
Fast Model Selection for
MaxMinOver-based Training of Support Vector Machines

Fabian Timm Sascha Klement Thomas Martinetz
Institute for Neuro- and Bioinformatics, University of Lübeck,

Ratzeburger Allee 160, 23538 Lübeck, Germany

Abstract

OneClassMaxMinOver (OMMO) is a simple incre-
mental algorithm for one-class support vector classifi-
cation. We propose several enhancements and heuris-
tics for improving model selection, including the adap-
tation of well-known techniques such as kernel caching
and the evaluation of the feasibility gap. Furthermore,
we provide a framework for optimising grid search
based model selection that compromises of preinitial-
isation, cache reuse, and optimal path selection.

Finally, we derive simple heuristics for choosing the
optimal grid search path based on common benchmark
datasets. In total, the proposed modifications improve
the runtime of model selection significantly while they
are still simple and adaptable to a wide range of incre-
mental support vector algorithms.

1. Introduction

The support vector machine [10] has become a stan-
dard approach for dealing with pattern recognition tasks
in various areas. By now, several techniques for solv-
ing the quadratic programming problem are available,
such as Sequential Minimal Optimisation (SMO) [5] or
MaxMinOver [4]. In practice, we need – besides these
core algorithms – supplementary techniques to increase
efficiency on large datasets or for fast parameter valida-
tion.

In the present work, we describe several enhance-
ments to MaxMinOver-based approaches for improving
parameter validation, including a more complex stop-
ping criterion, kernel caching, preinitialisation of the
Lagrangian variables and the kernel cache as well as
an optimised grid search sequence for model selection.
We focus on OneClassMaxMinOver (OMMO) [3] due
to its simplicity, although these techniques can be ap-
plied to all MaxMinOver-based approaches and – with

minor changes – even to a wider range of training algo-
rithms.

1.1. The Support Vector Framework

In the following, we make use of the common sup-
port vector framework restricted to one-class problems
consisting of training samples x1, . . . ,xN ∈ Rd, a
transformation φ(xi) into a higher dimensional kernel
space, a kernel function K(xi,xj) = φ(xi)Tφ(xj),
a regularisation parameter C for soft-margin classifica-
tion, and slack variables ξi for non-separable cases.

Whereas several approaches to one-class support
vector classification rely on a 1-norm slack term [9, 7],
also a 2-norm slack term is reasonable [3]. In this case
the optimisation problem can be expressed as

min
w, ξ

(
1
2
‖w‖22 +

C

2
‖ξ‖22

)
s.t. (1)

∀i : wTφ(xi) ≥ 1− ξi , and ξi ≥ 0 .

By setting the partial derivatives

w =
∑
i

αi φ(xi) and ξi =
αi
C

(2)

of the corresponding Lagrangian to zero and resubstitut-
ing (2) into (1), we obtain the dual optimisation problem

min
α

(∑
i

αi − 1
2

∑
i,j

αiαjK
∗(xi,xj)

)
(3)

s.t. ∀i : αi ≥ 0 .

Here, K∗(xi,xj) = K(xi,xj) + δij
C defines the mod-

ified kernel while δij is Kronecker’s delta. Henceforth,
the original and the modified kernel will be denoted by
K and K∗ respectively, i.e. K(∗)

ij = K(∗)(xi,xj).
The ξi need to be evaluated explicitly to derive a

proper stopping criterion of the optimisation via the

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

Karush-Kuhn-Tucker (KKT) complementarity condi-
tions:

∀i : αi
(
wTφ(xi)− 1 + ξi

)
= 0 . (4)

In the optimum

ξi =
{

1−wTφ(xi) if αi > 0
0 otherwise

holds due to (2) and (4). For intermediate solutions dur-
ing optimisation, we need to set

ξi = max
(
0, 1−wTφ(xi)

)
= max

(
0, 1−

∑
j

αj K(xi,xj)
)

to fulfil the constraints of the primal problem. For sim-
plicity we set

s = (s1, . . . , sN)T = K∗α = Kα+
α

C

such that ξi = max(0, 1− si − αi
C).

1.2. OneClassMaxMinOver

The OMMO algorithm (see Alg. 1) is inspired by
the MaxMinOver algorithm for two-class classification
proposed in [4]. Each training sample xi is associated
with a counter variable αi that can be interpreted as a
Lagrangian variable in (3). Within each iteration step a
variable is increased if its associated sample is closest to
the decision border in terms of the distance measure s.
On the other hand, a variable is decreased if it is non-
zero and its associated sample is the farthest away from
the decision border. Since we need the correct ξi for
deriving a stopping criterion we have to scale the αi
such that the smallest distance of a point in the modified
kernel space to the origin is one.

OMMO converges to the support vector solution
with at least O(1/

√
t) as shown in [3]. A new sample

x is classified by f(x) = sign (
∑
i αiK(x,xi)− 1).

Algorithm 1: OneClassMaxMinOver
α← 0
for t← 0, . . . , tmax do

s← K∗α

imin ← arg min
i

si, imax ← arg max
i, αi>0

si

αimin ← αimin + 2, αimax ← αimax − 1
end
s← K∗α, ρ← min

i
si, α← α

ρ

1.3. Stopping Criteria

Several ways for defining stopping criteria of an it-
erative support vector approach such as OMMO have
been proposed in the literature, e.g. monitoring the
growth of the dual objective function (3), monitoring
the KKT conditions for the primal problem (4), or mea-
suring the feasibility gap. See chapter 7 of [1] and chap-
ter 10 of [8] for a more detailed discussion on stopping
criteria.

We will focus on the so-called feasibility gap which
is defined as the difference between the values of the
primal (1) and the dual objective function (3):

1
2
wTw +

C

2
ξT ξ − eTα+

1
2
αTK∗α

= αT s− 1
2C

αTα+
C

2
ξT ξ − eTα ,

with e = (1, ..., 1)T . According to [1] a useful measure
of progress is

primal− dual
primal + 1

=
2αT s− 1

Cα
Tα+ CξT ξ − 2 eTα

αT s + CξT ξ + 2
(5)

In the following two sections we describe the
OMMO algorithm with several enhancements and show
that evaluating the feasibility gap comes almost without
any extra cost in time complexity.

2. Optimising OMMO

First of all, OMMO simply provides a way for de-
riving the support vector solution of a single param-
eter combination. We will now wrap OMMO into a
framework for speeding up parameter selection while
still preserving its simplicity (see Alg. 2). First, incre-
mental evaluation and a kernel cache are well-known
techniques for improving time complexity of the learn-
ing algorithm itself. Second, the algorithm terminates
as soon as the feasibility gap falls below a threshold. Fi-
nally, we initialise the αi and the kernel cache with the
slightly modified results of a previous parameter com-
bination and choose a grid search path which minimises
a specific cost function.

In detail, we use the following techniques to optimise
runtime performance of the model selection.

Kernel Caching and Incremental Evaluation The
kernel evaluations are normally the most time consum-
ing parts of naive implementations. Therefore, the ker-
nel cache stores frequently used values for later usage.

Algorithm 2: OneClassMaxMinOver2
while gapcurr > gapstop do

s← K∗α

imin ← arg min
i

si, imax ← arg max
i, αi>0

si

αimin ← αimin + 2, αimax ← αimax − 1

A ρ← min
i
si

B ξ = max(0,1− (s− α/C)/ρ)

C gapcurr =
2
ρ2
αT s− 1

C ρ2
αTα+CξT ξ− 2

ρ eTα

1
ρ2
αT s+CξT ξ+0.5

end
s← K∗α, ρ← min

i
si, α← α

ρ

Additionally, s can be evaluated incrementally by

snewi = soldi + 2K(ximin ,xi)−K(ximax ,xi) .

The size of the cache is crucial depending on the num-
ber of support vectors of the final solution. As this in-
cremental summation is not numerically stable, a non-
incremental recomputation of s should be done after a
fixed number of iterations tre. The extra cost in time
complexity of this recomputation can be neglected as a
good choice for tre is 1000.

Evaluating the feasibility gap (lines A–C in Alg. 2)
takes time O(N) due to the dot products. However, it
is sufficient to compute the gap in regular intervals, e.g.
every tre steps, so that the runtime of the whole algo-
rithm does not change significantly.

Preinitialisation With grid search one evaluates the
performance of a machine learning algorithm for dif-
ferent parameter sets sampled on a regular grid. An
optimal parameter set is chosen according to common
performance measures, such as the receiver-operator-
characteristic or the leave-one-out error. Normally, ad-
jacent nodes in the grid yield similar support vector so-
lutions. So, we initialise OMMO with the solution of a
previous node, in this case with the unscaled αi. Fur-
thermore, if a transformation between kernel values of
different parameter exists and if it has lower time com-
plexity than a complete recalculation, then the kernel
cache can also be reused. For Gaussian kernels

K̃ij =
(
Kij − δij

C1

)σ2
1 / σ

2
2

+
δij
C2

(6)

transforms the kernel values of the parameter tuple
(C1, σ1) into those of the tuple (C2, σ2).

(a)

number of iterations

fe
as

ib
il
it
y

ga
p

(b)

(c)

O(1√
t
)

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

(b) (c)

Figure 1. Feasibility gap for the modified
banana dataset (a) and two intermediate
solutions (b) and (c).

3. Experiments and Results

3.1. Feasibility Gap

We show the decrease of the feasibility gap (5) ex-
emplarily for the well-know banana dataset [6], limited
to 500 randomly chosen samples from class +1. In this
scenario, we set C = 1000, σ = 0.4, gapstop = 10−5

and tre = 1 in order to compute the feasibility gap
within each iteration.

Figure 1 shows the feasibility gap and two interme-
diate solutions (white line: class boundary; large dark
dots: support vectors outside; stars: support vectors in-
side; small dots: non-support vectors). As OMMO con-
verges with at least O(1/

√
t), the feasibility gap is also

upper bounded by O(1/
√
t).

3.2. Validation of Hyperparameters

An optimal grid search should make intensive use
of preinitialisation and kernel reuse. So, we want to
find a directed spanning tree of the grid which has min-

imum runtime if we travel from the root along the edges.
For evaluating the reliability of this method we used
13 benchmark datasets [6] containing artificial as well
as real world data. Each dataset was separated class-
specifically and scaled to unit mean norm. A loga-
rithmically scaled parameter grid with 20 × 20 nodes
(C ∈ [1, 105], σ ∈ [0.1, 5], gapstop = 10−4) repre-
senting maximum uncertainty was used throughout the
experiment.

A reasonable cost function for describing the com-
putational effort to travel between solutions of different
parameter sets is

c(i, j) =
{

timei(j) if nodes i and j are neighbours
∞ otherwise

where timei(j) describes the runtime of OMMO for
grid node i, preinitialised with the results of node j,
which itself was trained without preinitialisation.

Via the cost matrix, the minimum spanning tree
(MST) was determined for every dataset by Edmonds’
algorithm [2] with each node as a root node. Figure
2(a) shows exemplarily the MST of the banana dataset.
Obviously, vertical edges are preferred, i.e. support
vector solutions for adjacent kernel widths differ more
than those of adjacent softness parameters. This be-
haviour remains the same for a variety of datasets, but
could change if the grid spacing or the parameter scal-
ing would vary by orders of magnitude. Evaluating the
MSTs for different datasets indicates that the general
heuristic (see Fig. 2(b)) is very close to the optimal
spanning tree. Moreover, the probabilities of the four
edge orientations in the MST differ significantly (see
Fig. 2(c)) and make the heuristic reasonable. The best
improvement is achieved when training along the MST,
but according to table 2(d) the mean runtime when us-
ing the heuristic is about 11% of the runtime without
preinitialisation.

4. Conclusions

Based on the OMMO algorithm we derived a modi-
fied algorithm which uses the feasibility gap as stopping
criterion. Further enhancements such as kernel caching,
preinitialisation, and a grid search heuristic now qual-
ify the whole one-class framework for fast model selec-
tion so that the runtime for a complete grid search is
reduced to 11%. Besides, deriving a grid search heuris-
tic by means of a cost function and the minimum span-
ning tree can be applied to other learning algorithms
or higher-dimensional parameter sets such as in support
vector regression. Further improvements might include
the online adaptation of a heuristic during grid search or
to split the heuristic to enable fast parallelisation.

C

σ

105

1
0.1 5

(a)

C

σ

105

1
0.1 5

(b)

probability

0.25

0.5

0.75

left right downup
orientation

(c)

Mean relative
Strategy runtime

MST 0.09 (± 0.08)
Heuristic 0.11 (± 0.09)

None 1.00 (± 0.00)

(d)

Figure 2. Results of grid evaluation.

References

[1] N. Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines and Other Kernel-Based
Learning Methods. Cambridge University Press, Cam-
bridge, U.K., 2000.

[2] J. Edmonds. Optimum branchings. J. Res. Nat. Bur.
Standards, 71B:233–240, 1967.

[3] K. Labusch, F. Timm, and T. Martinetz. Simple in-
cremental one-class support vector classification. In
DAGM-Symposium, Lecture Notes in Computer Sci-
ence, pages 21–30. Springer, 2008.

[4] T. Martinetz. MaxMinOver: A Simple Incremental
Learning Procedure for Support Vector Classification.
In IJCNN 2004, pages 2065–2070, Budapest, Hungary,
2004.

[5] J. Platt. Fast training of support vector machines us-
ing sequential minimal optimization. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods — Support Vector Learning, pages
185–208, Cambridge, MA, 1999. MIT Press.

[6] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins
for AdaBoost. Technical Report NC-TR-1998-021, De-
partment of Computer Science, University of London,
Aug. 1998.

[7] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a
high-dimensional distribution. Neural Computation,
13(7):1443–1471, 2001.

[8] B. Schölkopf and A. J. Smola. Learning with Kernels.
The MIT Press, Cambridge, MA, 2002.

[9] D. M. J. Tax and R. P. W. Duin. Data domain description
using support vectors. In ESANN, pages 251–256, 1999.

[10] V. N. Vapnik. The nature of statistical learning theory.
Springer Verlag, Heidelberg, DE, 1995.

