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ABSTRACT
The paper deals with the estimation of complex motion pat-
terns. The complexity is due to (i) the motions of two trans-
parent layers, and (ii) an additional change of brightness in
the layers, which can be due to an additive source term, an
exponential decay, or diffusion. We present new models
and constraints for such complex motion patterns. Exper-
iments on synthetic image sequences demonstrate the per-
formance of our models in conjunction with a total least-
squares parameter estimation scheme. Crucial ingredientsof
this scheme are new filter families of derivative filters of up
to fourth order. We present a procedure for how to construct
appropriate filter families for the introduced models.

1. INTRODUCTION

We present linear models for the estimation of transparent
motions and physically motivated brightness changes. This
work combines model design as presented in [3] and [7] with
estimation approaches from [5] and discretization via opti-
mised filter families [6].

The models introduced in Sec. 2 are all of the form
dT p = 0 with a parameter vectorp and a data vectord. This
parameter vector does not contain the model parameters di-
rectly, but in the form ofmixed motion parameters [5]. We
show how to disentangle the parameters, given an estimated
parameter vectorp. Sec. 3 introduces the so called structure
tensor and gives a rule for how to construct suitable filter
families. Finally, the experimental results are presentedin
Sec. 4.

2. CONSTRUCTION OF THE MODELS

We will here derive brightness-change constraint equations
(BCCE) from motion models by combining well known
BCCE (see e.g. [3]) with the model of transparent motions
first presented in [7]. We start with the simplest case, two
transparent motions without brightness changes.

2.1 Transparent Motions
The BCCE for standard, single motion optical flow is

α(v) f = 0 whereα(v) := vx∂x +vy∂y +∂t (1)

with image intensitiesf , partial derivatives∂x, ∂y, ∂t in x-
, y- and t-directions, respectively, and displacement vector
v = [vx,vy]

T . We construct a BCCE for transparent motions
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by successively applyingα to the image sequence [7]. Thus
if

f (x,t) = f1(x−ut)+ f2(x−vt), (2)

a basic calculation reveals thatα(u)α(v) f = 0 or equiva-
lently

uxvx∂xx f +(uxvy +uyvx)∂xy f +uyvy∂yy f +
(ux +vx)∂xt f +(uy +vy)∂yt f +∂tt f = 0 (3)

where∂xx f denotes the second order partial derivative in di-
rection x, etc. We now define themixed motion parame-
ters [5]

cxx := uxvx cxy := uxvy +uyvx cyy := uyvy
cxt := ux +vx cyt := uy +vy

(4)

and rewrite Eq. 3 as
dT p = 0 (5)

with
p := [cxx,cxy,cyy,cxt ,cyt ,1]T

d := [∂xx f ,∂xy f ,∂yy f ,∂xt f ,∂yt f ,∂tt f ]T .
(6)

We observe that Eq. 5 is a linear model with parameter vector
p and data vectord. Parameters in such a linear model can
be estimated by a number of standard parameter-estimation
schemes used for optical flow estimation (see e.g. [1, 4] for
surveys on such schemes). We implemented a total least-
squares scheme, based on the so called extended and gen-
eralised structure tensor [3, 5]. We describe this scheme in
Sec. 3. From the parameter vectorp we can infer the ve-
locitiesu andv by using the following ’trick’ [5]. First, we
interpret the vectorsu andv as complex numbers. Then,
with the definitions

A0 := cxx −cyy + icxy A1 := cxt + icyt (7)

u andv are the solutions of the complex polynomial

z2−A1z+A0 = 0. (8)

2.2 Transparent Motions plus Additive Source

A locally constant additive source in the image sequencef
implies thatf is given as

f (x,t) = f1(x−ut)+ f2(x−vt)+k(t). (9)

By usingα as defined in Eq. 1 we obtain

α(u)α(v) f = k′′. (10)

In analogy to Eq. 6 above, we introduce the vectors

p := [cxx,cxy,cyy,cxt ,cyt ,1,k′′]T

d := [∂xx f ,∂xy f ,∂yy f ,∂xt f ,∂yt f ,∂tt f ,−1]T
(11)



and again obtain a linear model of the formdT p = 0. Once
the parameter vectorp has been determined by using the es-
timation scheme above,k′′ is given as its last component.
Since we can neither retrievek, nor k′, but only the sec-
ond derivativek′′, motion in an image sequence with a linear
brightness change can be estimated via the model given in
Eq. 3.

2.3 Transparent Motions plus Exponential Decay

In case of multiplicative brightness changes, the image se-
quencef is given as

f (x,t) = f1(x−ut)k1(t)+ f2(x−vt)k2(t). (12)

If
k1(t) ∝ exp(c1t) k2(t) ∝ exp(c2t) (13)

then
α(u) f1 = c1 f1 α(v) f2 = c2 f2. (14)

This is the partial differential equation for an exponentially
decaying signal. By defining

β (v,c) := vx∂x +vy∂y +∂t −c (15)

we obtain
β (u,c1)β (v,c2) f = 0. (16)

The above equation is linearised by introducing

p := [cxx,cxy,cyy,cxt ,cyt ,1,−uxc2−vxc1,

−uyc2−vyc1,−c1−c2,c1c2]
T

d := [∂xx f ,∂xy f ,∂yy f ,∂xt f ,∂yt f ,∂tt f ,∂x f ,∂y f ,∂t f , f ]T .

(17)

which leads again to a constraint of the formdT p = 0. The
parametersc1 and c2 are then disentangled as in Sec. 2.1:
with

A0 := c1c2 A1 := −c1−c2, (18)
c1 andc2 are the solutions of the real polynomial

x2 +A1x+A0 = 0. (19)

We have determined the two motion vectors and the two de-
cay rates, but still do not know which decay rate belongs to
which motion vector. We use the remaining components of
p for the correct assignment. If the assignment is correct,
[ux,uy,c1] and[vx,vy,c2] should fulfill the conditions

−uxc2−vxc1− p7 ≈ 0 −uyc2−vyc1− p8 ≈ 0. (20)

Otherwise we swapc1 andc2.

2.4 Transparent Motions plus Diffusion
To obtain a model for transparent motions plus diffusion, we
start with the following partial differential equation

γ(v,c) f = 0 with γ(v,c) = vx∂x +vy∂y +∂t −c4, (21)

and4 = ∂xx + ∂yy. For two image sequencesf1 and f2 that
are affected by diffusion, i.e.

γ(u,c1) f1 = 0 γ(v,c2) f2 = 0 (22)

and f = f1 + f2, we obtain the constraint

γ(u,c1)γ(v,c2) f = 0. (23)

Again we can linearise this equation, by using

p := [cxx,cxy,cyy,cxt ,cyt ,1,−uxc2−vxc1,

−uyc2−vyc1,−c1−c2,c1c2]
T

d := [∂xx f ,∂xy f ,∂yy f ,∂xt f ,∂yt f ,∂tt f ,∂x4 f ,∂y4 f ,∂t4 f ,44 f ]T ,
(24)

todT p = 0. The parameter vector is identical to the one from
the model for exponential decay (Eq. 17).

3. ESTIMATION SCHEME

3.1 Structure Tensor

All the constraints derived in Sec. 2 are of the formdT p = 0
with the data vectord and the parameter vectorp. We have
thus one equation per pixel, but need to estimate several pa-
rameters (the components ofp) per equation, which is an
under determined system of equations. In order to solve this
system we assume, that within a small spatio-temporal neigh-
borhoodΩ of a pixeli all equations are approximately solved
by the same set of parametersp. The modeldT p = 0 there-
fore becomes

dT
i p = ei for all pixelsi in Ω (25)

with errorsei which have to be minimized by the sought for
solutionp̃. Using a matrixD composed of the vectorsdi via
Di j = (di) j Eq. 25 becomesDp = e. We minimizee using
a weighted 2-norm

||e|| = ||Dp|| = pTDTWDp =: pTJp
!
= min (26)

whereW is a diagonal matrix containing the weights. In our
case Gaussian weights are used, implemented via a 15-tab
filter with standard deviation 7. It multiplies each equation
i in Eq. 25 by a weightwi. The matrixJ = DTWD is the
so called structure tensor. The errore is minimized by intro-
ducing the assumption|p̃|= 1 in order to suppress the trivial
solution p̃ = 0. Doing so the solutions̃p is given by the
eigenvector to the smallest eigenvalue ofJ. Moreover, for
our models, this vector̃p must be normalized with respect to
its 6th component (cmp. eqs. 6, 11, 17 and 24). For further
details on computational issues of TLS estimation, we refer
to [3] and the citations therein.

3.2 Optimised Filter Sets
We implement all derivatives occurring in Eqs. 6, 11, 17,
and 24 as separable spatio-temporal convolution filters. Each
filter consists of first or second order derivatives, smoothed
in the orthogonal directions. For filter design, we use the
method presented in [6]. All of the models developed in
Sec. 2.1 are of the formdT p = 0. Obviously the data vec-
tor d has to be perpendicular to the parameter vectorp. The
length ofd is of minor interest. Thus we need to design a
filter set for each model separately that calculates theorien-
tation of d as good as possible. For the mixed second order
derivatives from Eq. 6, we performed a rigorous optimisation
following [6]. For 3-tab filters we obtain

I1 = [0.12026,0.75948,0.12026] D1 = [0.5,0,−0.5]
I2 = [0.21478,0.57044,0.21478] D2 = [1,−2,1]

(27)

and for 5-tab filters

I1 = [0.01504,0.23301,0.50390,0.23301,0.01504]
I2 = [0.01554,0.23204,0.50484,0.23204,0.01554]

D1 = [0.06368,0.37263,0,−0.37263,−0.063681]
D2 = [0.20786,0.16854,−0.75282,0.16854,0.20786]

(28)

Second order derivative filters, e.g.∂xy and∂xx, are then gen-
erated via

∂xy = D1
x ∗D1

y ∗ I1
t and ∂xx = D2

x ∗ I2
y ∗ I2

t (29)

where∗ denotes convolution and lower indices denote the
application direction. All filters not introduced above, can be



derived by exchange of lower indices. The filters are of size
3×3×3 or 5×5×5.

For the additive brightness model (Eq. 11), we use the
same filters. In the multiplicative brightness model (Eq. 17),
first-order derivatives and an identity operator (last compo-
nent ofd) occur. They are build via

∂x = D1
x ∗ I2

y ∗ I2
t and I = I2

x ∗ I2
y ∗ I2

t (30)

These filters are of size 3×3×3 or 5×5×5 also.
The diffusion model is more complex because spatial

Laplacians4 occur. We use

L = D2
x ∗ I2

y +D2
y ∗ I2

x (31)

as discrete Laplace operator. The 7th to 10th component ofd
from Eq. 24 are then

∂x4 = D1
x ∗ I2

y ∗ I2
t ∗L ∂y4 = I2

x ∗D1
y ∗ I2

t ∗L
∂t4 = I2

x ∗ I2
y ∗D1

t ∗L 44 = I2
t ∗L ∗L.

(32)
These are of size 5×5×3 or 9×9×5. The inherent smooth-
ing of all filters of a set should be as similar as possible [6].
Thus the 1st to 6th component ofd from Eq. 24 are not cal-
culated via the second order derivative filters from Eq. 29
directly, but via smoothed versions

∂xy = D1
x ∗D1

y ∗ I1
t ∗ I2

x ∗ I2
y and ∂xx = D2

x ∗ I2
y ∗ I2

t ∗ I2
x ∗ I2

y
(33)

Note that additional smoothing is only applied inx- and
y-directions. All filters of the set are of the same spatio-
temporal size.

4. EXPERIMENTS

All the experimental results have been obtained by using syn-
thetic image sequences with ground truth.

4.1 Synthetic Sequences

All image sequences used in the experiments consist of two
motion layers. Each layer is generated by moving a given
basic pattern or image and a subsequent brightness change.
The first motion layerf1 is generated by moving such a pat-
tern with known ’actual’ velocityua = [0,−1]T , the second
layer f2 via va = [1,1]T . We use integer shifts in order to
avoid interpolation errors. From these 2 layers we generate
4 image sequences, one for pure transparent motions, one
with additive brightness, one with exponential decay and one
with diffusion. The first 3 sequences are defined by Eq. 2,
Eq. 9 (k′′ = 8) and Eq. 12 (c1 =−1,c2 =−0.5), respectively.
The diffusion sequence is generated via successive convo-
lution of each layer by a truncated and normalised Gaus-
sian kernelG ∝ exp(−x2/(2σ2)) before summing them up.
Solving Eq. 21 (see e.g. [2])1reveals that we have to choose
σ =

√
2ct. For diffusion we choosec1 = 1.0 andc2 = 0.5.

Truncation took place above 6σ in order to keep discretiza-
tion errors low.

For illustration of the motions and brightness changes,
we use smoothed delta-combs as basic patterns (cmp. Fig.1),
but for the error analysis smooth noise patterns as depicted

1More exactly: If∂t f = c4 f and f = F(x)T (t), thenT = exp(−k2ct)
if F = exp(−kx). Thus ifF is more complicated than this, we have to mul-
tiply the Fourier transform ofF with T . This means, in spatial domain we
have to convolveF with the Fourier transform ofT which is proportional to
exp(−x2/(4ct)).

a

b

c

Figure 1: Images 1 to 3 of the ’delta-comb’ test sequence:
a quadratic additive source (Eq. 11),b exponential decay
(Eq. 17),c diffusion (Eq. 24).

in Fig.2. Three subsequent images of the test sequences il-
lustrating the brightness change models are shown in Fig.1.
The experiments are done with static noise patterns smoothed
by a 5-tab binomial filter[1,4,6,4,1]/16 applied inx- and
y-direction (cmp. Fig.2). No time-varying noise has been
added to the sequences, and therefore, errors presented in
Sec. 4.3 are systematic errors only, coming from the dis-
cretization and estimation process.

4.2 Error Measures

For the estimation of optical flow the most popular error mea-
sure is theangular error Ev (see [1], eq. 3.38) defined by

Ev = arccos(rT
a re) (34)

where the lower index ofE indicates, which velocity is used
to obtain this error,ra = [vx,a,vy,a,1]/(v2

x,a + v2
y,a +1)1/2 is

the known (’actual’) ground truth spatio-temporal velocity
vector of length 1 andre = [vx,e,vy,e,1]/(v2

x,e + v2
y,e +1)1/2 is

the estimated velocity vector. The same definition holds for
velocitiesu. For the brightness change parametersc, we use
the relative deviationEc between known and estimatedc’s
giving the systematic error. These errors can be minimised
by an optimal choice of filter families as demonstrated in [6].

4.3 Results

We tested how well the optical flow fields and the brightness
parameters are estimated by using a TLS scheme (Sec. 3.1).
We used 3 filter sets: central differences (3× 1× 1), 3-tab
optimised (3× 3× 3), and 5-tab optimised (5× 5× 5) fil-
ters (cmp. Sec. 3.2).2 In the first test we combined models
with suitable test sequences, see Fig.2. We observe that all
errors are rather high for central differences and 3-tab op-
timised filters.Using 5-tab optimised filters, the errors drop

2Sizes for the diffusion case are (5×1×1), (5×5×3), and (9×9×5).



3×1×1 3×3×3 5×5×5

a

Eu=1.7, Ev =8.9 Eu=0.67, Ev =4.0 Eu=0.02, Ev =0.02

b

Eu=2.2, Ev =7.9 Eu=0.67, Ev =3.8 Eu=0.02, Ev =0.02
Ek′′ =4% Ek′′ =0.6% Ek′′ =2e−3%

c

Eu=14.0, Ev =2.4 Eu=7.5, Ev =2.2 Eu=0.16, Ev =0.07
Ec1 =34% Ec1 =9.3% Ec1 =0.2%
Ec2 =41% Ec2 =18% Ec2 =0.7%

d

Eu=21, Ev =7.0 Eu=6.6, Ev =2.3 Eu=0.16, Ev =0.10
Ec1 =5.6% Ec1 =12% Ec1 =0.1%
Ec2 =113% Ec2 =44% Ec2 =0.4%

Figure 2: Flow fields using different filter sets, models and
suitable test sequences:a no brightness change,b addi-
tive quadratic,c multiplicative exponential, andd diffusion
model. Filter sizesleft: 3×1×1, middle: 3×3×3, right:
5×5×5. Motion vectors are scaled by a factor 10. Errors
Eu andEv are angular errors (Eq. 34) in degree,Ec1, Ec2,
andEk′′ are the absolute values of the relative error of the
brightness parameter estimate.

about 1-2 orders of magnitude. Consequently, we use these
5-tab filters in the remainder of this paper. As a second test,
we combined the models with non-suitable image sequences.
Obviously the brightness parameters estimated do not make
any sense then. We neglect them and present the flow fields,
only (see Fig.3). Only the combination multiplicative model
with additive brightness change in the data gives reasonable
estimates. All other combinations lead to large errors.

5. CONCLUSION

We have presented linear models for the estimation of trans-
parent motions with additional, physically motivated, bright-
ness changes. When using the correct model, and 5-tab op-
timised filter families for the derivatives, the experiments

Eu=31, Ev=52 Eu=100, Ev=102 Eu=51, Ev =44

Eu=0.5, Ev=0.5 Eu=19, Ev=12 Eu=52, Ev =45

Eu=40, Ev=72 Eu=85, Ev=91 Eu=18.0, Ev =10

non-add non-mul non-diff

mul-add add-mul add-diff

diff-add diff-mul mul-diff

Figure 3: Flow fields obtained by using models that do not
match the test sequences. The text on the images indicate
the model-sequence combination:non: no , add: additive,
mul: multiplicative, anddiff: diffusive brightness change.
Motion vectors are scaled by a factor 10. ErrorsEu andEv

are angular errors (Eq. 34) in degree.

yielded low error rates. When using inappropriate motion
models, estimates are poor, except when the multiplicative
model is used for additive brightness change. We have thus
presented a proof of concept for our new methods that deal
with the estimation of complex motion patterns.
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