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Abstract

In this paper we present a new approach to the problem of mea-
suring the topology preservation in SOFM. We introduce a precise
definition of the meaning of that property and derive the so-called
topographic function for its measuring based on the receptive fields
of the neural units using explicitly the structure of the given data
manifold.

1 Introduction

The capability of topology—preserving mapping of a data manifold onto a
lattice of neural units is one of the advantages of Kohonen’s self-organizing
feature map (SOFM) [8],[9], [12]. This property can be used in a variety
of information processing tasks, ranging from classification over robotics to
data reduction and knowledge processing. To each neural unit a reference or
synaptic weight vector is assigned, defining the receptive field consisting of
all data points which are matched best by this reference vector.

Various qualitative and quantitative methods for characterizing the de-
gree of topology preservation [1], [5], [16] have been proposed. However,
all these approaches use only an intuitive definition of topology preserva-
tion based on the consideration of the weights of the neural units. These



approaches can not distinguish a correct folding due to the folded data man-
ifold from a folding due to a topological mismatch between data manifold
and neural lattice. The problem is shown in Fig.1. In both the linear and
nonlinear case of M the situations of the weight vector s of the neural units
are the same and, hence, the methods based on the consideration of the
weight vectors would indicate a dimensional conflict in both cases. However
in the nonlinear case the map has been formed correctly. Particularly, when
using the SOFM {or non-linear principle component analysis one has to have
a means to distinguish between these two cases.

In the case of the input and network space both being one-dimensional
the definition of topology preservation is trivial: there are essentially two
ordered arrangements of neurons, one with increasing, the other with de-
creasing neural indices when moving through the input space. For higher di-
mensionalities it is intuitively clear what topology preservation should mean,
although no formal definition has been given. By the use of the formalism of
the mathematical topology we derived a general definition of this property
and a new approach for quantifying it using explicitly the structure of the
data manifold.

Kohonen’s algorithm determines a SOFM describing the map Wp_ 4
from a data manifold M C R¢ onto a d4-dimensional lattice A C Réa of
neural units and the inverse mapping U, The structure of the lattice
s defined by its connectivity graph C*. The map My = (Y4_pr, Uas—.4)
of M formed by A is then determined by

Unpoa : M— A veMr—i*(v)e A
My = (1)
Ui @ A— M teEAr—w, eM

with 2*(v) as the neural unit with its synaptic weight vector Wis () closest to
v, 1.e., with

wa-(u) e ?»H <lw;—v|| VijeA (2)
Kohonen’s self-organizing feature map algorithm distributes the synaptic
weight vectors w; such, that the map My of M formed by A is as topology

preserving as possible. The reference vectors w; are adapted in a learning
step according to

A w; = Eh,‘»ﬂ' (’U — wq;) Vi € /11, (3)

where v € M is the presented stimulus vector, i* (v) is defined again by cq.
(2) and the neighborhood function

v 2
I —1
h{«,i = exp (-—H—‘)E.?“—’i) (4)

determines the neighborhood range in A by the choice of the radius o.
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denotes the Euclidean distance in A. ¢ is the learning parameter.



2 Definition of Topology Preservation in SOFM

We want to call a map My = (V4_p, Upr—a) of M “topology preserving”, if
both the mapping ¥y 4 from M to A as well as the inverse mapping ¥ 4_
from A to M is neighborhood preserving. Hence, to determine whether a
SOFM is topology preserving we have to measure these two neighborhood
preservations. Per definition we regard the mapping Wps .4 from M to A as
being neighborhood preserving if reference vectors w;, w; which are adjacent
on M, belong to vertices 7, j, which are ncighbors in A. On the other
hand, the inverse mapping ¥4 from A to M is neighborhood preserving if
adjacent vertices ¢, j are mapped onto locations w;, w; which are neighbors on
M. How can we define neighborhood of neural units i, j in A and neighborhood
of reference vectors w;, w; on M in a way that the intuitive understanding
of topology preservation of a SOFM is captured?

The basic idea is to describe the property of topology preservation in
terms of the mathematical topology [14]. Then the property of topology
preservation of a map may formulate by the continuity of this map between
topological spaces. At first we introduce some helpful concepts. The induced
Voronoi diagram Vi of a subset M C R? and its dual the Delaunay graph
(Voronoi graph) Dy with respect to a set S = {wy,...,wy} of points w; €
M C R¢ is given by the masked Voronoi polyhedra

Vi={eeM||le—wi| <|e—-wj]| j=1...N, j#i} (5)

as shown in [10], [11]. We remark that the Voronoi polyhedra are closed sets.
The cells form a complete partitioning of M in the sense that M = UN, Vi
The induced Voronoi diagram Vjs uniquely corresponds to its Delaunay graph
Dy [4]. Two Voronoi cells Vi, {/j are connected in Dy if and only if the
intersection of it is non-vanishing, i.e. V; NV, # 0 [4], [15]. This allows us
to define a graph metric in Dy as the minimal path length in the graph. In
the general case the Voronoi diagram ¥ of ¢ with respect to S is given by
the Voronoi cells defined by

Vi={ze®|le-wll<lz—wi] j=1..N, j#i} (6

Using the above introduced concepts we are now able to define in a gen-
eral manner what topology preservation for arbitrary lattices A with the
connectivity graph C# means. However, a proper definition of the topol-
ogy preservation of the two maps of M, which allows small distortions as
depicted in Fig.2 requires two different kinds of topology in the lattice A:

Definition 2.1 Suppose A to be a network of N neurons which are situated
at points © = (i1,...,14,) € R* with reference or synaptic weight vectors
w; € M C RA. The connectivity graph C* of A defines the structure of A.




Consider for the moment A to be a set of points in R4, A (discrele) topology
T in the set A is induced by the graph metric in C4. T} is said lo be the
strong neighborhood topology in A, and (A, ’Tf) is a topological space.

Definition 2.2 Let V be the Voronoi diagram of R4 with respect to A and
D4 be its dual Delaunay graph. Dy is cquipped with the graph metric that
in turn induces the (discrete) topology T in V and, hence, also in A. Ty
is said to be the weak neighborhood topology in A, and (A,’TA_) is a
further topological space defined on the set A.

Remark 2.1 In the case of a rectangular lattice the weak neighborhood topol-
ogy T is weaker then the strong neighborhood topology T also in the sense
of the mathematical topology [6].

In the next step we introduce a topology in the set of the synaptic weight
vectors on the basis of their receptive fields, which again allows us to describe
the neighborhood relationships between two vectors.

Definition 2.3 Let U _,p: A — M4 C M C R with M4 = {w;, 1 € A} be
a map attributing to each neuron i a specific veclor w; € M#. Further-
more, let Var be the induced Voronoi diagram of M with respect to M#* =
{w;, i € A}. Let Gy be the dual Delaunay graph of Var. G is equipped with
the graph metric that in turn induces the (discrete) topology Ty tn Gy and,
hence, also in MA. Ty is said to be the ¥, y—induced neighborhood
topology in M4 and (_MA,TMA) is a lopological space.

Now the topology preservation of a map can be expressed by the following
definition:

Deﬁnition 2.4 The map MA = (WA_,M, lI’M_.,A) with lIJM—;A . ?Rd 2 M —
A defined by i (v) = arg (minjea ||[v — wyl|) is said to be topology preserv-
ing if both Ups—a o (MA,Tya) — (ATF) and Wan : (A, TH —
(;MA,II}.JA are continuous maps of the respective topological spaces. Irre-
spective of the different topologies Upy_, 4 ts the inverse mapping of Wa_r.

We have immediately the following two corollaries for the most important
cases of rectangular and hexagonal (triangular) lattices, respectively:

Corollary 2.1 In the case of a rectangular d4-dimensional lattice A of neu-
rons the strong topology is induced by the Fuclidean norm |||, p in A or the

(')j

the mazimum-norm ||| 4 . = maXﬁ]

summation-norm ||-|| s 5 = Z?il

, and the weak topology is induced by

()]




Corollary 2.2 In the special case of A being a hexagonal (triangular) lat-
tice the weak and strong topology coincide. Hence, the definition of topology
preservation relies on a single topology in the net [10] which corresponds to
the strong neighborhood topology.

For measuring the degree of topology preservation of M4 = (¥ 4_ s, Uara),
we have to proof now the continuity of the maps ¥ 4_,p and W 4 as defined
above. Therefore based on the definitions 2.1, 2.2, 2.3 and 2.4 we introduce a
measure, what we call the topographic function, which determines the degree
of topology preservation of My = (V4n, War—a). A first simpler version
of the topographic function was proposed in [13].

For cach unit ¢ we define

L) L # G| =gl > k5 o —willy , =1}
d (7)
) {1 =l =15 o= wjll, > k}

with £ = 1,...,N — 1. #{-} denotes the cardinality of the set. |-l is
a norm based on the topology 7. Looking at a ncural unit i, f; (k) with
k > 0 determines the continuity of W, 4 and f; (k) with & < 0 determines
the continuity of W4_ps as defined above. The topographic function of the
neural lattice A with respect to the input manifold M is then defined as

~ i £i (k) : k>0
oM (k) ¢ M () +OM(-1) ; k=0 ®)

e L (k) : kbed
and we remark:

Remark 2.2 We obtain ¥ = 0 and, particularly, @ (0) = 0 if and only
if the SOFM is perfectly topology preserving. The largest kt > 0 for which
M (k+) £ 0 holds yields the range of the largest fold if the effective dimension
of the data manifold M is larger than the dimension ds of the lattice A. The
smallest k= < 0 for which ®¥ (k) # 0 holds yields the range of the largest
fold if the effective dimension of the data manifold M is smaller then the
dimension d4 of the lattice A. Small values of kt and k= indicate that
there are only local conflicts, large values indicate a global character of the
dimensional conflict.

Fig.3 shows a map of a squared data manifold onto a chain of 100 neural
units with their receptive fields. The folds are involved all over the whole



chain and, hence, the topographic function vanishes only for k-values greater
then £+ = 98.

In Ref. [7] a definition was presented of what it means for a topographic
map to be ordered, which finally should be discussed in the light of the
definition studied in the present paper. The following only one-dimensional
definition there was introduced

Definition 2.5 We consider a chain of N neural units 1 with weight veclors
w; and receptive fields R; = V; as defined in 5. Let 7; (v) be a activity function
of the ith neuron with respect to a stimuli vector v € M C R?, for instance
the negative distance — ||w; — v|| or the inverse distance (“—w—lﬁ—vﬁg Let X =

. . Rel Rel e
{:z:j EMCR )= l,...,n} be a set of points, such that ¢, o z, 0 z3 o

e T, and for all neural units ¢ exists a x; € X for which z; € R; holds.

Rel . ; i ; : i
There "o is an arbitrary suitably chosen relation, nol necessarily transitive.
The system is said to implement a one-dimensional ordered mapping if for
5::] >i2>i3>...

i (fcl) =  maXj=1, . N7 (1’1)

iy (.1‘32) — n_la-xizl_..,._.f\" i (9:2)

My (3) = maxi—y,. 7 (23) (9)
ete.

holds.

We have given in this paper an explicit order relation %' based on an un-
derlying topology, in contrast to the requirement of the existence of such
a relation, which was formulated for the one-dimensional case only. The
proposed straight-forward generalization of the definition (9) to higher di-
mensions is (as pointed out in [3]) by no means trivial. In fact, one need to

make the relation ‘6" more explicit in order to find whether the definition (9)
applicable for higher-dimension, too. In this sense we gave the justification
of Kohonen’s early and not yet otherwisely worked out set-—up. A further
issue is the topology preservation of the map W4_ 3 which has been pointed
out to be as well crucial for strict definition of the intuitive notion of topology
preservation.

3 Computing the Topographic Function ¢

Computing ®¥ requires to determine the topological relationship in M4,
ie. to determine whether two receptive ficlds R;, R; are adjacent on the



given manifold M. A way to determine the adjacency of two receptive fields
R, =V, Fpe= V with Vi, V as defined in (5) has been proposed in [10]. Let
C be a connectivity matrix determining connections between units 7,5 € A
(in addition to the connectivity matrix defined by the fixed lattice struc-
ture). Initially, the elements C;; € {0,1} of C are sct to zero. Simply by
sequentially presenting input vectors v € M and each time connecting (set-
ting Ci+j« = 1) those two units ¢*, j*, the reference vectors wy and wjs of
which are closest and second closest to v, leads to a connectivity matrix C;;
for which

}H& C,’j =il < ‘Rt M 1?_,-. % @ (1{])

is valid. This algorithm is based on the competitive "Hebbian rule” [10].
It can be shown that the resulting connectivity structure connects units
and only units the receptive fields of which are adjacent [11]. Then the
structure of the topology can ecasily obtained as distance matrix D with
D;; = [Jw;i— wj||TMA by determining the minimal ways in the dual graph

using the connectivity matrix C [2]. This allows to rewrite eq. (7) into
fiky=#{ | li=illy->k;Dy=1}
(11)
fi(-R)=#{i| li=jlzs =1; Dy > k}

for k-values in the range of k = 1,..., Nyyax. Aflter a SOFM has been formed,
we then can determine % by thc fo]loxx ing algorithm:

1. present an mput vector v € M
2. determine the two nearest reference vectors w;«, w;s.
3. connect the units ¢*, j*, i.e., set Cij» := 1 and go to step 1

After a sufficient number of presented input vectors v the algorithm yields
a connectivity matrix C for which eq. (10) is valid. Then, the matrix C
can be used to calculate D and subsequently the topographic function ®%
according to eq. (11) and eq. (8).

4 Conclusion

We presented a general definition of topology preservation in SOFM’s and a
novel approach to the problem of measuring the topology preservation. The
approach is based on the neighborhood relations between receptive fields.
The introduced topographic function is an improvement over the topographic

-1



product suggested in [1] since it determines the degree of topology preserva-
tion by considering explicitly the given input manifold M. Examples also in
comparison to the topographic product will be discussed in [14].
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Figure 1: Example of a linear (left, M = V') and nonlincar (right, M C V)
data manifold with the hypothetical positions of the images of the neural

units
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Figure 2: General case of the receptive fields of a squared lattice of neural

units
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Figure 3: Plot of a map of a squared input space onto a chain of 100 neural
units, the receptive fields of the units are shown (left); plot of the topograpcic
function of the map (right)
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