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Abstract. We introduce an extension of the self-organizing map for
performing 3D hand skeleton tracking. We use a range camera for data
acquisition and apply a SOM-like learning process within each frame in
order to capture the hand pose. Our method uses a topology consisting
of 1D and 2D segments for an improved representation of the hand. The
proposed algorithm is very efficient and produces good tracking results.
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1 Introduction

The problem of object tracking and pose estimation has gained much attention
during the last years, due to the variety of new technologies and devices designed
for 3D image acquisition. While standard 2D cameras necessitate more complex
image processing techniques, 3D cameras provide a more favorable framework
for tracking algorithms, as depth information enables the reconstruction of 3D
objects. In particular, hand tracking can be used in a wide variety of appli-
cations, e.g. gesture recognition, and represents a milestone in human-machine
interaction. The difficulty lies in the fact that the state space is extremely large,
due to the 27 degrees of freedom of the human hand [1].
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Our work focuses on developing a hand tracking algorithm for 3D cameras.
Having acquired 3D image information, we aim at building a tracking algorithm
that is both accurate and of low computational cost. This is achieved with an
extension of the approach introduced in [10]. After a simple preprocessing step
which assumes that the hand is the closest object to the camera, we obtain a
point cloud in 3D of the hand which we then represent with Kohonen’s self-
organizing map [3]. For this purpose the topology of the Kohonen network is
crafted according to the skeleton of a hand, as illustrated in Fig. 1. However, to
be able to obtain good tracking results, we have to extend the SOM algorithm
such that the point cloud of the hand is represented not only by the nodes of
the network, but also by the line and plane segments between the nodes.

Compared to our approach based on a SOM, the authors of [4] use kinematic
models and build a hand state model which consists in a set of lines and points
generated by the projection of the hand model into the image plane. Hand pose
estimation based on features derived from projections of the hand and its shadow
is presented in [5]. Nevertheless, the method requires controlled background and
lighting, and is susceptible to occlusion. The authors of [6] introduce a machine
learning architecture for matching image features to 3D hand example poses,
through solving an optimization problem based on Bayes’ rule. Another approach
is to estimate hand pose with a database of synthetic hand images. For instance,
in [7] an indexed image database is used to retrieve the closest hand match, with
an adapted chamfer distance and line matching algorithm. In [8], the authors
implement a cascade of increasingly complex classifiers to determine hand pose
from synthetic training data. In order to handle occlusion, particle filters can be
used. In [9], the authors apply a meta-descent algorithm to minimize the distance
between a predicted position and the observed position, while particle filters
predict new sample positions and help the optimization algorithm to recover
from local minima. As shown in [2], the combined usage of intensity images and
range information provides a good framework for body tracking.

Section 2 will consist in a detailed explanation of our method, followed by
evaluation and results in Section 3. Finally, we present a few conclusions in
Section 4.

2 The Extended SOM

We use a network topology that can suitably describe a human hand. Our net-
work is made up of sixteen nodes, and the defined connections are illustrated in
Fig. 1.

The standard SOM algorithm starts with the initialization of the network
weights, followed by the iteration of two procedures, the competition and the
update of the weights. At each iteration, a sample point from the dataset is
randomly chosen. During the competition phase, the algorithm determines a
winner node, that is, the node characterized by the weight with the minimum
Euclidean distance from the sample point.
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Fig. 1. The extended SOM left-hand topology

Given a network with n neurons and a sample point x, we determine the
winner node 7 as follows:

i = arg{min||x —wi|]2}, i=1,...,n (1)
3

with w; being the weight of node i. Next, the update phase aims at decreasing the
distance between the winner-node weight and the sample point, by an amount
given by the learning rate €(t). First, let us define the learning rate function as

€(t) = & (Gf) = : (2)

€

where ¢; is the initial learning rate, €¢ is the final learning rate, ¢ is the cur-
rent iteration and t,,4, is the maximum number of iterations performed on the
network. Then, the weight w; is updated at step ¢ according to:

wi(t+1) = wi(t) + e(t)(x — w; (1)) - 3)

The standard SOM algorithm also uses a neighbourhood update, in the sense
that not only the winner-node weight is updated, but also the weights of the
neighbour-nodes.

Our proposed algorithm extends the competition and the update step to
1D and 2D network segments. The 1D-segments are the lines between pairs of
connected nodes, and the 2D-segments are the triangles determined by triples
of connected nodes. 1D-segments allow to represent the fingers more accurately,
and the 2D-segments form the palm of the hand. By segment updates we aim
at minimizing the average distance between network segments and points from
the dataset (point cloud of the hand provided by the 3D-camera). Now we not
only have elements of dimension zero (nodes) like in the classical case, but also
elements of dimension one and two for representing the data distribution. This
approach is motivated by the fact that a hand-like topology involves a difficult
separation between the nodes corresponding to fingers. A node that belongs
to one finger can easily be attracted by another finger, given the topological
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closeness. This may lead to an erroneous tracking of the hand and destroy the
topological relations. With these 1D and 2D segments we can represent fingers
and parts of the palm more accurately and expect the self-organizing maps to
be less prone to this type of errors.
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E
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Fig. 2. a) The projection p of sample point x onto 1D-segment [w;;w;]|. b) The pro-
jection p of sample point x onto 2D-segment [w;; w;; Wy].

The competition phase in our extended SOM algorithm determines whether
a single node or a 1D-segment or a 2D-segment is closest to the randomly chosen
sample point x. Depending on this result, the update phase will either perfom a
classical node update as shown in Equation 3 or a segment update.

The distance to a 1D-segment [w;; w;] (see Fig. 2a) is determined via the
projection point p of x onto the given segment. Let us define d;; = w; —w; and
d;; = w; — w;. Then, we may write p as

p=w; +n5d;, 0<n; <1. (4)

Similarly,

p=w; +n;;di;, 0<n;; <1 (5)
and n;; +1;; = 1. Given the unit vectors Eiji and aij, the coeflicients 7;; and 7;;
are

(x —w;)dy;
Nji = —— 17— 6
= ] ©
(x — w;)dy
nij = ———2— (7)
! [|dij]|

Then the squared distance ||d||? of x to the 1D-segment [w;; w;] is

1d][* = []x — p||?
1 = 1lp — wil ]

=[x = wil [P = llwy — w2 (8)

=|lx—w;

The 1D-segment that is closest to x is determined by

(i) = arg{minl|di;|[},,5 = 1,....n. 9)
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Evidently, the above equation applies only to pairs of connected nodes (4, j).
Similarly, the distance to a 2D-segment (see Fig. 2b) can be determined. Let
us define d;j; = w; — w;, di; = Wi — w;. Then, we may write p as

P =w; +1jidj; + Neidrs, 0 < njss s <1, mjs + i <1 (10)
Analogously,
P =W, +nijdij + Mkideg, 0 < migymeg < 1, mig + g <1 (11)
and
P = Wi + Niedir + Njedjr, 0 < mi, nje < L, i + 150 < 1. (12)

We then compute the squared distance ||d||? of x to the 2D-segment (triangle)
determined by [w;; w;; wy] according to
1d]* = |lx — p||*
= |lx = wi — njidji — Mridl|? (13)

where

(x — w;)dyi — ( X =W dkz)
ldsill (1= (@i )

(x — w;)dy; — ((X - Wz‘)dji> (did;s)
ldial | (1 = (disdl;i)?)

After having determined whether one of the nodes, a 1D-segment or a 2D-
segment is closest to the randomly chosen sample point, the update procedure
takes place. The simplest situation is illustrated in Fig. 3a, when a single node
is closest and has to be updated. This is done according to the standard SOM
algorithm. In case a segment has to be updated, the nodes which determine the
segment have to be moved such that the distance ||d|| is reduced. We derive the
respective movement by gradient descent minimization on the squared segment
distance. For node j we obtain

Nji = (14)

Nki = (15)

1 0d? 1 0

3w, = 25w, (7w =i (w; —wi)?)

1 0
= 578\% (77]24(“’]‘ Wz)2)
_1r 0 B 2, 1 o 2
) <8W1 77“) (wj = wi)"+ o'l (5'WJ (wj = wi)
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Fig. 3. a) Weight w; is displaced towards the data point x, on the direction given
by vector x — w;. b) Weights w; and w; are displaced towards the data point x on
directions parallel with the vector formed by x and its projection p. c) Weights w;, w;
and wy are displaced towards the data point x on directions parallel with the vector
formed by x and its projection p. The closer p is to a node, the larger its update.

wjit)

)

= nji(x — wy) = 203, (W) — wy) + 17 (W) — wy)
= ji(x = Wi) — 7 (Wj — W) . (16)

Given the above result and with the symmetry in 7 and j, the two displacements
applied to the winner 1D-segment nodes are

Aw; = e(t)ng; (X —w; — 15w — W;)) (17)
Aw; = e(t)ngj. (x - w5 — n;;(w; — wj)) . (18)

The movement of the two nodes is orthogonal to the line segment and illustrated
in Fig. 3b.

In case a 2D-segment is closest, like in Fig. 3c, three nodes have to be updated.
With gradient descent similar to above we obtain the three displacements

Aw; = (1= n5; — ng) (x — w; = n53d55 — mp;d) (19)
Aw; = (1= n; = nj5) (x = w; = n3d5; — 13d;) (20)
Awj = (1= 5, — ) (x — w; = m3d55 — myds) (21)

this time orthogonal to the triangle.

At this point, a short discussion is required concerning the segment updates.
Given that the displacements orthogonal to the line or triangle are of finite size,
with each update the respective line or triangle will be slightly enlarged. With
many update steps the network might increase over the boarders of the date
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space. Several solutions to this problem are possible. The most canonical one is
to add a "spring-like" "forgetting term" term, which has to be weighted such
that an appropriate shortening of the distances of the updated nodes takes place
with each update step. Details are explained in [11].

3 Results and Evaluation

Our tracking algorithm uses a Kinect [12] device for data acquisition. The Kinect
has an infrared depth sensor and a special microchip that allow obtaining depth
information from the scene. The Kinect functions properly for distances in the
interval 1.2 — 3.5 meters. The image stream is characterized by a 640 x 480 pixels
resolution.

The points corresponding to the hand are extracted with a threshold seg-
mentation performed on the given depth frame, based on the assumption that
the hand is the closest object to the camera. This yields the point cloud our
algorithm works on (see Fig. 4). Note, that our extended SOM algorithm is ap-
plied to each individual frame, each time with 5000 training steps (a training
step consists of a random choice of a data point, followed by a competition and
update step). The following frame always uses as starting position for the net-
work the result of the previous frame. Only in the very beginning of the tracking
procedure we need to initialize the network such that we start with an open
hand and the network is aligned to the fingers and the thumb. A random ini-
tilization might have problems to converge correctly since the network topology
is asymmetrical.

In each new frame, we perform a training during which the network receives
as input the data points from the given hand point cloud. Fig. 5 shows how the
hand network has converged into the point cloud of a given frame, for the left
and right hand. As desired, the network represents the given hand topology by
minimizing the mean squared distance between the data points and the network
with its 1D and 2D segments.

On the contrary, as illustrated in Fig. 6, by performing a standard SOM
learning without using the 1D and 2D segments of the network, the tracker does
not manage to represent the given hand topology and converges to an entangled
form of the network.

Fig. 7 shows results for different hand postures and bent fingers. In all these
cases our extended SOM converged correctly and can now be used for represent-
ing corresponding gestures.

4 Conclusion

We presented an extension of the SOM which can successfully be applied to the
problem of hand skeleton tracking with 3D cameras. The algorithm is efficient
enough to be applied to each individual frame of a kinect camera. The extended
SOM algorithm is able to produce a rough, but accurate estimate of the hand
pose, at comparatively low computational cost.
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W

Fig. 4. Starting from a frame captured with the Kinect, we extract the hand based on
the closest object assumption. We remove the points corresponding to the forearm and
we obtain the 3D point cloud used for the tracker’s learning stage.

Fig. 5. The extended SOM tracker converges to the open palm topology, for both left
and right hand.

Our extension by which we represent the data cloud not only by the nodes
of the network, but also by the line and plane segments between the nodes, is
necessary for the network to converge correctly to the complicated hand topology.
The tracker can be further improved by adding constraints to the hand model,
in accordance with the anatomy of the hand.
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Fig. 7. Different hand postures and bent fingers. The extended SOM converges to the
correct topology.
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Our method can easily be applied not only to hand tracking, but also to other
types of objects, e.g., the human body or animals, by simply varying the SOM
network topology. In further developments we will use the network topology to
infer useful features for gesture recognition.
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