
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Fig. 3. Ideal mapping of a squared input space onto a squared lattice
of neural units. The locations w; together with their receptive fields are
shown. Two receptive fields are especially depicted, the vertices of which
lie diagonally in the lattice A. These receptive fields have a nonvanishing
intersection of one point and, hence, are adjacent.

their locations are adjacent. Hence, this definition would be too
strict. To overcome this problem we introduce an additional
neighborhood in A, a neighborhood based on the maximum-
norm

M

of the vertices. Now, in Fig. 4 all adjacent reference vectors
w; are mapped onto vertices which are neighbors according to
the new neighborhood defined by || - ||max. On the other hand,
if one tries to use this distance measure (7) also to determine
the degree of topology preservation of the map ¥ 4_, 7, it will

_~fail, as we can see in Fig. 4. Therefore, here we have to take

.he Euclidean distance in A.

This leads us to the following definition of topology preser-
vation of SOFM’s with rectangular lattices.

Definition 1: Let A be a d 4-dimensional rectangular lattice
and M be a data manifold M C R% A map M,y =
(Pa—n,Upr—a) of M is topology preserving if both the
mapping Wy, 4 from M to A and the inverse mapping
W4, from A to M is neighborhood preserving.

1) The mapping ¥ s, 4 is neighborhood preserving if and
only if locations w;, w; which are adjacent on M belong
to vertices %, j which are adjacent in A according to the
maximum-norm || - ||max on A.

2) The mapping ¥ 4,5 is neighborhood preserving if and
only if vertices %, j which are adjacent in A according to
the Euclidean norm ||-|| g or the summation-norm ||-||s
on A are assigned to neighboring locations w;, w; € M.

These definitions of neighborhood preservation are valid for
the special but most widespread case of SOFM’s based on

Fig. 4. Map with small distortions of a squared input space onto a squared
lattice of neural units. The locations w; together with their receptive fields are
shown. Three receptive fields are depicted gray scaled, the vertices belonging
to the locations of which lie diagonally in the lattice A (pair wise).

rectangular lattices. How they can be enhanced to more general
lattice structures is shown in Section V.

III. THE TOPOGRAPHIC FUNCTION &%

A. Definition of the Topographic Function ®}

Let A be a N; x Ny x --- X Ng, rectangular lattice of
dimension d 4. The lattice consists of N = Ny x NaX---XNg,
neural units, and each unit ¢ is indicated by ¢ = (i1, ,%d,).
To each i a reference vector is assigned which maps ¢ onto
a location w; on the given data manifold M. As has been
outlined in [18] and [19], the masked Voronoi polyhedra in
(5) define the so-called induced Delaunay triangulation Dy,
of the set of w;. The induced Delaunay triangulation is the
graph which connects those and only those w;, w; which have
adjacent masked Voronoi polyhedra Vi,f/j, i.e., which have
adjacent receptive fields R;, R; on M. The induced Delaunay
triangulation Dy defines a distance metric || - ||p,, between
the w;. The distance

®)

paary
dpy, (i,5) = |lwi — wjllp,,

between two reference vectors is then determined by their
shortest distance within the graph Dj,. Hence, two reference
vectors w;, w; are adjacent on M according to our definition
in Section II if and only if they are nearest neighbors in
Dy, ie., if and only if dp,, (¢,7) = 1. We can now define
the topographic function ®} which is able to measure the
topology preservation of a SOFM according to our definition.
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Fig. 5. Plot of a mapping of a squared input space onto a chain of 100 neural
units. The receptive fields of the units are shown.

For each neural unit 7 we define

Fik) K #0 | 1li = fllmax > k5 dp,, (5,5) = 1}
F(=k) E #( | li-dlle=1; dp,(i,5) > k}

with k = 1,---, N — 1. #{-} denotes the cardinality of a
set. Looking at a neural unit i, f;(k) measures the neigh-
borhood preservation of ¥ps_, 4, and f;(—k) measures the
neighborhood preservation of W,4_,p, as they have been
defined in Section II. The topographic function of the map
My = (Yaonm, Yr—a) is then defined by

®

o [FZjealith) k>0
oM (k) = <1>M(1) +®¥(-1) k=0 (10
ZJGA fi(k) k <0.

We obtain ®4/ = 0 and, particularly, %/ (0) = 0 if and only
if the SOFM is perfectly topology preserving.

The largest kt > 0 for which ®%(k*) # 0 holds yields
the range of the largest fold if the effective dimension of the
data manifold M is larger then the dimension d4 of the lattice
A. This is depicted in Figs. 5 and 6. Fig. 5 shows a map of
a squared data manifold onto a chain of 100 neural units,
together with their receptive fields. The folds involve the whole
chain and, hence, the topographic function vanishes only for
k-values larger then k* = 98, as can be seen in Fig. 6. On the
other hand, the smallest k= < 0 for which ®4 (k) # 0 holds
yields the range of violations of topology preservation if the
effective dimension of the data manifold M is smaller than
the dimension d4 of the lattice A. In this way the values k™
and k™ give information about the degree of the dimensional
conflict. Small values of k% and k™ indicate that there are
only local dimensional conflicts, whereas large values indicate
the global character of the dimensional conflict.
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Fig. 6. The topographic function of a mapping of a squared input space
onto a chain of 100 neural units.

To compare lattices with different structures and number of
neural units it is useful to introduce a normalization of the
k-values so that

ki kg €[-1,1) an

holds.

B. Evaluating the Topographic Function ®}

Calculating ®% requires to determine the induced Delaunay
triangulation Djys. A way to determine D), has been proposed
in [18] and [19]. Let C be a connectivity matrix which
determines connections between units i,j € A (in addition to
the connectivity matrix defined by the fixed lattice structure).
Initially, the elements C;; € {0,1} of C are set to zero.
Furthermore, we assume that the set W = {wy, -+, wn} of
all the reference vectors is dense in M, i.e., if the reference
vectors w;-,w;- are closest and second closest to an arbitrary
given v € M then the triangle A(v, w;-, w;-) lies completely
in M. Then it can be shown that simply by sequentially
presenting input vectors v € M and each time connecting
those two units ¢*, j* (setting C;- ;- = 1) the reference vectors
w;~,w;- of which are closest and second closest to v, the
connectivity matrix C converges to

imCiy;=1 & RNOR;#£0

Jm (12)
[18], [19]. After a sufficient number of input vectors v have
been presented, the connectivity matrix C connects units and
only units %,j the receptive fields R; = Vi, R; = V of
which are adjacent and, hence, defines the 1nduced Delaunay
triangulation D). With this algorithm we obtain the following
scheme for determining the graph structure C of the Delaunay
triangulation.

1) present an input vector v € M,

2) determine the nearest reference vector w;- and the

second nearest reference vector wj-;

3) connect the units ¢*, j*, i.e., set Cj-j» := 1;

4) go to step 1.
With this connectivity matrix C we are able to determine the
distances dp,, (%, j) between the reference vectors [20], which
then allows us to calculate <I>1){’ according to (9) and (10).
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In practice it is possible to determine the matrix C in
a parallel way to the learning algorithm for the weights.
Therefore we introduce in addition to the usual algorithm a
suitable chosen maximal age amax Of a connection C;;. For
instance, we choose amax = N/p where N is the number of
neural units and p is p = quM vP(v)dv for all v € V. In
every time step the age a;-; of all existing connections of the
best matching unit ¢* is increased. The age a;-j- of the new
connection C;- ;- of the two best matching units is set to zero.
Connections C;-; with an age higher than the maximal age
amax Will be removed. This approach was first used in [18]
and [19] to compute the Delaunay triangulation of a “neural-
gas-network” parallel to the evaluation of the net. With this
algorithm we obtain the following scheme for determining
oy

1) present an input vector v € M,

2) determine the nearest reference vector w;. and the

second nearest reference vector w;«;
3) increase the age a;-; for all j for which Ci-; = 1 holds;
4) connect the units i*, 7*, i.e., set C;+j» := 1 and a;»j» :=
0;

5) set Ciuj =0 i @i*j > Gmax;

6) go to step 1.

At least we have to discuss what a sufficient number of
input vectors for the computation of the connectivity matrix
C is. For obtaining a rough lower bound we investigate a
rectangular network A of N neurons with the dimension da
and a homogen data distribution in M C R, Then each
(inner) neuron possess 394 —1 lattice neighbors. If we are only
interested in to determine whether topology defects occur or
not, at least cmin - N - (394 — 1) inputs are necessary with
Cmin has to be range greater the 10!, If the scale of the
topology defects is also of interest all possible connections
have to be considered. Then this lower band increases to
Cmin - N? - (3% — 1). Using the above parallel approach for
determining the connectivity matrix these lower bounds in the
reality are not restrictive.

IV. APPLICATIONS OF THE TOPOGRAPHIC FUNCTION
AND COMPARISON WITH THE TOPOGRAPHIC PRODUCT

Kohonen’s algorithm defines a SOFM from a data manifold
M embedded in a d-dimensional input space R¢ onto a d-
dimensional lattice A of neural units. A method for quantifying
the topology preservation of a SOFM is the topographic
product P which was introduced by Bauer and Pawelzik [11].
It measures the neighborhood preservation of the mapping
from the neural units 7 in A onto their reference vectors w;.
Thereby however, the topographic product does not take into
account the shape of M, but considers only the neighborhood
relations of the reference vectors within the embedding space
V. Hence, an approach based on the topographic product is
not able to differentiate between correct foldings arising from
a nonlinear data manifold M and incorrect foldings which
may result from a dimensional conflict between M and A or
an incorrect formation of the map (topological defects, twists,
kinks). An example which illustrates the problem is shown
in Figs. 1 and 2. For both the linear and nonlinear M the
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topographic product has the same value indicating a loss of
topology preservation. However, in the nonlinear case the map
has been formed correctly.

As mentioned in the introduction all other known measures
also take only the position of the weight vectors into account.
Hence, the above described problem is not specific for the to-
pographic product. However, because the topographic product
is most widely spread we compare the topographic function
only with this measure.

For a better understanding we briefly introduce the to-
pograRhic product. For a detailed description see [11]. The
topographic product considers all orders of neighborhood.
For each neuron i the sequences ni (i) and n} (i) have to
be determined, where ni (i) denotes the kth neighbor of i,
with Euclidean distance measured in A, and n}(i) denotes
the kth neighbor of i, with Euclidean distance evaluated
in M between w; and Wy M (i) From these sequences, the
intermediate quantity

ko dM (w;,w,a A (i nA(i 73
Py(i k) = (HdM(’” Wapy)  dA( nj,w((.)))))

('w,-,wnlu(i)) dA(i,n, ]

(13)

is computed. Averaging over all neighborhood orders k and
neurons i leads to the topographic product

: N-1 .
P m z; kz::l log(Ps(3, k)). (14)

The topographic product P can take on positive or negative
values, which have to be interpreted as follows: In the linear
case we get the following values for P, depending on whether
d4 is smaller, equal to or larger then d [11]

P<0 fordg<d
P=0 fordsg=d
P>0 fordy >d.

15)

For instance, if we map a squared input space onto a lattice
of 16 x 16 neural units, we obtain P = 0.0005.

We applied both the topographic function ®A and the
topographic product P to various examples of linear and
nonlinear data manifolds. In the linear cases both approaches
gave the same results. In the nonlinear cases, however, only
the topographic function provided correct results. If a real
dimensional conflict occurs, i.e., the map “folds” itself into the
input space, the topographic function indicates this situation.
Further, it is even able to measure the scale of existing folds.
As an example we consider again the mapping from a squared
input space onto a chain of 100 neural units. In this case the
chain folds itself into the input space like a Peano curve, as
shown in Fig. 5. The topographic function reveals the various
length-scales of the folds. The highest k-value K* for which
X (k) # 0 indicates the longest range. For our example we
find K* = 98 (see Fig. 6), i.e., the range includes nearly the
whole chain. The topographic product yields P = —0.107
which also indicates the dimensional conflict.

To demonstrate the difference between the topographic
product and the topographic function in the case of nonlinear
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Fig. 7. Two examples of a plot of pairs (zn,Zn+1) € M) of the logistic mapping with different values for the nonlinearity-parameter A = 0.5 and

A = 3.95. The maximum of the x,4i-values is 5

gl

data manifolds we first investigate the logistic map
(16)

The states (zn,Zn41) of the system form a nearly linear
submanifold M) for small values of A, but a nonlinear one
otherwise (see Fig. 7). For various cases of A we trained
a chain of 64 neural units to represent M. We computed
both the topographic product and the topographic function
and obtained for each A the result % = 0. The topographic
product P, however, decreased with increasing A

A =0.50: P = 0.0009
A=3.00: P =-0.002
A=395: P = -0.015.
The negative values of P indicate an increasing dimensional
conflict [see (15)]. The submanifold M), however, is always
one-dimensional; i.e., there is actually no dimensional conflict.
As second example we take the twice iterated logistic map,
ie,

Bkt = Dalll — T, )

a7

Tpia = A22a(1 - 2,)(1 = Azp(1 - 2,)).  (18)
The submanifold is now generated by the states (z,, Tp42) of
the system (see Fig. 8). For A = 3.00 and A = 3.95 we obtain
P = —0.007 and P = —0.06, respectively. The topographic
function, however, vanishes in both cases, as it should.

Now we investigate a more realistic example. The satellites
of LANDSAT-TM type produce pictures of the earth in seven
different spectral bands. The ground resolution in meter is 30
x 30 for the bands 1-5 and band 7. Band 6 has a resolution
of 60 x 60 only. The spectral bands represent useful domains
of the whole spectrum in order to detect and discriminate
vegetation, water, rock formations and cultural features [21],
[22]. The spectral information, i.e., the intensity of the bands
associated with each pixel of a LANDSAT scene is represented

by a vector v € R?¢ with d = 7, the number of spectral
bands. Because of the rougher resolution of band 6 (thermal
band) this channel is often dropped. Hence, the LANDSAT
data may be represented as clouds of data points in a six-
dimensional space. The aim of any classification algorithm
is to subdivide this data space into subsets of data points
which belong to a certain category corresponding to a specific
feature like wood, industrial region, etc., each feature being
specified by a certain prototype data vector. An approach with
self-organizing feature maps has been successfully applied in
meteorology (cloud detection) [23] and earth surface clustering
of Kuwait [24].

One way to get good results for visualization is to use a
SOFM dimension d4 = 3. Then we are able to interpret
the positions of the neurons in the three-dimensional neuron
lattice A as a vector ¢ = (r, g,b) in the color space C, where
r,g,b are the intensity of the colors red, green and blue.
This assigns colors to categories (winner neurons) so that
we end up immediately with the pseudo color version of the
original picture for visual interpretation [25]. However, since
we are mapping the data clouds from a six-dimensional input
space onto a three-dimensional color space there may arise
dimensional conflicts and the visual interpretation may fail.
Therefore, we tested lattices with the dimensions d4 = 1,2,3
with 256, 16 x 16 and 7 x 6 x 6 neural units, respectively, to
see whether they are topology preserving according to both the
topographic product and the topographic function. The values
for the topographic products are

da=1:P =0.0449
da =2:P =0.0066
dsa =3: P =-0.0569

which suggests to prefer the two-dimensional configuration.
However, the topographic function still indicates mismatches,

(19
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Fig. 8. Two examples of a plot of pairs (Zn,Zn+2) € M) of the twice-iterated logistic mapping with different values for the nonlinearity-parameter A = 0.5
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Fig. 9. The topographic functions obtained from a mapping of a six-dimensional LANDSAT TM satellite image onto a chain of 256 neural units (points
as A), onto a squared lattice of 16 X 16 neural units (points as [J) and onto a three-dimensional lattice of 7 X 6 x 6 neural units (points as ¢). The

normalization (11) of the k-values was used.

as shown in Fig. 9 where the normalization (11) of the k-
values was used. These results demonstrate that a visual
interpretation of the results without a detailed consideration of
the topology preserving property of the SOFM is misleading.

Finally, we discuss, again in comparison to the topographic
product, the application of our approach to a set of speech
data from the DPI-database of the III. Physikalisches Institut,
Universitdt Gottingen, Germany. The data preprocessing is
described in [26]. Here we remark only that the 4500 feature

vectors represent a data submanifold lying in a 19-dimensional
input space. We applied various SOFM’s of lattice dimensions
dg = 2,---,4 to the data manifold. The topographic function
for all cases is shown in Fig. 10. In agreement with [11] we
obtain that in all cases the topology preservation of the map is
not perfect because the high ®% (0)-values. The &%/ (0)-values
of the three-dimensional and the two-dimensional lattices are
suggesting to take these, again in anology to the results
obtained from the topographic product, for which the values
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Fig. 10. The topographic functions obtained from a mapping of a set of speech data onto various lattices of neural units (two-dimensional—C],
three-dimensional—o, four-dimensional—o). The normalization (11) of the k-values was used.

P2dim = —0.0282, P3dim = 0-0191,P4dim = 0.0367 were
obtained [27]. Other investigations of these speech data yield
the effective dimension d =~ 2.34 [27], i.e., the modified
topographic function obtains similar results.

V. A DEFINITION OF TOPOLOGY
PRESERVATION FOR MORE GENERAL LATTICES

In this section we extend our Definition 1 of topology
preservation to the case of more general lattice structures. We
now only assume A to be a network of N neurons which are
. situated at points i = (i1,---,iq,) € R%4. The basic idea is
to describe the property of topology preservation in terms of
mathematical topology. The property of topology preservation
of a map may then be based on the continuity of this map
between topological spaces.

The induced Voronoi diagram V), of a subset M C R and
its dual, the induced Delaunay graph (Voronoi graph) Dy with
respect to a set S = {wy,---,wy} of points w; € M C R,
is given by the masked Voronoi polyhedra

Vis{zeM||lz—wil <lle—wjll j=1,---,N, j#i}

(20)
as shown in [18] and [19]. We remark that the Voronoi poly-
hedra are closed sets. The cells form a complete partitioning
of M in the sense that M = Uf;l V. The induced Voronoi
diagram V), uniquely corresponds to its induced Delaunay
graph Dy [28]. Two Voronoi cells V,,VJ are connected in
D), if and only if the intersection of it is nonvanishing, i.e.,
Vi N ‘7J # (0 [18], [19], [28], [29]. Now we can define in Dy,
a graph metric as the minimal path length in the graph. In the
general case the Voronoi diagram V of R¢ with respect to S
is given by the Voronoi cells defined by

Vi={z € R | o —wil < llo —wjll =1,---,N, j #i}.
@n

Using the concepts introduced above we are now able to define
in general terms what topology preservation for arbitrary
lattices A with the connectivity graph C4 means.

In analogy to Section III-A we define two kinds of neigh-
borhood in the lattice A, but now as abstract topological
definitions:

Definition 2: Suppose A to be a network of N neurons
which are situated at points i = (i1,---,i4,) € R4 with
reference or synaptic weight vectors w; € M C R? The
connectivity graph C4 of A defines the structure of A.
Let furthermore C4(i) denote C# where the neural unit i
was taken as root. A (discrete) topology 7 (i) is induced
by the graph metric in C4(i). 7,f (i) is said to be the
strong neighborhood topology in A with respect to ¢, and
(A, T (7)) is a topological space.

Definition 3: Consider for the moment A to be a set of
points in R94. Let V be the Voronoi diagram of R4+ with
respect to A and Dy be its dual, the Delaunay graph. Let
furthermore D 4(7) denote D4 where the neural unit ¢ was
taken as root. D4(z) is equipped with the graph metric that
in turn induces the (discrete) topology 7, (i)ar in V and,
hence, also in A. 7 () is said to be the weak neighborhood
topology in A with respect to ¢, and (A, 7, (7)) is a further
topological space defined on the set A.

Remark 1: In the case of a rectangular lattice the weak
neighborhood topology 7, () is weaker then the strong neigh-
borhood topology 7, (i) also in the sense of mathematical
topology [30], [31].

In the next step we introduce a topology on the set of
the synaptic weight vectors on the basis of their receptive
fields, which again allows us to describe the neighborhood
relationships between two vectors.

Definition 4: Let ¥4_,pr : A - MA Cc M C R4 be a
map attributing to each neuron i a specific vector w; € M*
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with M4 = {w; € R¢ | i € A}. Furthermore, let V; be the
induced Voronoi diagram of M with respect to M#. Let G5 be
the dual Delaunay graph of V. Let furthermore G/ () denote

Gar where the neural unit ¢ was taken as root. A (discrete)
topology 7, (i) with respect to i € A is induced by the graph -

metric in Gaz(%). Gas(2) is equipped with the graph metric that
in turn induces the local (discrete) topology Zjs4 (3) in Gas(4)
and, hence, also in M4. Ty 4(i) is said to be the W _, ;-
induced neighborhood topology with respect to i in M4
and (M*, Ty (i)) is a topological space.

Now topology preservation of a map can be expressed by
the following definition.

Definition 5: The map M4 = (V4_pr, ¥pr— 4) is said to
be topology preserving if both Wy, 4 : (M#A, Tya(i)) —
(A, T, () and Wa_ps ¢ (A, TS (i) = (MA, Tyya(d)) are
continuous maps of the respective topological spaces for all
neural units : € A where Up;_, 4 : R4 D M — A is defined
by i(v) = arg(min;e4 ||v — w;]|). Irrespective of the different
topologies Was_, 4 is the inverse mapping of W 4_, ;.

We have immediately the following two corollaries for the
most important cases of rectangular and hexagonal (triangular)
lattices.

Corollary 1: In the case of a rectangular d4-dimensional
lattice A of neurons the strong topology is induced by the
Euclidean norm || - ||[g in A or the summation-norm || -
s = ): 1 1();l, and the weak topology is induced by the
maximum-norm || - ||max = ma.x;i= [(-)j]- The systems of
open sets Sy (i) and Spax(i) defining the topologies 7,/ (i) =
T (i) and T (i) = T"**(i) are determined by

Ss(i)={sk|sk={leA||i-ls=k> 1}} (22
and
Smax(i) = {sk | sk ={l€ A = Ullmax = k > 1}}
(23)

respectively.

Corollary 2: In the special case of A being a hexagonal
(triangular) lattice the weak and strong topology coincide.
Hence, the definition of topology preservation relies on a
single topology in the net which corresponds to the strong
neighborhood topology.

The conclusion in Corollary 2 is in agreement with the
definition of neighborhood given in [19]. By means of the
Definitions 2, 3, 4, and 5 we can now generalize the definition
of the topographic function given in the (9) and (10). For each
unit ¢ we define

1) # {5 | dry(d) > ks draolind) =1}

def Lot
Fi(=R) E {3 | dry (69 = 1 d,69) > K}
(24)
with k = 1,---, N — 1. #{-} denotes the cardinality of the

set and
. .\ def
dr@)(6,3) = llwi — wjllzog). (25)
is a distance measure based on the topology 7°(:). Looking
at a neural unit i, f;(k) with £ > 0 determines the continuity

of Wy and fi(k) with k& < O determines the continuity
of W 4_,pr as defined above. The topographic function of the
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neural lattice A with respect to the input manifold M is then,
in analogy to Definition ( 10), again defined as

def ZJEA f](k) k>0
oM (k) = <1>M(1)+<1> (-1) k=0 (26)
ZJEA fJ(k) k<0

in analogy to Section III-A we can make the following remark.

Remark 2: We obtain ®}f = 0 and, particularly, % (0) =
0 if and only if the SOFM is perfectly topology preserving.
The largest k* > 0 for which ®%4/(k*) # 0 holds yields the
range of the largest fold if the effective dimension of the data
manifold M is larger than the dimension d4 of the lattice A.
The smallést k= < 0 for which ®% (k) # 0 holds yields the
range of the largest fold if the effective dimension of the data
marifold M is smaller then the dimension d 4 of the lattice A.
Small values of k* and k™ indicate that there are only local
conflicts, whereas large values indicate a global dimensional
conflict.

Kohonen gave a definition for what it means for a one-
dimensional topographic map to be ordered, which finally
should be discussed in the light of the definition studied in
this paper. The following definition, only valid for the one-
dimensional case, was introduced in [32].

Definition 6: We consider a chain of N neural units ¢ with
weight vectors w; and receptive fields R; = V; as defined in
5. Let n;(v) be an activity function of the ith neuron with
respect to a stimuli vector v € M C R¢, for instance the
negative distance — ||w; — v|| or the inverse distance (ﬁ)

Let X = {z; e M CR?|j=1,---,N} be a set of points

Rel Rel Rel Rel
such, that ; o z3 o z3 o --- o zy holds and for

each neural unit i; exists a z; € X for which z; € R;, holds.

Rel ,
The o is an arbitrary suitably chosen relation, not necessanly
transitive. The system is said to implement a one-dimensional
ordered mapping if for i; > 15 > i3 > -+ > iy

M (21) = max_ni(z1)

Ma(%2) = max, 7:(z2)

My (73) = , max 7i(z3) @7
My (2N) =, max ni(zn)

holds.

In this paper we have given an explicit order relation 5
based on an underlying topology, in contrast to the requirement
of the existence of such a relation. The proposed straight-
forward generalization of definition (27) to higher dimensions
is (as pointed out in [33]) by no means trivial. In fact, one

needs to make the relation ‘6 more explicit in order to find
whether definition (27) is applicable to higher-dimension, too.
In this sense we gave the justification for Kohonen’s early
framework and solved the problem of general definition of
topology preservation what he carried out in [12], although the
starting point of our investigation was the desire to improve
the methods proposed in [11].
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A further issue is the topology preservation of the map
W s, 4 which has been pointed out to be crucial as well for a
strict definition of the intuitive notion of topology preservation.

VI. CONCLUSION

We presented a novel approach to the problem of measuring
“the topology preservation of a SOFM. The approach is based
on the neighborhood relations between receptive fields. The
introduced topographic function is an improvement over the
topographic product suggested in [11] since it determines
the degree of topology preservation by considering the shape
of the given input manifold M. This was demonstrated for
various examples of nonlinear input manifolds. Furthermore,
we developed a general definition of topology preservation
for SOFM, based on topological spaces. It turns out that this
definition is a generalization of a definition which has been

““oroposed by Kohonen for the one-dimensional case.
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