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ABSTRACT by successively applying to the image sequence [7]. Thus
The paper deals with the estimation of complex motion patlf
terns. The complexity is due to (i) the motions of two trans- f(x,t) = fa(x —ut) + fa(x —vt), @

parent layers, and (ii) an additional change of brightness ia basic calculation reveals thetu)a(v)f = 0 or equiva-
the layers, which can be due to an additive source term, dently
exponential decay, or diffusion. We present new models
and constraints for such complex motion patterns. Exper-
iments on synthetic image sequences demonstrate the per-
formance of our models in conjunction with a total least-whered,, f denotes the second order partial derivative in di-
squares parameter estimation scheme. Crucial ingrediéntsrectionx, etc. We now define thenixed motion parame-
this scheme are new filter families of derivative filters of upters[5]

to fourth order. We present a procedure for how to construct

Uy VxOxx T + (UxVy + Uny)axyf + UyVydyyf + @)
(Ux +Vx) O T+ (Uy+w)o f + 04T =0

appropriate filter families for the introduced models. Coc: =tV Gy = Uhly FUW Gy =Wy gy
Cxt = UX+V)( Cy[: Uy+Vy
1. INTRODUCTION and rewrite Eq. 3 as
We present linear models for the estimation of transparent d'p=0 ®)
motions and physically motivated brightness changes. Thiwith .
work combines model design as presented in [3] and [7] with P '= [Cxx, Cxy, Cyy: Ot Gyt 1] ©)
imati hes f d di izati ia-onti d =[G, O f, 0yt 0 f A, ]
estimation approaches from [5] and discretization via-opti by f5 Oy
mised filter families [6]. We observe that Eq. 5 is a linear model with parameter vector

The models introduced in Sec. 2 are all of the formp and data vectod. Parameters in such a linear model can
d'p = 0 with a parameter vectgr and a data vectat. This  be estimated by a number of standard parameter-estimation
parameter vector does not contain the model parameters dichemes used for optical flow estimation (see e.g. [1, 4] for
rectly, but in the form ofnixed motion parameters [5]. We  Surveys on such schemes). We implemented a total least-
show how to disentangle the parameters, given an estimatguares scheme, based on the so called extended and gen-

parameter vectap. Sec. 3 introduces the so called structure€ralised structure tensor [3, 5]. We describe this scheme in

tensor and gives a rule for how to construct suitable filtersec' 3. From the parameter vecgpwe can infer the ve-

™ . . ; locitiesu andv by using the following 'trick’ [5]. First, we
families. Finally, the experimental results are preseiied interpret the vectors andv as complex numbers. Then,

Sec. 4. with the definitions

2. CONSTRUCTION OF THE MODELS Ag:i=Cxx—Cy+iCy  Ar:=0Cxq+icy (7)

We will here derive brightness-change constraint equationu andv are the solutions of the complex polynomial
(BCCE) from motion models by combining well known

BCCE (see e.g. [3]) with the model of transparent motions Z —Aiz+Ag=0. 8
first presented in [7]. We start with the simplest case, two _ .
transparent motions without brightness changes. 2.2 Transparent Motions plus Additive Source
. A locally constant additive source in the image sequehce
2.1 Transparent Motions implies thatf is given as
The BCCE for standard, single motion optical flow is f(x,t) = f1(x — ut) + fa(x — vt) +K(t). ©)
a(v)f =0wherea(v) := wd+Vvydy + () By usinga as defined in Eq. 1 we obtain

with image intensities, partial derivatived, dy, ¢ in x- auav)f =K. (10)
, Y- andt-directions, respectively, and displacement vector
v = [, W|T. We construct a BCCE for transparent motionsln analogy to Eq. 6 above, we introduce the vectors

This work has partly been funded by the DFG SPP1114 under SCHA P = [Cxx; Cxys Oy, Gt Oyt 1, K] T

927/1-2 and BA 1176/7-2. 1= [t By . Oyt B F O F O F,— 1T (11)



and again obtain a linear model of the fodthp = 0. Once 3. ESTIMATION SCHEME
the parameter vectgr has been determined by using the €821 Structure T
timation scheme abové( is given as its last component. ~ ructure fensor

Since we can neither retriede nor K, but only the sec- All the constraints derived in Sec. 2 are of the fadhp = 0

ond derivativek”, motion in an image sequence with a linearwith the data vectod and the parameter vectpr We have
brightness change can be estimated via the model given thus one equation per pixel, but need to estimate several pa-

Eq. 3. rameters (the components pj per equation, which is an
_ _ under determined system of equations. In order to solve this
2.3 Transparent Motions plus Exponential Decay system we assume, that within a small spatio-temporal Reigh
In case of multiplicative brightness changes, the image sd20rhood of a pixeli all equations are approximately solved
quencef is given as by the same set of parametgrsThe modeld " p = 0 there-
foo) = - uky(t) + B(x—vOko(t). (1) Ore Pecomes
If d'p = ¢ for all pixelsi in Q (25)
kq(t) O exp(cyt ko(t) O exp(cat (13) ) ) L
then 1) Pei) 2t H2t) with errorsg; which have to be minimized by the sought for
aWfi=cf,  a)f=cf,. (14)  solutionp. Using a matrixD composed of the vectotk via
This is the partial differential equation for an exponeltia Dij = (di)j Eq. 25 becomeBp = e. We minimizee using
decaying signal. By defining aweighted 2-norm
,C) i=W+Wdy+d —cC 15 . o
e =wdiawdta @9 |lel|=|/Dp||=p"D"WDp=1pTIpLmin  (26)
we obtain
B(u,c1)B(v,c2)f =0. (16)  whereW is a diagonal matrix containing the weights. In our
The above equation is linearised by introducing case Gaussian weights are used, implemented via a 15-tab
. _ B filter with standard deviation 7. It multiplies each equatio
P = [Cxx; Cxy, Cyy, Cxt> Oyt 1, —UxC2 — WxC1, . i in Eq. 25 by a weighty;. The matrixJ = DTWD is the
—UyC2 — WC1, —C1 — C2,C1C7] (17)  so called structure tensor. The eregis minimized by intro-
d = [df, Ot By, daf,onf,duf,okf, 0, f, & F, f]T. ducing the assumptidi| = 1 in order to suppress the trivial

) ) _ solutionp = 0. Doing so the solutiong is given by the
which leads again to a constraint of the fodthp = 0. The  eigenvector to the smallest eigenvalueJof Moreover, for
parameters; andc; are then disentangled as in Sec. 2.1:oyr models, this vectqgs must be normalized with respect to

with AoimCils Mg im0y —0 ag s 6" component (cmp. egs. 6, 11, 17 and 24). For further
e 1= . details on computational issues of TLS estimation, we refer
c1 andc; are the solutions of the real polynomial to [3] and the citations therein
X2+ Aix+Ag = 0. (19)

We have determined the two motion vectors and the two de%'2 Optimised Filter Sets

cay rates, but still do not know which decay rate belongs tdVe implement all derivatives occurring in Egs. 6, 11, 17,

which motion vector. We use the remaining components ond 24 as separable spatio-temporal convolution filtersh Ea
p for the correct assignment. If the assignment is correcfilter consists of first or second order derivatives, smothe

Uk, Uy, ¢1] and[vx, vy, C2] should fulfill the conditions in the orthogonal directions. For filter design, we use the
method presented in [6]. All of the models developed in

“UC W P70 —wG-Wa-ps~0. (20) g 21 are of the formd p = 0. Obviously the data vec-
Otherwise we swap; andc,. tor d has to be perpendicular to the parameter vegtorhe
length ofd is of minor interest. Thus we need to design a
2.4 Transparent Motions plus Diffusion filter set for each model separately that calculatestie-

. . e tation of d as good as possible. For the mixed second order
To obtain a model for transparent motions plus diffusion, Wejerivatives from Eq. 6, we performed a rigorous optimisatio

start with the following partial differential equation following [6]. For 3-tab filters we obtain
v, Of =Owith yv.c) =vdxtvhdy+d —ch, - (21) I1 = [0.120260.759480.1202§ D! = [0.5,0,—0.5]
_ i D ' ' LYo @
andA = dy + dyy. For two image sequencéds and f, that 12 =[0.214780.570440.2147§ D2 =[1,-2,1]

are affected by diffusion, i.e.
y(u,c1)f1=0  y(v,c2)f2=0
andf = f; + fy, we obtain the constraint

22) and for 5-tab filters

0.015040.233010.503900.23301 0.01504
0.015540.232040.504840.23204 0.01554

[
_ [
_ - Mwevv.e)f =0 23 p! _ (0063680372630, 0372630063681 (2O
Again we can linearise this equation, by using D2 =[0.207860.16854—0.752820.168540.20786
P 1= [0, Oy, By O, Ot 1~ U2 — VxCay Second order derivative filters, e 8y anddy, are then gen-
— UyCp — WC1, —C1 — C2,C1Cp) T erated via
d:= [dxxf,dxyf,ﬁyyf,dﬂf,ﬁytf,(?ttf,afo,dyAf,thf,AAﬂT, 5xy:D>l<*D)l,*|tl and axx:D>%*|5*|t2 (29)
(24)

tod"p = 0. The parameter vector is identical to the one fromwhere « denotes convolution and lower indices denote the
the model for exponential decay (Eq. 17). application direction. All filters not introduced abovendze



derived by exchange of lower indices. The filters are of size&
3x3x30r5x5x5,

For the additive brightness model (Eqg. 11), we use the
same filters. In the multiplicative brightness model (Eq), 17
first-order derivatives and an identity operator (last comp
nent ofd) occur. They are build via

O =DyxIZxIZ and | =1Z2x12xI2 (30)

These filters are of sizex33 x 3 or 5x 5x 5 also.
The diffusion model is more complex because spatial
Laplacians/\ occur. We use

L=DZ 17 +DF 17 (31)
as discrete Laplace operator. TH& {6 16" component ofl c
from Eq. 24 are then
KA :D§*|2y2*|t2*|_ OyA  =1ZxDlx12xL
L =12x17xDfxL AN =12xLxL.
(32)

These are of sizes5 x 3 or 9x 9x 5. The inherent smooth-
ing of all filters of a set should be as similar as possible [6].

Thus the ¥ to 6" component ofl from Eq. 24 are not cal- . 1- | 1 10 3 of the 'delt b’ test _

culated via the second order derivative filters from Eq. 2d9ure 1: Images 1 to 3 of the ‘delta-comb’ test sequence:

directly, but via smoothed versions a quadratlc_ addmve source (Eq. 119, exponential decay
(Eq. 17),c diffusion (Eq. 24).

(9xy:D)l(*D§*Itl*lf*|5 and (9xx:D§*I5*It2*I)%*I3
(33)
Note that additional smoothing is only applied a and in Fig.2. Three subsequent images of the test sequences il-
y-directions. All filters of the set are of the same spatio-lustrating the brightness change models are shown in Fig. 1.
temporal size. The experiments are done with static noise patterns smdothe
by a 5-tab binomial filtelf1,4,6,4,1]/16 applied inx- and
4, EXPERIMENTS y-direction (cmp. Fig.2). No time-varying noise has been

added to the sequences, and therefore, errors presented in
"Sec. 4.3 are systematic errors only, coming from the dis-
cretization and estimation process.

All the experimental results have been obtained by using sy
thetic image sequences with ground truth.

4.1 Synthetic Sequences 4.2 Error Measures

Allimage sequences used in the experiments consist of tWegy the estimation of optical flow the most popular error mea-
motion layers. Each layer is generated by moving a giveRyre is theangular error E, (see [1], eq. 3.38) defined by
basic pattern or image and a subsequent brightness change.

The first motion layeif; is generated by moving such a pat- Ey = arccogr] re) (34)

tern with known "actual’ velocityu, = [0, —1]T, the second ) o ) o

layer f, via va = [1, 1]T, We use integer shifts in order to where the lower index d& indicates, which velocity is used

avoid interpolation errors. From these 2 layers we generat® obtain this errorra = [Vxa,Vya, 1]/ (V2 4+ V2, +1)Y/2 is

4 image sequences, one for pure transparent motions, ofege known (‘actual’) ground truth spatio-temporal velgcit

with additive brightness, one with exponential decay arel onvector of length 1 ande = [Vye, Ve, 1]/ (V2 o+ V2o + 1)Y/2 is

with diffusion. The first 3 sequences are defined by Eq. 2the estimated velocity vector. The same definition holds for

Eg.9 K’ =8)and Eq. 12¢; = —1,c, = —0.5), respectively. velocitiesu. For the brightness change parameterse use

The diffusion sequence is generated via successive convthe relative deviatiorE; between known and estimatets

lution of each layer bg/ a truncated and normalised Gausgiving the systematic error. These errors can be minimised

sian kernelG 0 exp(—x?/(202)) before summing them up. by an optimal choice of filter families as demonstrated in [6]

Solving Eq. 21 (see e.g. [?Peveals that we have to choose

o = \/2ct. For diffusion we choose; = 1.0 andc, = 0.5. 4.3 Results

Truncation took place abovestin order to keep discretiza- We tested how well the optical flow fields and the brightness

tion errors low. parameters are estimated by using a TLS scheme (Sec. 3.1).
For illustration of the motions and brightness changeswe used 3 filter sets: central differencesq3 x 1), 3-tab

we use smoothed delta-combs as basic patterns (cmp. Fig. dptimised (3x 3 x 3), and 5-tab optimised (5 5 x 5) fil-

but for the error analysis smooth noise patterns as depictagrs (cmp. Sec. 3.%).In the first test we combined models

IMore exactly: 11aif — cAf and f — F()T(1), thenT — exp k2t with suitable test sequences, see Fig.2. We observe that all
if F :exp(—kx).yThuaé ifF is more comp|i<(:at)ed(t)han this, we hpfglve to Znul- errors are rather high for central differences and 3-tab op-

tiply the Fourier transform oF with T. This means, in spatial domain we timised filters.Using 5-tab optimised filters, the errorsmr
have to convolveé= with the Fourier transform of which is proportional to
exp(—x2/(4at)). 2Sizes for the diffusion case are %5l x 1), (5x 5x 3), and (9 9 x 5).




3x1x1 3x3x3 5x5x5

a...

E.=17 E,=89 E;=0.67, E,=4.0 E;=0.02, E, =0.02

Ew=22 E,=79 E,=0.67, E,=3.8 E;=0.02, E,,=0.02
Ey =4% Ey» =0.6% Exw =2e— 3%

C...

Eu=140 E, =24 E,=75 E,=22 E,=0.16 E,=0.07
Ec, =34% Ec, =9.3% Ec, =0.2%
Ec, =41% Ec, = 18% Ec, =0.7%

d...

Euw=21 E,=70 E;=6.6, E,=23 E;=0.16, E,=0.10
Ecl = 5 6% E(;:l = 120/0 Ecl = 0 1%
Ec,=113% Ec, =44% Ec, =0.4%

non-mul non-diff

Eu=31 Ey=52 E,=100 E,=102 E,=51 E,=44

H &

Eu=05, Ey=05 Eu=19 E,=12 E,=52 E,=45

diff-mul mul-diff

E.=40 E,=72 E,=85 E,=91 E,=180, E, =10

Figure 3: Flow fields obtained by using models that do not
match the test sequences. The text on the images indicate
the model-sequence combinatiamon: no , add: additive,

mul: multiplicative, anddiff: diffusive brightness change.
Motion vectors are scaled by a factor 10. ErrBfsandE,

are angular errors (Eq. 34) in degree.

yielded low error rates. When using inappropriate motion
models, estimates are poor, except when the multiplicative
model is used for additive brightness change. We have thus
presented a proof of concept for our new methods that deal
with the estimation of complex motion patterns.

Figure 2: Flow fields using different filter sets, models andReferenc&
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