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Abstract

In many industrial applications, Fourier descriptors

are commonly used when the description of the ob-

ject shape is an important characteristic of the image.

However, these descriptors are limited to single objects.

We propose a general Fourier-based approach, called

statistical Fourier descriptor (SFD), which computes

shape statistics in grey level images. The SFD is com-

putationally efficient and can be used for defect image

classification. In a first example, we deployed the SFD

to the inspection of welding seams with promising re-

sults.

1. Introduction

Machine vision systems are widely used in process
industry to optimise the quality of the production pro-
cess. However, the major difficulty is that of finding ap-
propriate features, especially when the specification of
the problem is imprecise. The time needed for classify-
ing a new sample can usually be neglected, whereas fea-
ture extraction has to be computationally efficient and
powerful.

Since shape is one of the most important low-level
image features, feature extraction approaches that de-
scribe the shape of an object are often used in indus-
trial applications as well as in computer vision applica-
tions. One of the best known shape descriptors is the
Fourier descriptor [2]. Although this approach is over
30 years old, it is still found to be a valid shape descrip-
tion tool. In several comparisons, the Fourier descriptor
has proved to outperform most other boundary-based
methods in terms of accuracy and efficiency [4, 7, 11].
However, Fourier descriptors cannot be applied to im-
ages with overlaying objects or to grey level images.

In this paper, we propose a new Fourier-based fea-
ture extraction approach for grey level images called
statistical Fourier descriptor (SFD). This descriptor
covers the “statistics of shapes” for a given grey level

image by decomposing the image into a stack of bi-
nary images. We apply this descriptor to the problem of
welding seam inspection and compare results to other
feature extraction methods that can describe textures
and shapes.

2. Fourier-based Object Description

It is common to all Fourier-based shape descriptors
that the boundary line of a two-dimensional object is
presented using some one-dimensional function f(k),
i.e. the shape signature. One of the simplest ways to
obtain a shape signature is to combine the coordinates
(xk, yk) of the boundary points k = 0, ..., N − 1 to a
complex number, i.e. f(k) = xk + j yk. However, this
shape signature has to be periodic in order to be used for
the 1D discrete Fourier transform. In general, there are
three different methods for obtaining a periodic shape
signature: equal points sampling, equal angle sampling
and equal arc-length sampling. Among these methods,
the equal arc-length sampling achieves the best equal
space effect and therefore a unit speed of motion along
the shape boundary [9]. Obviously, the number of sam-
pling points N determines the accuracy of the approxi-
mation. Using only a small number of sampling points
yields two advantages at the same time: the shape is
smoothed and the Fourier transform is computed effi-
ciently.

2.1. Fourier Descriptors

Since the shape signature is represented by a one-
dimensional periodic signal, it can be transformed to the
frequency domain using the discrete Fourier transform
(DFT). The DFT of a shape signature f(k) consisting
of N samples is then given by

Fn =
N−1�

k=0

f(k) e−j2πnk/N , 0 ≤ n ≤ N − 1 (1)

where Fn are the transform coefficients of f(k) and
known as Fourier descriptors. The Fourier descriptors
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are often expressed in polar form F ∗
n = |Fn| ejφn . By

transforming to the frequency domain several geomet-
ric transformations of the shape can be related to sim-
ple operations. For example, translation of the shape
only affects the first Fourier coefficient or scaling the
shape with a factor of a leads to a scaling of the Fourier
coefficients by a. Furthermore, the coefficients can be
normalised to be invariant towards the starting point by
subtracting the phase of the second Fourier descriptor,
weighted by n, from the phase of all Fourier descriptors:

F ∗
n ← F ∗

n e−jφ1n . (2)

Then, the starting point is approximately at angle 0.
A detailed explanation of the properties of Fourier de-
scriptors can be found in [3].

A common approach to shape analysis is to use only
a subset of low-frequency coefficients. This covers
most of the shape information and removes high fre-
quency noise.

2.2. Statistical Fourier Descriptors

Since the Fourier descriptor approach can only be
used in binary images, we propose a new Fourier-based
method, called statistical Fourier descriptor (SFD), that
describes shape statistics in grey level images. We use
the following decomposition scheme [10, 8] (see Fig.
1): For a given input image we generate a stack of M
binary images (A) and compute the connected (white
and black) components (B). For each component c we
compute a feature vector gb

c for black components and
a feature vector gw

c for white components that contains
the magnitude and the phase of the corresponding N
Fourier descriptors (C):

g∗c = (|F0|, . . . , |FN−1|, φ0, . . . , φN−1)
T . (3)

Then, for the ith binary image the local shape features
of Nc components are combined such that (D):

g∗i = (µ,σ,m, θ, ρ)T ∈ R3·2N+2 , (4)

µl =
1

Nc

Nc−1�

c=0

g∗cl , (5)

σl =

���� 1
Nc

Nc−1�

c=0

(g∗cl − µl)
2 , (6)

ml = max
c

{g∗cl} , (7)

d =
1

Nc

Nc−1�

c=0

(cc − cI) , (8)

where θ and ρ are the orientation and magnitude of the
displacement vector d, cc is the centre of component

· · · · · · · · ·

0 i M − 1

gw
1 gb

1 gb
2

gb
i

gw
i

�
gw
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M

�

h = (hb,hw)T
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Figure 1. Decomposition scheme for a
given input image. See text for explana-
tions.

i, and cI is the image centre. Using the properties of
the displacement vector, we can distinguish between
binary images where the components are located cir-
cularly around the centre and binary images where the
components are located at one particular side of the im-
age.

In the last step, we combine the local features of the
M binary images by calculating statistics, i.e. mean,
standard deviation, maximum, and sample mean, to ob-
tain a single feature vector h = (hb, hw)T ∈ R48N+16

for a given input image (E):

h∗ = (γ, δ, ε,η)T ∈ R4·(6N+2) , (9)

γl =
1
M

M−1�

i=0

g∗il , (10)

δl =

���� 1
M

M−1�

i=0

(g∗il − γl)
2 , (11)

εl = max
i

{g∗il} , (12)

ηl =

�
M−1�

i=0

g∗il

�−1 M−1�

i=0

i g∗il . (13)
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Figure 2. Example images of defect-free
(left) and defective weldings (right).

Let N be the number of sampled points on the bound-
ary, then for a given input image, the SFD computes
a feature vector with 48N + 16. For large N this fea-
ture vector becomes very high-dimensional and thus the
performance of certain classifiers might be poor. There-
fore, a method for selecting relevant features is sug-
gested.

3. Defect Image Classification

We apply the SFD approach to the optical inspection
of welding seams. The dataset contains 657 images of
defect-free weldings and 277 images of defective weld-
ings. Each image was labelled by experts, scaled to dif-
ferent number of grey levels (16, 32, 64, 128, 256) and
smoothed by a Gaussian filter to reduce noise. Example
images of both classes are shown in Fig. 2. The large
variance of different defects cannot be described easily
and a feature extraction method that covers specific im-
age properties such as the shape and position of objects
at different grey levels is required. Hence, the SFD is an
appropriate method for feature extraction in this case.

For the SFD, we use the equal arc-length sampling
on the boundary with 64 points and compute the phase
and the magnitude of the Fourier coefficients as local
shape features. Since the positions, the rotation, or the
size of the components might be relevant properties, we
don’t normalise the Fourier coefficients concerning to
this. We only scale the coefficients to be invariant to-
wards the starting point of the shape signature (see Eq.
2). We further compare the performance of the SFD
to other feature extraction methods, i.e. Statistical Ge-
ometric Features (SGF) [10] and Specularity Features
(SPEC) [8].

3.1. Feature Selection and Classification

Finding a method that selects a subset of features
yielding the best performance in terms of classification
accuracy is ongoing research. Since a SFD feature vec-
tor can be of very high dimension and the SFD features

can also be significantly correlated, we select relevant
features while minimising redundancy by a common
correlation analysis. First, we sort the features by their
correlation coefficient with the labels. Second, starting
with the feature that obtains the largest correlation co-
efficient, we add a succeeding feature if its maximum
correlation with the existing features is smaller than a
user-set threshold τ . We proceed until we have selected
L features. Using this very simple method, we obtain a
feature set where each feature itself has a high discrim-
inance and a low redundancy. For our experiments we
set τ = 0.2 and L = 200, but the results are insensitive
towards slight changes of these values.

The support vector machine (SVM) [1] has become
a very powerful approach for classification. Standard
two-class SVMs require samples that describe both
classes properly. In our case, however, there are only
a few defective samples that are characterised well.
Therefore, we apply a one-class SVM [5] in order to
increase the robustness against unknown classes of out-
liers. We choose a Gaussian kernel and evaluate the best
parameters by 10-fold cross validation. For a compari-
son of the different feature extraction methods we apply
a Wilcoxon signed rank test to the test errors.

3.2. Results and Discussion

Classification results for the different feature extrac-
tion methods are shown in Fig. 3. First, performance of
the SFD and SGF is increased rapidly by using a larger
number of grey levels (from over 17% error down to
11%). This indicates that components of binary images
at several grey levels are relevant for these welding im-
ages. By taking less than 128 grey levels too many com-
ponents with different shapes will be merged together.

Second, the best performance of the SFD with an
error of 11.3% is achieved by using images with 256
grey levels (8 bit), although there is no significant dif-
ference compared to images with 128 grey levels (7 bit).
The SGF yield their best performance with an error rate
of 12.5% using 128 grey levels. The superior perfor-
mance of the SFD compared to to SGF is very signifi-
cant (p = 0.05).

Third, the SPEC features slightly outperform the
SFD and SGF with an error rate of 9.5% at 64 grey
levels. However, this slight outperformance is signif-
icant (p = 0.03, p = 0.01). Further, the change in
performance for different numbers of grey levels is not
as significant as for the other two approaches.

Since the SPEC features were explicitly designed for
the inspection of welding seams, they achieve the best
overall performance. However, for some applications it
is quite hard to determine appropriate local shape fea-
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tures. By employing the Fourier descriptor, we cover
almost all shape properties of an object and are able to
combine them to shape statistics. If we further apply a
feature analysis method, we can identify relevant shape
statistics and reduce the amount of features.

The statistical Fourier descriptor may also be used
for other applications such as surface inspection of LED
chips [6] or texture classification. In cell nuclei classi-
fication, for example, the texture of the nucleus has to
be classified (see Fig. 4). If we decompose the image
into its binary images, we can see clearly that some of
the objects in these binary images change while others
stay almost constant. We need to verify the performance
of the SFD also for these images, but so far the results
are quite promising. However, there are no benchmark
datasets available for the problem of defect image clas-
sification. Most of the related publications, especially
from the field of wafer inspection, don’t make their im-
ages available. Therefore, it is very hard to make any
comparison to existing approaches which are, indeed,
mostly developed for a particular dataset.

Although the SFDs were only applied to grey level
images, they can easily be extended to colour images.

4. Conclusions

We have proposed a new Fourier-based approach for
feature extraction, called statistical Fourier descriptor
(SFD). The SFD is a general approach for feature ex-
traction and covers shape statistics of grey level im-
ages. It is computationally efficient and can easily be
extended to colour images.

In a first experiment, we have applied the SFD to the
inspection of welding seams. Although the SFD per-
forms slightly worse than the features that were explic-
itly designed for this application, the results are promis-
ing. Especially for applications where it is not really
clear which shape features are relevant, the SFD is an
appropriate tool for feature extraction.

SFD SGF SPEC
8%

11%

14%

17%

m
ea

n
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4bit 5bit 6bit 7bit 8bit

Figure 3. Performance comparison.
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Figure 4. Image of a cell nucleus (left) and
the stack of binary images (right).
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