Improving Optimality of Neural Rewards Regression for
Data-Efficient Batch Near-Optimal Policy Identification

Daniel Schneega61’2, Steffen Udluft!, and Thomas Martinetz?

! Information & Communications, Learning Systems
Siemens AG, Corporate Technology, D-81739 Munich, Germany
2 Institute for Neuro- and Bioinformatics
University at Liibeck, D-23538 Liibeck, Germany
daniel.schneegass.ext@siemens.com

Abstract. In this paper we present two substantial extensions of Neural Re-
wards Regression (NRR) [1]. In order to give a less biased estimator of the Bell-
man Residual and to facilitate the regression character of NRR, we incorporate
an improved, Auxiliared Bellman Residual [2]] and provide, to the best of our
knowledge, the first Neural Network based implementation of the novel Bellman
Residual minimisation technique. Furthermore, we extend NRR to Policy Gradi-
ent Neural Rewards Regression (PGNRR), where the strategy is directly encoded
by a policy network. PGNRR profits from both the data-efficiency of the Rewards
Regression approach and the directness of policy search methods. PGNRR fur-
ther overcomes a crucial drawback of NRR as it extends the accordant problem
class considerably by the applicability of continuous action spaces.

1 Introduction

Neural Rewards Regression [[L] has been introduced as a generalisation of Temporal
Difference Learning (TD-Learning) and Approximate ()-Iteration with Neural Net-
works. It further offers the trade between minimising the Bellman Residual as well
as approaching the fixed point of the Bellman Iteration. The method works in a full
batch learning mode, explicitly finds a near-optimal @)-function without an algorith-
mic framework except Back Propagation for Neural Networks, and can, in connection
with Recurrent Neural Networks, also be used in higher-order Markovian and partially
observable environments. The approach is motivated by Kernel Rewards Regression
(KRR) [3] for data-efficient Reinforcement Learning (RL) [4]]. The RL problem is con-
sidered as a regression task fitting a reward function on the observed signals, where the
regressor is chosen from a hypothesis space, such that the ()-function can be gained out
of the reward function. NRR is formulated similarly. The usage of shared weights with
Back Propagation [506] allows us to restrict the hypothesis space appropriately.

Policy Gradient (PG) methods [7] convince due to their capability to identify a near-
optimal policy without using the loop way through the Value Function. They are known
to be robust, convergence guarantees are given under mild conditions, and they be-
have well in partially observable domains. But PG methods usually base on Monte
Carlo and hence high variances estimations of the discounted future rewards. Recent
work addressing this problem are e.g. provided by Wang and Dietterich [8] as well as

J. Marques de S4 et al. (Eds.): ICANN, Part I, LNCS 4668, pp. 109118l 2007.
(© Springer-Verlag Berlin Heidelberg 2007

110 D. Schneegal, S. Udluft, and T. Martinetz

Ghavamzadeh and Engel [9]]. We introduce Policy Gradient Neural Rewards Regression
(PGNRR), which, from the PG perspective, reduces the variance of the Value estimator
and, from the Rewards Regression perspective, improves the considered problem class
and enables generalisation over the policy space.

The remainder of this paper is arranged as follows. After a brief introduction to
Reinforcement Learning, we recapitulate NRR and explain the underlying idea in sec.
[3l We describe, in which way the RL task is interpreted as a regression problem and how
the trade-off between either the two learning procedures as well as the two optimality
criteria is realised. Subsequently (sec.) we generalise further by applying the new
Bellman Residual minimisation technique to NRR. Finally we extend NRR by a policy
network for direct policy search (sec.[5) and motivate an advancement in data-efficiency
(sec.[B). Preliminary practical results (sec.[7) on a common benchmark problem and a
real-world application are shown for the purpose of supporting the theoretical model.

2 Markov Decision Processes and Reinforcement Learning

In RL the main objective is to achieve a policy, that optimally moves an agent within
an environment, which is defined by a Markov Decision Process (MDP) [4]. An MDP
is generally given by a state space S, a set of actions A selectable in the different
states, and the dynamics, defined by a transition probability distribution Pr : S x A x
S — [0, 1] depending on the current state, the chosen action, and the successor state.
The agent collects so-called rewards R(s, a, s") while transiting. They are defined by a
reward probability distribution P with the expected reward R = [, 7Pr(s,a, s',7)dr,
s,s' € S,a € A.
In most RL tasks one is interested in maximising the discounting Value Function

V7(s) = Ef (i ~R (S(i),ﬂ'(s(i)), 5(1‘+1)>>
=0

for all possible states s where 0 < v < 1 is the discount factor, s’ the successor state
of s, 7 : S — A the used policy, and s = {s’,s”,...,s() ...}. Since the dynamics
of the given state-action space cannot be modified by construction one has to maximise
V' over the policy space. One typically takes one intermediate step and constructs a
so-called Q-function depending on the current state and the chosen action approaching

Qﬂ(‘sv a) =Ey (R(Sv a, 5/) + 'YQW(‘S/? ﬂ-(‘s/)))'

We define V* = V™ as the Value Function of the optimal policy and Q* respectively.
This is the function we want to estimate. It is defined as

Q(5,a) = By (R(s.a,5') + 7V (s)) = By (R(s,0,5) + ymax Q" (s,),

which is called the Bellman Optimality Equation. Therefore the best policy is appar-
ently the one using the action w(s) = argmax, Q*(s,a) maximising the (best) Q-
function. We define the Bellman Operator 7" and the variance of the discounted sum of
future rewards using 77 as (T'Q)(s,a) = Ey (R(s,a,s’) + ymax, Q(s',a’)) as well

Improving Optimality of Neural Rewards Regression 111

as (T'Q)(s,a)? = Vary (R(s,a, s') + ymax, Q(s',a’)) for any Q. There are several
optimality criteria as approximations to the optimal Q-function. In this work, we con-
cern the Bellman Residual minimisation, provided by the Q-function minimising the
distance ||Q — T'Q|| (w.r.t. some appropriate norm) and the Temporal-Difference solu-
tion QQ = Solve(T'Q) given by the fixed point of the Bellman Operator followed by its
projection on the Q-function’s hypothesis space H. For details we refer to [4/10.11].

3 Neural Rewards Regression

In the standard setting for NRR [[1]], we describe the)-function for each possible ac-
tion as Feed-Forward-Networks N, (s) = Q(s, a). The reward function to be fitted is
hence given as R(s, a, s’) = Ng(s) — v maxg Ng (s'), where the max-operator has to
be modelled by an appropriate architecture. Alternatively, a monolithic approach with
one network N (s,a) = Q(s, a) which takes the state and action as input R(s,a,s’) =
N(s,a) —ymax, N(s',a’), can also be applied. The second model has the advantage

gradient flow "+
control

gradient fIOV\;“*._
control

Fig. 1. Both alternatives of the NRR architecture (left: one network for each action, right: the
monolithic approach). Connectors with the same parameters have shared weights.

of performing a generalisation over the action space as well. Using the Back Prop-
agation algorithm this problem setting approaches the minimum of the (regularised)
sampled Bellman Residual over all [observed transitions

l

l
L= ZF(Lz‘) +000) =Y F(Q(si,a:) =V (si41) — i) + 2(6),

=1

where 6 are the network parameters, F' an error function, and {2 an appropriate regu-
lariser. The observed r; and s;4+1 have to be unbiased estimates for their expectations.
- o dL l d it
The error function’s gradient %2 = >~ | F'(L;) 55 (Q(ss,a:) — vV (sit1)) + dé)
depends on the current Q-function and the successor Value Function (fig.[I). To obtain

the fixed point of the Bellman Iteration instead, one retains y; := r; + vV (s;41) and
minimises iteratively L = 22:1 F (Q(si,a;) — y;) + £2(0), until convergence of Q. Its
gradient is then given as ‘Zl—g = 22:1 F’(Li)%Q(si, a;) + ‘”;ée). It can be seen, that
both gradients differ only in their direction terms, but not in the error term. Blocking

112 D. Schneegal, S. Udluft, and T. Martinetz

the gradient flow through the Value Function part of the network hence reconstructs the
latter gradient. Therefore, in the backward path of the Back Propagation algorithm, the
error propagation between the R-cluster and the V’-cluster is multiplied by a constant
p (see fig.[I). The setting p = 1 leads to the sampled Bellman Residual minimisation,
while for p = 0 one obtains the Bellman Iteration. Any other compromise is a possi-
ble trade-off between these two error definitions [12]]. Optimality is then defined as the
solution of the general equation system

r= ZF/ (siyai) =YV (sit1) — 1) di (Q(si,a:i) — pYV (s441)) + %ém = 0.

S

A closer look at the approach reveals the similarities to TD-Learning [4/13]]. Combining
p =0, F(z) = 22, and an incremental learning scheme, NRR is identical to that clas-
sical approach. But the architecture allows us to apply the whole palette of established
learning algorithms for Neural Networks [14].

4 Auxiliared Bellman Residual

It is well-known, that minimising the Bellman Residual on the one hand has the advan-
tage of being a well-controllable learning problem as it is close to a Supervised Learn-
ing scheme, but on the other hand, tends to minimise terms of higher-order moments of
the discounted sum of future rewards in the stochastic case, if no further, uncorrelated
samples of every transition can be given [4/10]. In general the solutions are biased to Q-
functions which are smoother for successor states of stochastic transitions. Specifically,
if ;41 and r; are unbiased estimates for the successor states and rewards, respectively,
the expression (Q (s, a;) — ¥V (si4+1) — 7:)> is not an unbiased estimate for the true
squared Bellman Residual (Q(s,a) — (T'Q)(s, a))?, but for (Q(s,a) — (TQ)(s,a))* +
(T'Q)(s,a)?. As an alternative to the usage of doubled trajectories, which is no option
in our setting, Antos et. al. [2] introduced a modified squared Bellman Residual as a
better approximation of the true Bellman Residual. They left it unnamed, so that we
choose the working name Auxiliared Bellman Residual, defined as

l

= (Q(sira:) =YV (si1) —1)* =D (h(si, i) = YV (sip1) — 74)°

i=1 =1

The task is then to solve Q = arg minge g, MaxpeH, Laux- The idea behind is to find
an h that fits the Bellman operator over the observations. Its unavoidable error cancels
the variance of the original expression down. We obtain

Z =Ey(Q(s,a) — vV (s') — R(s,a,5'))? — By (h(s,a) —yV(s') — R(s,a,s'))?
= (Q(s,0) = (TQ)(s,0))* — Err(h(s,a), (TQ)(s, a)),
which is the true loss function with an additional error term due to the suboptimal

approximation of h, if Hj, is unable to fit the Bellman operator arbitrarily precisely.
This technique allows us to upper-bound the true Bellman Residual, if the error of

Improving Optimality of Neural Rewards Regression 113

gradient flow
control

gradlent row o
0‘[5 control —PP

Fig. 2. The Auxiliared Bellman Residual NRR architecture. Both networks are trained simulta-
neously. The right network is used to obtain an approximation of 7" Q2.

h on T'Q) can be bounded. However, it is easy to see, that L < L within a sad-
dle point of Lqyy, if Hg = Hp. Otherwise h would not provide the minimum of L.
Therefore, an optimum of L,,x would be provided by any Temporal-Difference fixed
point, if it exists, as only in that case () can fit the Bellman Operator as well as h
and L,,x = 0. In contrast to the original proposal [2], we hence choose Hj, either
as a considerable richer function class than H¢ or with prior knowledge of the true
Bellman Operator, such that L basically provides a better estimate of 7"Q?. As any
such estimate of the variance is still biased, the method converges to a biased estima-
tor of the true Bellman Residual minimising function Q* € Hg within its function
space only, but obviously provides a better approximation than the estimator given in
sec. 3l In the following we consider the standard setting F'(x) = x? and obtain the
gradients

d

!
A =T+ Bpy Y (h(si,ai) =YV (si41) = 14) gV (sir1)
i=1
!
Aw = aﬁz (h(siyai) =YV (8i41) — 14) %h(s“ a;)

i=1

where w are the accordant parameters describing h, 0 < § < 1 controlling the influence
of the auxiliary function h, and o > 1 the strength of the optimisation of h in compar-
ison with). This is incorporated into the NRR architecture as follows. In addition to
the original NRR network, responsible for minimising L, we install a second similar,
but auxiliary network, where the Q-clusters are replaced by respective h-clusters while
the network part for Q' remains the same (see fig.2). All three Q-function networks are
still connected via shared weights. Finally, the auxiliary network has to fulfil two tasks,
maximising L wrt. 6 and minimising L w.rt. w. Because of the negative sign of L,
the gradient through the Q' part of the auxiliary network has to be sent in the opposite
direction. The parameter o has to be chosen sufficiently large, such that h can fit the
Bellman Operator almost instantaneously.

114 D. Schneegal, S. Udluft, and T. Martinetz

5 Policy Gradient Neural Rewards Regression

We now consider our second improvement, by introducing PGNRR, which is primarily
a further generalisation of NRR to continuous action spaces. In general it is feasible
for special function classes only to detect V(s) = max, Q(s,a) in polynomial time.
One possibility is to apply the idea of wire-fitting [[15]] or comparable approaches to
NRR. Much more general and simpler is an approach combining the regression scheme
on the rewards with PG methods. Therefore we replace the ensembles of @)-function

gradient flow oo
control

Fig. 3. The Policy Gradient NRR architecture. The additional architectural elements are used to
train the policy network, whose task is to perform a near-optimal policy.

networks for the discrete actions by a single network evaluating Q(s, a) for continuous
states and actions. For the successor states we evaluate Q(s’, w(s’)) where we assume
that 7 : S — A with parameters ¢ tend to perform the optimal policy (see fig.).
Hence Q(s’,7(s")) gets close to max,s Q(s’,a’). This is achieved by the maximisa-
tion of the @Q-function for the successor states, simultaneously with the regression on
the rewards. Therefore, a kind of Batch On-Policy-Iteration or Batch Actor-Critic It-
eration is performed, by exploiting the intrinsic interrelationship between ()-function
and policy. The gradient flow control technique in connection with shared weights is
again sufficient to construct the appropriate architecture. In the standard network part
for the successor state, the gradient flow through the policy network is simply cut off,
such that the policy does not influence the regression on the rewards. In the extended
part, a sufficiently small € enables that only the policy contributes to the ()-function’s
maximisation. The common gradients are given as

!
Af = Z ((Q(ss,ai) —YQ(Sig1, 7(si41)) — 74)
d

do (Q(siy ai) = pyQ(siv1, m(si41))) + %Q(Siﬂ,ﬂ(sz‘ﬂ))) + d!czlt(f)

+Bpy (h(si;ai) — vQ(siv1, T(siv1)) — 7i) %Q(Siﬁ-la m(8it1))

Improving Optimality of Neural Rewards Regression 115

l
Aw = aﬁz (h(siyai) = vQ(siv1, T(si+1)) — 74) %h(si, a;)

%Qw,w(sm.

>
<

I
a
@‘@“
2
»
+

¥
QL
g

| o
I
¥

7)Q(Si+1»7f(3i+1)) = :

i=1 i=1

Still, a near-optimal policy is found by using Back-Propagation with shared weights
only. After convergence, the policy can be evaluated by the network for 7 without using
the -function as interim result.

6 Improving Data-Efficiency

With the problem class extension, we obtain an advancement of data-efficiency as well.
This is based on two different arguments. The first one concerns the improvement w.r.t.
the approachable optimality criteria. As we are now able to find the solution of a less
biased Bellman Residual minimisation, we profit from that optimality criterion, which
has several advantages [11/13]]. Secondly, it has often been stated in the literature, that
PG approaches are better able to profit from prior knowledge as the policies are usually
known to be much simpler than the Q-functions and hence appropriate function classes
can be given. Beside this argument, the question arises, if the combination of learning
a @-function and a policy, provides an improvement w.r.t. the bias-variance-dilemma
[L6] without special prior knowledge. This could be achieved by trading between the
complexity of both hypothesis spaces Hg C Cg and H, C C, which are subsets
of assumed concept spaces. However, there exists a function I : 262 — 2¢= map-
ping from all possible Q)-function hypothesis spaces to the set of all possible policy
hypothesis spaces and for II (Hg) = H it holds

VQ € Hg:3n € Hy :Vs € S:n(s) =argmaxQ(s, a)
Vr € Hy :3Q € Hg : Vs € §: m(s) = argmax Q(s, a).

That is, II(Hg) contains a corresponding policy for any) € H and vice versa. For
illustration, we tested the Cerebellar Model Articulation Controller (CMAC) architec-
ture [4/17] as regressor for the true (Q-function together with the Wet-Chicken bench-
mark problem [18]. The bias-variance-trade-off is controlled by the number of tiles.
The policy is chosen out of the respective function class II(Hg), which can easily be
given for this example, and is fitted, such that the average of Q(s,7(s)) is maximal
over the observations. If we decrease the parameters of 7, such that H, C I (HQ),
then we additionally trade bias against variance over the policy space. In general, it is
indeed possible to obtain the maximal values at a point that does not lie on the diag-
onal, where H, = IT(H o)- Fig. [shows the results. However, a detailed theoretical
analysis, under which conditions an improvement can be obtained, is part of future
work.

116 D. Schneegal, S. Udluft, and T. Martinetz

7 Benchmark Results

In order to support the theoretical considerations on data-efficiency with empirical ev-
idence, we tested the novel architecture on the Cart-Pole problem as described in [10]]
and on a simulation of a gas turbine, which has been used for a Reinforcement Learn-
ing project to reduce acceleration and pressure intensities in the combustion chamber
(RMS) while maintaining high and stable load. A more detailed description can be
found in [20]. We have chosen these two benchmarks, because standard NRR already
shows competitive results in comparison with TD-Learning [[13] on human-designed
as well as automatically trained local basis functions, the Adaptive Heuristic Critic
[4], Neural Fitted Q-Iteration [[19]], and the Recurrent Control Neural Network [20] as
a model-based approach exploiting the special properties of the considered problem
class. Unfortunately a fair comparison of NRR and PGNRR is difficult as each setting
redounds to one method’s advantage. We decided to rediscretise the continuous action
policy. But it is apparent that a better performance in comparison to the natural discrete
method is only a sufficient criterion for its prevalence as the continuous method could
have found a policy which especially exploits its continuous action character.

°
°

E(Q(s,n(s)))

o
®

o
™

°
2

e o o
b =
-

Relative Number of Successful Trials
o o
= o

|091 ONobservalions
.

o

L L L
2 25 3 3.5

Fig. 4. Left: Performance comparison on the Cart-Pole problem. The figure shows the number
of successful learning trials, where the controller balances the pole for at least 100000 steps,
dashed: NRR, solid: PGNRR, dotted: PGNRR rediscretised, and dash-dotted: Neural Fitted Q-
Iteration [[19] for at least 3000 steps. Right: Bias-variance-trade-off for Q)-function and policy for
a tile-coding example. The maximal values are averaged over 100 test trials.

Nevertheless, for the Cart-Pole problem (see fig.), it can be seen that PGNRR per-
forms considerably better than NRR and also its discretised version is quite comparable
to the standard NRR. Both methods were trained with 4-layer networks. The most suc-
cessful setting for NRR was already verified with Q-function networks with 16 and 8
neurons in the first and the second hidden layer, respectively. In accordance with our
observations w.r.t. the bias-variance-trade-off, for PGNRR we improved the complexity
of the @)-function (30 and 15 hidden neurons) and have chosen a smaller policy network
(10 and 5 hidden neurons). As learning algorithm we applied the Vario-Eta method [21]],
where we observed best results for this problem. We have chosen a batch size of 5 and

Improving Optimality of Neural Rewards Regression 117

Table 1. Performance comparison on a controller for a gas turbine simulation. We opposed our
best NRR controller with a PGNRR controller for the same discrete action data set. As the under-
lying MDP’s action space is two-dimensional we applied each a one- and two-action discretisa-
tion. Interestingly, the performance of the two discretised controllers is indeed better than on the
natural discrete controller.

Gas Turbine NRR PGNRR PGNRR PGNRR
Discrete Simple Discretised Double Discretised Continuous
Average Reward|0.8511 4+ 0.0005 0.8531 4+ 0.0005 0.8560 %+ 0.0005 0.8570 £+ 0.0005|

1 = 0.05. The input data was rescaled to constrain the inputs between —1 and +1. The
net training was performed with an exponentially decreasing learning rate. For compar-
ison we plotted the number of successful learning trials with Neural Fitted Q-Iteration
[19], where the pole is balanced for at least 3000 steps, apparently the results are an
upper bound for the presented setting.

As a second benchmark we applied NRR and PGNRR on a gas turbine simulation
[20]. There are two different control variables, the so-called pilot gas and inlet guide
vane (IGV). These variables are, beside other control variables and measurements, part
of the state space. The actions are to wait and do nothing, to increase and decrease pilot
gas, and to increase and decrease IGV each by a certain amount. Only one of these five
actions is selectable in each time step. For the continuous version we allow a maxi-
mum of the discrete modification simultaneously for both control variables. We used
the Recurrent Neural Rewards Regression (RNRR) model as described in [1] and an
appropriate Recurrent PGNRR architecture for comparison. The recurrent substructure
is necessary, because the state space is not Markovian, specifically the underlying MDP
is of higher order.

For both architectures we used the same settings as described for the Cart-Pole prob-
lem, but additionally applied weight decay as regularisation with a factor A = 0.001.
Applying this setting we obtained the best results with the NRR architecture and also
reproducible results with PGNRR. For comparison with the standard NRR, we redis-
cretised the continuous actions independent from each other as well as to the simple
discrete case, where the larger relative action was discretised and the appropriate other
action not executed. It can be seen in tbl. [[that with both discretised versions indeed a
reward improvement could achieved. Note, that a reward difference of 0.002 and 0.006
corresponds to an additional power output of 0.14 and 0.42 MW, respectively, with
stable RMS for a power plant with a maximum power of 200 MW.

8 Conclusion

We introduced two generalisations of Neural Rewards Regression to extend the ap-
proachable optimality criteria and the considered problem class substantially. Of course,
PGNRR can also be combined with Recurrent Neural Networks [1]], so that a very broad
problem class is addressed. Future work will mainly concern the broadening of its ap-
plication for gas turbine control and the theoretical analysis of the improvement of
data-efficiency.

118

D. Schneegal, S. Udluft, and T. Martinetz

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Schneegass, D., Udluft, S., Martinetz, T.: Neural rewards regression for near-optimal policy
identification in markovian and partial observable environments. In: Verleyen, M. (ed.) Proc.
of the European Symposium on Artificial Neural Networks, pp. 301-306 (2007)

. Antos, A., Szepesvdri, C., Munos, R.: Learning near-optimal policies with bellman-residual

minimization based fitted policy iteration and a single sample path. In: Lugosi, G., Simon,
H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 574-588. Springer, Heidelberg (2006)

. Schneegass, D., Udluft, S., Martinetz, T.: Kernel rewards regression: An information ef-

ficient batch policy iteration approach. In: Proc. of the IASTED Conference on Artificial
Intelligence and Applications, pp. 428433 (2006)

. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge

(1998)

. Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Parallel

Distributed Processing, pp. 77-109 (1986)

. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)
. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforce-

ment learning with function approximation. In: Advances in Neural Information Processing
Systems, vol. 12 (2000)

. Wang, X., Dietterich, T.: Model-based policy gradient reinforcement learning. In: Interna-

tional Conference on Machine Learning (2003)

. Ghavamzadeh, M., Engel, Y.: Bayesian policy gradient algorithms. In: Advances in Neural

Information Processing Systems (2006)

Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Re-
search, 1107-1149 (2003)

Munos, R.: Error bounds for approximate policy iteration. In: Proc. of the International Con-
ference on Machine Learning, pp. 560-567 (2003)

Baird III, L.C.: Residual algorithms: Reinforcement learning with function approximation.
In: Proc. of the International Conference on Machine Learning, pp. 30-37 (1995)
Tsitsikilis, J.N., Van Roy, B.: An analysis of temporal difference learning with function ap-
proximation. IEEE Transactions on Automatic Control 42(5), 674—690 (1997)

Pearlmutter, B.: Gradient calculations for dynamic recurrent neural networks: A survey. IEEE
Transactions on Neural Networks 6(5), 1212—-1228 (1995)

Baird, L., Klopf, A.: Reinforcement learning with high-dimensional, continuous actions.
Technical Report WL-TR-93-1147, Wright Laboratory, Wright-Patterson Air Force Base,
OH 45433-7301 (1993)

Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma.
Neural Computation 4(1), 1-58 (1992)

Timmer, S., Riedmiller, M.: Fitted q iteration with cmacs. In: ADPRL. Proceedings of the
IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pp. 1-8. IEEE Computer Society Press, Los Alamitos (2007)

Tresp, V.: The wet game of chicken. Siemens AG, CT IC 4, Technical Report (1994)
Riedmiller, M.: Neural fitted g-iteration - first experiences with a data efficient neural rein-
forcement learning method. In: Proceedings of the 16th European Conference on Machine
Learning, pp. 317-328 (2005)

Schaefer, A.M., Schneegass, D., Sterzing, V., Udluft, S.: A neural reinforcement learning
approach to gas turbine control. In: Proc. of the International Joint Conference on Neural
Networks (2007) (to appear)

Neuneier, R., Zimmermann, H.G.: How to train neural networks. In: Orr, G.B., Miiller, K.-
R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 373-423. Springer,
Heidelberg (1998)

	Introduction
	Markov Decision Processes and Reinforcement Learning
	Neural Rewards Regression
	Auxiliared Bellman Residual
	Policy Gradient Neural Rewards Regression
	Improving Data-Efficiency
	Benchmark Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

