
KERNEL REWARDS REGRESSION: AN INFORMATION EFFICIENT
BATCH POLICY ITERATION APPROACH

Daniel Schneegaß and Steffen Udluft
Information & Communications, Learning Systems

Siemens AG, Corporate Technology
D-81739 Munich, Germany

{daniel.schneegass.ext,steffen.udluft}@siemens.com

Thomas Martinetz
Institute for Neuro- and Bioinformatics

University at Luebeck
D-23538 Luebeck, Germany

martinetz@informatik.uni-luebeck.de

ABSTRACT
We present the novel Kernel Rewards Regression (KRR)
method for Policy Iteration in Reinforcement Learning on
continuous state domains. Our method is able to obtain
very useful policies observing just a few state action tran-
sitions. It considers the Reinforcement Learning problem
as a regression task for which any appropriate technique
may be applied. The use of kernel methods, e.g. the Sup-
port Vector Machine, enables the user to incorporate dif-
ferent types of structural prior knowledge about the state
space by redefining the inner product. Furthermore KRR is
a completely Off-policy method. The observations may be
constructed by any sufficiently exploring policy, even the
fully random one. We tested the algorithm on three typical
Reinforcement Learning benchmarks. Moreover we give a
proof for the correctness of our model and an error bound
for estimating theQ-functions.

KEY WORDS
Machine Learning, Intelligent Control, Reinforcement
Learning, Policy Iteration, Kernel-based Learning, Learn-
ing Theory

1 Introduction

Reinforcement Learning [1] is one of the most challenging
current research topics in Learning Theory with many in-
teresting open problems [2, 3, 4]. Reinforcement Learning
concerns planning of how to move successfully within a
given state space. In the general case the goal is to max-
imise a given objective function. Information about the
objective function is collected in form of rewards during
moving through this space.

Often in Data Mining and related applications one has
got a fixed measured data set which needs to be analysed.
It might be created by a random walk through the state
space. In practice, many data sets contain just a few data
points, because they are hard to simulate or expensive to
measure. In this paper we therefore present a new batch
learning method, which is able to deal very successfully
with this kind of situation. We will show that for popular
benchmark problems with short random walks very good
results can be achieved. Our Kernel Rewards Regression
(KRR) method tries to exploit as much information as pos-

sible. An advantage of our approach is however that any
regression method can be used, so that we can profit from
all the powerful methods in this field.

The use of kernel methods for Reinforcement Learn-
ing is already considered in earlier work. We especially
want to mention the work of Ormoneit and Sen [5], and Di-
etterich and Wang [6]. Ormoneit and Sen used a smooth-
ing kernel like the Gaussian and performed a kind of dy-
namic programming on the samples where some of them
are supporting points and hence the kernel centers. The
Value Function at a certain point within the state space is
finally given as the weighted average of the Value Func-
tions at the supporting points. Dietterich and Wang used
an approach incorporating Support Vector models directly.
They presented different possibilities to construct optimi-
sation problems with appropriate constraints holding prop-
erties of typical Reinforcement Learning tasks such as the
validity of the Bellman Equation.

Least Squares Policy Iteration was also considered in
earlier work. Here we want to point out Lagoudakis and
Parr [7, 8]. They presented a so-called LSQ method which
is derived from the Least Squares Temporal Difference
Learning [9] and combined it with a Policy Iteration. The
latter is in turn derived from TD-Learning. But LSQ is re-
stricted to finite state spaces and an unconstrained standard
Least Squares regression method. Moreover the method
does not converge to a stable solution in general and, most
important, does not use the power of kernel methods.

In Supervised Learning kernels are a mighty tool to
incorporate prior knowledge about the input space (e.g.
invariances [10, 11]) in a variety of different types [12].
Corresponding tools can be used for the KRR method in
a straightforward way. Additionally we will show an up-
per bound for the error of theQ-function estimated by our
method. We tested our method on typical Reinforcement
Learning benchmarks to validate its performance.

2 Reinforcement Learning

In Reinforcement Learning the main goal is to achieve a
policy optimally moving an agent within an environment
which is defined by a Markov Decision Process (MDP) [1].
It is generally given by a state spaceS, a set of actions
A to choose in the different states, and the dynamics, e.g.

502-062 428

debbie

defined by a relationT ⊂ S ×A× S ×R× [0, 1] depend-
ing on the current state, the chosen action, the successor
state, a so-called rewardR which the agent achieves while
moving from current to successor state using the specified
action, and the probability for reaching the successor state
and achieving the certain reward given the current state and
the action.

In most Reinforcement Learning tasks one is inter-
ested in maximising the discounting Value Function

V π(s) = Eπ
s

∞∑
i=0

γiR(s(i), π(s(i)), s(i+1))

for all possible statess where0 < γ < 1 is the discount
factor, s′ the successor state ofs, π : S → A the used
policy, ands = {s′, s′′, . . . , s(i), . . .}. R is the expected
reward. Since the dynamics of the given state-action space
cannot be modified by construction one has to maximise
V over the policy space. Due to the fact that it is a very
difficult task to achieve a good policy immediately by sim-
ulating the Markov Decision Process one usually takes one
intermediate step and constructs a so-calledQ-function de-
pending on the current state and the chosen action holding

Qπ(s, a) = Es′(R(s, a, s′) + γQπ(s′, π(s′))).

By convention we defineV as the Value Function of the
optimal policy andQ respectively. These are the functions
we want to estimate. They are defined as

Q(s, a) = Es′(R(s, a, s′) + γV (s′))

= Es′

(
R(s, a, s′) + γ max

a′
Q(s′, a′)

)
which is called the Bellman Equation. Therefore the best
policy is apparently the one using the action maximising
the (best)Q-function, that is

π(s) = arg max
a

Q(s, a).

For details we refer to Sutton and Barto [1]. This is a very
general definition of the Reinforcement Learning problem.
We use a slightly simplified version where we assume a
discrete set of actions while the set of states remains con-
tinuous and the dynamics probabilistic.

3 Function Approximation with Ridge Re-
gression and Support Vector Regression

In order to use a paradigm that incorporates prior knowl-
edge about the structure of the state space we especially
mention kernalized Ridge Regression [13, 14] and Support
Vector Regression [15, 16, 17]. The trick is to redefine the
inner product within the state spaceS in order to get a solv-
able linear regression task. So in Supervised Learning one
is searching for the best configuration of coefficientsα and
biasb minimising a loss function, e.g.

LSL(α, b) =
l∑

i=1

‖fα,b(xi)− yi‖2

= min

where

fα,b(x) =
l∑

i=1

αiK(xi,x) + b

with K as the kernel which is the modified inner prod-
uct andl the number of observations containing input vec-
tors xi and output valuesyi. Implicitly the weight vec-
tor w =

∑l
i=1 αiφ(xi) with K(x, z) = 〈φ(x), φ(z)〉 per-

forming a linear mapping within the feature space is given.
The kernel has to be chosen appropriately and, as far as
it is really an inner product, symmetric and positive defi-
nite. By redefiningK ′(x, z) = K(x, z) + δx,z

C , whereδ
is the Kronecker symbol, one gets a regularized Regres-
sion problem in order to minimise additionally‖w‖2 =∑l

i=1 αi

∑l
j=1 αjK(xi,xj). This leads to a flatter solu-

tion of the Least Squares problem given above. It has been
proven to generalise better [15, 14]. Moreover in Support
Vector Regression one defines additionally a tolerance er-
ror ε which leads to a more biased solution. We want to
point out that there are many more linear regression meth-
ods based on kernels, e.g. with different error models. Any
of them can be used for our task.

4 The Kernel Rewards Regression Approach

Finally we come to the main point of our approach where
we basically do nothing more than connecting the Bellman
Equation to any linear kernel regression method. As we use
the sum of discounted rewards as achieved value we know
that

Es′R(s, a, s′) = Q(s, a)−Es′γV (s′).

The observed rewardsri and successor statessi+1 are un-
biased estimates for the expected ones using any suffi-
ciently exploring policy including the fully random one
with no strategic prior knowledge. Therefore we can use
(si, ai, si+1) as input variables andri as output variables
for a Supervised Learning problem mappingQ(si, ai) −
γV (si+1) on ri.

Now we restrict the set of allowedQ-functions in a
way that

Q(s, a) =
l∑

i=1

αiK̂(s, a, si, ai) + ba

with action dependent biasesba and

K̂(s, a, s̃, ã) = δa,ãK(s, s̃).

And thus

V (s) = max
a

 l∑
i=1,ai=a

αiK(s, si) + ba

.

As above the kernelK describes a transformation of the
state space into an appropriate feature space. Note that

429

from a state-action point of view the kernel̂K is con-
structed in a limited way. Each action spans its own sub-
space within the feature space. Of courseK̂(s, a, s̃, ã) =

K̂ ′
((

s
a

)
,

(
s̃
ã

))
remains symmetric and positive

definite. Similar to [7, 8, 9] we now convert the Rein-
forcement Learning problem into a regression problem. All
information we got for sure are the states, actions, and
achieved rewards. We do not use any assumptions about
the state-action-values. Due to the linearity of our model
we obtain the rewards function as an estimate of the ex-
pected rewards

R(si, ai, si+1) =
l∑

j=1

αj

(
δai,aj

K(si, sj)

− γδai+1,max,aj
K(si+1, sj)

)
+bai

− γbai+1,max ,

whereai,max is the action reaching the maximal value on
si. Suppose we already know these actions. Then the solu-
tion of a Least Squares regression problem is given as the
α andb holding

LRL(α,b) =
∥∥∥∥r− (K ′ ∆)

(
α
b

)∥∥∥∥
= min

K ′
i,j = δai,aj

K(si, sj)
−γδai+1,max,aj

K(si+1, sj)
∆i,j = δai,j − γδai+1,max,j , j ∈ {1, . . . , |A|}.

Of course any more sophisticated regression solution [15,
16, 17, 18, 19] can be calculated as mentioned above. The
attentive reader could remark that unfortunately the con-
structed kernelK ′, even if it is regularized, is no more
symmetric and positive definite in general. Therefore the
KRR input space cannot be interpreted as an inner prod-
uct space in contrast to the one of theQ-function, and thus
local minima might exist as for instance in Support Vec-
tor Regression. But e.g. the Sigmoid Kernel [16] and the
Tangent Distance Kernel [11] are not positive definite as
well [20, 21] and are often used for Support Vector Ma-
chine Learning. Additionally we want to mention e.g. the
work of Ong et al. [22], Mangasarian and Musicant [23],
and Guo and Schuurmans [21] who presented foundations
on and different methods using indefinite kernels.

4.1 Interpretation

It is most important to point out, that the presented method
only uses the states and actions observed as input variables
and the rewards as output variables. The hypothesis space
for R is constructed in such a way that theQ-function can
be obtained by decomposition ofR and holds the Bell-
man Equation as constraint. It is not necessary to integrate
over any probabilities and make suppositions about it like
in Planning and Learning methods. Moreover we do not

need interim solutions of theQ-function, which will even-
tually move the final solution in a direction dependent on
the initialization like in Q-Learning.

Our approach differs from Ormoneit and Sen’s [5]
in many aspects. E.g. the factorsα are degrees of free-
dom in KRR while their work setαi to an estimate of
Q(si, ai). They are hence limited to distance based ker-
nels. The method uses kernels just as smoothing functions
to consider the continuity of the state space. In the Sup-
port Vector philosophy, which we promote, kernels are any
functions transforming a nonlinear problem into a linear
one and therefore simplifying it.

The work of Dietterich and Wang [6] requires full
knowledge about the concerned policy. They look for the
optimal Support Vector representation of the policy. How-
ever, from a certain perspective their work has the most
similarities to ours because they combine Reinforcement
Learning requirements with Support Vector Machine opti-
misation techniques in an immediate way.

Lagoudakis and Parr [7, 8] actually solve another, but
similar regression problem (also within the feature space)
which is restricted to a special type of the standard Least
Squares approach. Nevertheless, their algorithm iterates in
a comparable way, but does not profit from the advantages
offered by kernels. However, our KRR can be seen as an
extension and combination of the work of Ormoneit and
Sen as well as Lagoudakis and Parr.

4.2 Upper Bound on the Error of Q

Due to the fact that only the correctQ-function holds the
Bellman Equation, the correct estimate for the rewards of
course leads to the correct estimate of theQ-function [9].
But if we have a small error on the rewards regression, then
this could lead to aQ-function with an error obtaining a
completely different policy. It is indeed not apparent that
the error of theQ-function remains bounded.

Theorem 1 Let S be a compact set of states andA a fi-
nite set of actions. Let further beR, Q the real expected
rewards andQ-function, andR̂, Q̂ our estimates of them
which satisfy

R̂(s, a, s′) = Q̂(s, a)− γ max
a′

Q̂(s′, a′)

for all s, s′ ∈ S anda ∈ A, 0 < γ < 1 the discount factor.
Then the following holds true. If for alls, s′ ∈ S anda ∈ A
the error

|R(s, a, s′)− R̂(s, a, s′)| < ε

is bounded, then the relation

|Q(s, a)− Q̂(s, a)| <
ε

1− γ

holds true as well.

430

Proof: Suppose the converse of the claim. Then there ex-
ists at least one(s∗, a∗) such that

ε

1− γ
≤ |(Q− Q̂)(s∗, a∗)|.

Due to the validity of the Bellman Equation, forQ, R and
by construction forQ̂, R̂, there is further at least one(s, a)
which maximises this error of theQ-function, that is

ε

1− γ
+ c = |(Q− Q̂)(s, a)|

= |Eŝ((R− R̂)(s, a, ŝ) + γ(V − V̂)(ŝ))|

with c > 0. Then there exists at least ones′ such that
ε

1− γ
+ c ≤ |(R− R̂)(s, a, s′) + γ(V − V̂)(s′)|.

Moreover from|(V − V̂)(s′)| = β it follows ∃a′ ∈ A :
|(Q− Q̂)(s′, a′)| ≥ β. Therefore we obtain immediately

ε

1− γ
+ c ≤ |(R− R̂)(s, a, s′) + γ(Q− Q̂)(s′, a′)|

≤ |(R− R̂)(s, a, s′)|+ γ|(Q− Q̂)(s′, a′)|

< ε + γ

(
ε

1− γ
+ c

)
=

ε

1− γ
+ γc.

This is the contradiction and proves the theorem.

�

And thus any error bounds, both theoretical ones from
Learning Theory and practical ones, e.g. by Cross Vali-
dation on the rewards, lead immediately to an error bound
for the Q-function using any approach fulfilling the Bell-
man Equation. Because of the kernel structure of the KRR
method all theoretical bounds for e.g. kernalized Ridge Re-
gression and Support Vector Regression can be applied.

Furthermore, we want to point out that theorem 1 is
not limited to linear methods for regression. Any regres-
sion method that fulfills the structure of the Bellman Equa-
tion can be used to estimate the rewards and implicitly the
Q-function.

5 The Algorithm

As given above one usesai,max to solve the KRR problem
which one does usually not know. Hence we define the
function

FK,r,ρ(z, h) = (H(g, z, h), ρh) , 0 < ρ < 1
g = arg max

u
‖(KuA(M, r) + bu(M, r))‖

M =
(
δai,aj

K(si, sj)

−γzi+1,aj K(si+1, sj)
)
l,l

as before. A(K ′, r) = α andbu = (bu1 · · · bul
)T

solve the regression task. The fixed point ofF , for which
F (z) = (z∗, 0) with z∗i,j = 1 for ai,max = j andz∗i,j = 0
otherwise leads to the correct solution.

Algorithm 1 The Reinforcement Learning Kernel Rewards
Regression Algorithm
Require: given set of transitions T =
{(s1, a1, s2, r1), . . . , (sl, al, sl+1, rl)}, kernel K,
regression parameters (e.g.C and ε), discount factor
0 < γ < 1, and action change factor0 < ρ ≤ 1

Ensure: calculates a policy choosing best actions for the
Reinforcement Learning problem given by the represen-
tationT
set z ∈ Rl×|A| randomly constrained by∀i :∑|A|

j=1 zi,j = 1
sett← 0
while the desired precision is not reacheddo

sett← t + 1
set ∀i, j : K ′

i,j = δai,aj
K(si, sj) −

γzi+1,aj
K(si+1, sj)

solve the regression taskK ′α = y w.r.t. the regres-
sion parameters (e.g.C andε)
find ∀i : ui,max = arg maxa

∑l
j=1 δa,aj K(si, sj)

set∀i : zi,ui,max = zi,ui,max + ρt(1− zi,ui,max)
set ∀i, j 6= ui,max : zi,j =

zi,j

(
1− ρt

(∑|A|
k=1 zi,k

)−1
)

end while
setπ(s) = arg maxa′

∑l
i=1 αiδa′,aiK(s, si)

6 Benchmarks

We compared the results of our method with the results
of the random and the optimal policies, which were ob-
tained by human analysis (modified Mountain-Car, Pole-
Balancing [1]) or Genetic algorithms with millions of ob-
servations (Wet-Chicken [25]). In the Pole-Balancing prob-
lem we additionally included results of a variant of the
Adaptive Heuristic Critic (AHC) [1] which is highly tuned
for this special problem and hence works very well. Fur-
thermore the AHC benefits from its own online exploration.
For a comparison using random exploration we also show
results achieved by Prioritized Sweeping. One can see that
the results are similar. For our benchmarks we used ker-
nalized Ridge Regression together with different types of
kernels.

• Polynomial Kernel:Kp(x, z) = (xT z + 1)p

• Gaussian Kernel:Kσ(x, z) = e
‖x−z‖2

2σ2

• Linear Limits Kernel: Klimits(x, z) =
φlimits(x)T φlimits(z) with φlimits(x) =(
|x| |x− limits1| · · · |x− limitsdim(limits)|

)T

We used the Gaussian and Polynomial Kernel as standard
variants in Kernel Machines. The parameters were each
preselected solving smaller sized problems. We chose es-
pecially the Linear Limits Kernel because of our knowl-
edge about theQ-Functions structure. As it is often the

431

case in Reinforcement Learning the policies are fairly sim-
ple and unspectacular on a wide range of states, whereas
within certain areas the optimal actions change frequently.
In these regions nodeslimitsi are set with higher density.
So we are able to keep the VC-Dimension small, but take
the different attractivities of certain parts of the state space
into account. As can be seen below, the good results, how-
ever, are comparable to the ones using the Gaussian Kernel
with appropriate variances.

We have tested our method using different popular
Reinforcement Learning benchmarks. For details we refer
to the literature [25, 1]. The results are each averaged over
several trials and are given together with its error analysis.
It can be seen that very few observations suffice to achieve
quite good policies, in almost every setting with upward
tendency for an increasing number of observations.

Table 1. Results for the Wet-Chicken problem [25]

Policy/Kernel Samples Average Relative
Reward to Optimum

Random 7.2 41 %
Gaussian 250 12.3± 0.3 70.7± 1.6%
(σ = 1) 500 12.5± 0.2 71.7± 1.1%

1000 13.6± 0.3 78.0± 1.5%

Gaussian 250 13.5± 0.4 77.4± 1.6%
(σ = 2.5) 500 13.6± 0.4 78± 2%

1000 13.9± 0.3 80± 2%

Gaussian 250 12.6± 0.4 72± 2%
(σ = 5) 500 12.8± 0.3 73± 2%

1000 13.3± 0.4 76± 2%

Linear Limits 250 12.3± 0.3 71± 2%
500 12.5± 0.2 72.0± 1.2%

1000 13.5± 0.3 77.3± 1.5%

Optimal 17.4 100 %

Table 2. Results for the Mountain-Car problem [1]

Policy/Kernel Samples Steps until Relative
Crest to Optimum

Random 100 24 %
Gaussian 250 59± 5 41± 4%
(σ = 0.05) 500 57± 6 42± 4%

1000 41± 6 65± 5%

Gaussian 250 29.4± 1.1 82± 3%
(σ = 0.25) 500 26.1± 0.6 92± 2%

1000 25.8± 0.6 93± 2%

Polynomial 250 41± 2 58± 3%
(p = 4) 500 35.2± 1.2 68± 2%

1000 32.2± 1.0 75± 2%

Polynomial 250 38± 2 63± 3%
(p = 5) 500 33.7± 1.1 71± 2%

1000 26.1± 0.6 92± 2%

Linear Limits 250 46± 3 53± 3%
500 42± 2 58± 3%

1000 39± 2 62± 4%

Optimal 24 100 %

Table 3. Results for the Pole-Balancing problem [1]

Policy/Kernel Samples Steps until
Failure

Random 22
Gaussian 250 41± 5
(σ = 0.25) 500 74± 6

1000 90± 7

Polynomial 250 22± 2
(p = 4) 500 35± 6

1000 30± 4

Polynomial 250 22± 2
(p = 5) 500 28± 3

1000 36± 5

Linear Limits 250 58± 10
500 89± 8

1000 145± 11

Prioritized Sweeping 250 30
(Random Exploration) 500 58

1000 82
AHC 250 53
(Boltzmann Exploration) 500 97

1000 155
Optimal ∞

7 Conclusion

The main goal of our current research is to build up Rein-
forcement Learning methods using the existing information
as efficient as possible. In an intrinsic way we construct the
Q-function as linear in the samples within an appropriate
feature space using the kernel trick. Therefore it is pos-
sible to incorporate structural prior knowledge about the
state space. On the other hand, no strategic, thus policy-
concerned prior knowledge is necessary. We proved the
correctness of our model and presented an algorithm that
works well, even on a few observed samples. Still there is
future work to do. The fixed point iteration is constructed
such that convergence is always guaranteed, at least to
any point. The convergence proof with an asymptotically
slower decreasingh is still open. Furthermore we want to
combine an iterative regression method with the fixed point
iteration over the solutions and the maximal actions. In
each step the maximal actions could be recalculated much
faster and the two iterations could support each other. Such
incremental Policy Iteration could be based on the SMO al-
gorithm [26] or the MMO approach [27] for Support Vec-
tor Machines. Such an algorithm could be used online and
hence efficiently as On Policy method. Moreover an appro-
priate exploration strategy has to be discovered.

Acknowledgments

We are very grateful to Bernhard Lang, Peter Mayer, Anton
Schaefer, Volkmar Sterzing, and Volker Tresp for fruitful
discussions and useful comments during the preparation of
this paper.

432

References

[1] Richard S. Sutton and Andrew Barto.Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
1998.

[2] Richard S. Sutton. Open theoretical questions in re-
inforcement learning. InEuroCOLT, pages 11–17,
1999.

[3] A. G. Barto and S. Mahadevan. Recent advances in
hierarchical reinforcement learning. InDiscrete Event
Dynamic Systems, 2003.

[4] Anton Schaefer and Steffen Udluft. Solving partially
observable reinforcement learning problems with re-
current neural networks. InWorkshop Proc. of the
European Conference on Machine Learning, 2005.

[5] D. Ormoneit and S. Sen. Kernel-based reinforcement
learning.Machine Learning, 49(2-3):161–178, 2002.

[6] T. Dietterich and X. Wang. Batch value function
approximation via support vectors. InNIPS, pages
1491–1498, 2001.

[7] Michail G. Lagoudakis and Ronald Parr. Model-free
least-squares policy iteration. InAdvances in Neural
Information Processing Systems, volume 14, 2002.

[8] Michail G. Lagoudakis, Ronald Parr, and Michael L.
Littman. Least-squares methods in reinforcement
learning for control. InSETN, pages 249–260, 2002.

[9] Justin A. Boyan. Least-squares temporal difference
learning. InI. Bratko and S. Dzeroski, editors, Ma-
chine Learning: Proceedings of the Sixteenth Interna-
tional Conference, volume 14, pages 49–56. Morgan
Kaufmann, San Francisco, CA, 1999.

[10] O. Chapelle and B. Schoelkopf. Incorporating invari-
ances in non-linear support vector machines. InT.
G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems,
volume 14, pages 609–616. MIT Press, Cambridge,
MA, 2002.

[11] B. Haasdonk and D. Keysers. Tangent distance ker-
nels for support vector machines. InProceedings of
the 16th ICPR, pages 864–868, 2002.

[12] Bernhard Schoelkopf, Patrice Simard, Alex J. Smola,
and Vladimir Vapnik. Prior knowledge in support
vector kernels. InNIPS, 1997.

[13] AE Hoerl and RW Kennard. Ridge regression: Biased
estimation for nonorthogonal problems.Technomet-
rics, pages 55–68, 1970.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. The Elements Of Statistical Learning Theory,
Data Mining, Inference, and Prediction. Springer,
New York, 2001.

[15] Vladimir N. Vapnik. Statistical Learning Theory.
John Wiley & Sons, Inc., New York, 1998.

[16] Nello Cristianini and John Shawe-Taylor.Support
Vector Machines And Other Kernel-based Learning
Methods. Cambridge University Press, Cambridge,
2000.

[17] Alex J. Smola and Bernhard Schoelkopf. A tutorial
on support vector regression.NeuroCOLT2 Techni-
cal Report NC-TR-98-030, Royal Holloway College,
University of London, UK, 1998.

[18] Volker Tresp. Scaling kernel-based systems to large
data sets. Data Mining and Knowledge Discovery,
2001.

[19] Volker Tresp. Mixtures of gaussian processes. In
NIPS, volume 13, 2000.

[20] Matthias Hein and Olivier Bousquet. Kernels, asso-
ciated structures and generalizations.Max-Planck-
Institut fuer biologische Kybernetik, Technical Re-
port, 2004.

[21] Yuhong Guo and Dale Schuurmans. Support vector
machines on general confidence functions.Depart-
ment of Computing Science, University of Alberta,
Edmonton, Canada, Technical Report, 2005.

[22] C.S. Ong, X. Mary, S. Canu, and A.J. Smola. Learn-
ing with non-positive kernels. InProceedings of the
21st International Conference on Machine Learning,
pages 639–646, 2004.

[23] O. L. Mangasarian and David R.. Musicant. Data dis-
crimination via nonlinear generalized support vector
machines. Computer Sciences Department, Univer-
sity of Wisconsin, Madison, Wisconsin, Technical Re-
port 99-03, 1999.

[24] Andrew Y. Ng, Daishi Harada, and Stuart Russell.
Policy invariance under reward transformations: The-
ory and application to reward shaping. InProc. 16th
Intl. Conf. on Machine Learning, pages 278–287,
1999.

[25] Volker Tresp. The wet game of chicken.Siemens AG,
CT IC 4, Technical Report, 1994.

[26] John C. Platt. Fast training of support vector ma-
chines using sequential minimal optimization. InAd-
vances in kernel methods: support vector learning,
pages 185–208. MIT Press, Cambridge, MA, USA,
1999.

[27] T. Martinetz. Maxminover: A simple incremental
learning procedure for support vector classification.
Proc. of the International Joint Conference on Neural
Networks (IEEE Press), pages 2065–2070, 2004.

433

