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Abstract. The well-known MinOver algorithm is a simple modification of the
perceptron algorithm and provides the maximum margin classifier without a bias
in linearly separable two class classification problems. In [1]] and [2] we presented
DoubleMinOver and MaxMinOver as extensions of MinOver which provide the
maximal margin solution in the primal and the Support Vector solution in the dual
formulation by dememorising non Support Vectors. These two approaches were
augmented to soft margins based on the ¥-SVM and the C2-SVM. We extended
the last approach to SoftDoubleMaxMinOver [3]] and finally this method leads to
a Support Vector regression algorithm which is as efficient and its implementation
as simple as the C2-SoftDoubleMaxMinOver classification algorithm.

1 Introduction

The Support-Vector-Machine (SVM) [4], [15] is a very efficient, universal and powerful
tool for classification and regression tasks (e.g. [6], [7]], [8]). A major drawback, partic-
ularly for industrial applications where easy and robust implementation is an issue, is
its complicated training procedure. A large Quadratic-Programming problem has to be
solved, which requires sophisticated numerical optimisation routines which many users
do not want or cannot implement by themselves. They have to rely on existing soft-
ware packages, which are hardly comprehensive and, in some cases at least, error-free.
This is in contrast to most Neural Network approaches where learning has to be simple
and incremental almost by definition. The iterative and incremental nature of learning
in Neural Networks usually leads to simple training procedures which can easily be
implemented. It is desirable to have similar training procedures also for the SVM.
Several approaches for obtaining more or less simple incremental training proce-
dures for Support Vector classification and regression have been introduced so far [9],
(1O}, [lL1], [12]. We want to mention in particular the Kernel-Adatron by Friess, Cris-
tianini, and Campbell [9]] and the Sequential-Minimal-Optimisation algorithm (SMO)
by Platt [10]. This is the most widespread iterative training procedure for SVMs. It is
fast and robust, but it is still not yet of a pattern-by-pattern nature and well suited as a
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starting point for an online learning scheme. It is not yet as easy to implement as one is
used from Neural Network approaches.

According to this goal in [2] and [1]] we had revisited and extended the MinOver al-
gorithm. The so-called DoubleMaxMinOver [3] method which we briefly revisit in this
paper as the combination of DoubleMinOver and MaxMinOver converges provable to
the Support Vector solution in the dual representation for classification tasks. Moreover,
the angle v; between the correct solution w* and the interim solution w; after ¢ steps is
bounded by O(t~1).

Furthermore we introduced a soft margin approach based on the C2-SVM error
model. In a straightforward way this model can be adapted for regression [13]]. We
consequently show that we similarly obtain our regression algorithm as an extension
of DoubleMaxMinOver for classification as well. We give a proof for its convergence
properties and consider benchmark results.

2 The Support Vector Machine

The SVM represents a linear classifier or function approximator, respectively. For given
sets of input vectors X = {x1,...,x;} and output vectors Y = {y1,...,y;} the SV
solution for the inference of f(x) = y is always the best one in the sense that in clas-
sification the margin between the separating hyperplane and the two classes is largest
and in regression the obtained curve is the flattest one. In both cases one only needs a
few input vectors, the so-called Support Vectors, to describe the solution. This property
is very important. The lower the number of Support Vectors, the better the expected
generalisation capability [14]].
The goal is to solve the optimisation problem
leW = min

2
Vie{l,..., 1} yi(whx; —b) > 1

in classification, which is apparently equivalent to the maximisation of the margin hold-
ing ||w||, and
1 7 .
oW W =min
Vie{l,...,l}:|wix; —b—vy| <e

in regression tasks. Note that classification and regression are geometrically analogous
in the following sense. While in classification the Support Vectors are the ones lying on
the margin, that is having smallest distance to the separating hyperplane, in regression
the Support Vectors lie on the edges of the e-tube around the function values. In classifi-
cation all other vectors are located more or less far away from the margin. In regression
they lie within the e-tube. Hence SV classification can be seen as the perspective from
inside to outside the hyperplane area while SV regression is the other way around.
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An important advantage of SVMs is furthermore that the classifier or function ap-
proximator f(x) = wlx — b can be formulated in terms of the observations, i.e. as

f(x)= 2221 am?) x — b. Therefore, it is possible to replace the inner product x* 'z
by a positive definite Kernel K (x,z) = (?(x), ®(z)) which leads to the implicit use
of arbitrary feature spaces, whose definition has not necessarily to be known, making

profoundly non-linear problems linear.

3 The C2-SoftDoubleMaxMinOver Algorithm for Classification

The DoubleMinOver algorithm [1]] as the first extension of MinOver is a simple maxi-
mal margin learning machine. Starting from any interim solution w, the method selects
two vectors each of both classes having the smallest margin to the hyperplane defined
by V = {vlwlv — b = 0}, that is qmin = argmin, ,,—, af(x;), respectively. Af-
terwards the Lagrange-coefficients a; will be increased by 1 to change the direction of
the weight vector given by ¥x : f(x) = wix = 22:1 yio; K (x;,x) towards these
two input vectors and increase their margins. By induction it can be seen that w; in-
deed tends to w* while ¢ — oco. It has been shown [[15] that the angle ; between the
correct solution w* and the interim solution w; after ¢ steps is bounded by O(t~1).
Furthermore the time complexity per iteration is O(l), where [ is the number of input
vectors.

In order to achieve the dual SV solution, not to decrease the convergence speed and
to hold the optimisation constraints, in DoubleMaxMinOver the vectors with the largest
margin will be decreased, if it is known that they cannot be Support Vectors while the
ones with smallest margin will be increased twice. In addition we introduced a soft
margin approach working with an extended kernel K'(x;,x;) = K (x;,x;)+ 681 .Itcan
be seen that indeed the data remains linearly separable by construction [[13]] within this
extended feature space. Later we will see that all these statements can straightforwardly
be adopted for our regression approach.

The combination of this soft margin, the DoubleMinOver, and the MaxMinOver
approaches finally leads to the C2-SoftDoubleMaxMinOver [[1)2/3]] method, which is as
fast as the LibSVM toolbox on standard benchmarks and performs comparable results.

4 The MaxMinOver Regression Approach

More general than the classification task is the one of regression. Now the goal is to
approximate a function g(x) by using

l
flx) = ZaiK(xi,x) —b.

This can be interpreted as linear regression within an appropriate feature space, again
defined by the Kernel K. To get a scope for the minimisation of ||w|| the user defines
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an e-tube around the real function values y; = g(x;). As in our soft margin classification
approach we consequently use the C2-SVM model for regression. If C' — oo the Sup-
port Vector solution is in a way the simplest or the flattest one while making no more
error than e. The Support Vectors are the vectors with Lagrange-coefficients c; # 0
lying on the edges of the e-tube. The introduction of a finite C' is not only necessary as
regularisation parameter, but also if it cannot be guaranteed that a regression with an
error of at most € is achievable at all. Fortunately the geometrical interpretation is sim-
ilar to the one in the C2-SVM classification, so it is not difficult to see that also in the
regression case an unequivocal Support Vector solution exists, which can be interpreted

Algorithm 1. The MaxMinOver Regression Algorithm

Require: given set of normed input vectors X = {(xs,¥:),7 € {1,...,1}} with normed func-
tion values and parameters C' and €

Ensure: calculates the minimal hyperplane regressing the input data given in dual representation

setVi:a; «— 0,6t —0, f — (xi — 23:1 a; K(xj,%;) + %})

R~ \/maXi,j,yi:Lyj:fl (K (xi, %) — 2K (x4, %;5) + K(x5,%;))
while the desired precision is not reached do
sett«—t+1
find imin = arg min; (f(x:) — v:)
find imax = arg max; (f(x:) — v:)
find iminNsv = arg max;,a,;>o (f(xi) — vs)
find tmaznsv = arg ming o, <o (f(x:) — vs)
if (f (Ximax) = Yimax) = (f (Xiyin) = Yigin) > 2€ then
if (f(ximinNsv) - yimq‘,n,Nsv) - (f(Ximin) - yimin) > 4R2+16(2t+3€2+4€) then
set iy — Qi + 7 +min (7,060 vey
Set Wiy Ny < Nippinnsy — MIN (3, Qi vsy
else
set i, < Qi +
end if
if (f (Ximax) = Yimax) = (FKippaznsy) = Yimaznsy) >

set aimax — aimax

1
t

2 Q.2
4R +16(2t+35 +4¢) then

ot min 9 _aimn,mNSV
set aiT?‘La.’L‘NSV — aiT?‘La.’L‘NSV + min t? _aiwnamNSV
else
set Qimax  Ximax —
end if
else
if (f (Xiin) = Yimin) = ( Kippinnsv) = Yiminnsv) >
set ainlinNSV — ainlinNSV — mn t ainlinNSV

end if

if (f (Ximax) = Yimax) = (FKippaonsy) = Yimaznsy) >
Set Wiy unsy < Xipaonsy +min _aimamNSV)
end if
end if
end while
set b 3 ((f Kimnin) = Yimin) T (f Kimax) = Yimax))

1
t
4R?+416(2+3e2 +4¢)

! then

2 2
4R +16(2t+3€ +49) then
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as the solution with at most e error within the extended feature space defined by
K'(x,z) = K(x,2z) + 6(’gz). This is as reasonable as the statement that the precon-
ditioned linear equation system (K + % E;) a = y, which is used in kernalized Ridge
Regression [[13]], has a solution for all but finitely many C' < oo, even if the bias b = 0
and e = 0.

As a first approach consider the direct adaptation of the DoubleMinOver algorithm.
As in the classification problem, where we choose one input vector each of both classes
with the smallest margin, we now choose the two input vectors making the largest
positive and negative regression error, respectively. Apparently, using an appropriate
step width, the algorithm converges to any feasible solution, that is all input vectors lie
within the e-tube and the above constraint holds true by construction in each iteration.

Still if the Lagrange-coefficient of any of the input vectors will be included faulty
as potential Support Vectors, we need an instrumentation to turn back this decision, if
they are indeed non Support Vectors. Once again as in the classification task, where we
choose the input vectors each of both classes with the largest margin, we now choose
the two vectors lying furthest away from its edge of the e-tube and dememorise them
by controlling the Lagrange-coefficients back without loosing convergence speed (see
algorithm[I). Consequently this is the MaxMinOver Regression algorithm. The difficult
looking dememorisation criterion will be explained in the next section.

4.1 On the Convergence of MaxMinOver Regression

w* X
— >

Fig. 1. Construction of the classification problem. The black dots are the true samples which we
want to approximate. By shifting them orthogonal to the SVM fit curve in both senses of direction
and assigning different classes (bright (x}) and dark gray (x; 1y dots) we construct a classification
problem whose maximal margin separating hyperplane is exactly the regression fit.

In the following without loss of generality we assume C' — oo and suppose that a so-
Iution with no more error than e exists. Otherwise we choose an appropriate C' > 0 and
reset K'(x,z) = K (x,2z)+ 6(’ZJZ) . First of all, the Support Vector solution and only the
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SV solution is a fixed point of the algorithm. This can be seen as follows. Once we have
reached the SV solution, the outer condition (f (Xi,....) — Yimax) — (f Kinin) — Yimin) >
€ + ¢ of the algorithm is evaluated to false, all points have to be within the e-tube. The
left hand side of the inner conditions is always 0, because only Support Vectors have
non-zero Lagrange coefficients and all Support Vectors lie exactly on the edge of the
e-tube, while the right hand side is always positive. Hence nothing would change and
the algorithm has finished.

On the other hand, it can further be seen that no other configuration of « can be
a fixed point. If any pair of vectors lie outside of the e-tube, then the outer condition
would be fulfilled. Otherwise there has to be at least one vector within the e-tube and
not on its edge having non-zero Lagrange coefficient and therefore leading to a positive
fulfillment of the inner condition after a finite number of iterations.

Now we show that the MaxMinOver Regression algorithm indeed approaches the
Support Vector solution, by ascribing the regression problem to a classification problem.
We construct the classification problem within the extended (dim(Z) + 1)-dimensional
space, where Z is the feature space and the additional dimension represents the function
values y, and demonstrate that the classification and the regression algorithms both
work uniformly in the limit. Let X = {x,...,x;} be the set of input vectors with its
function values Y = {y1,...,y,} and w* the Support Vector solution of the regression
problem. Of course, if one uses a non-linear feature space, then x; has to be replaced by
®(x;) or ¥ (x;), respectively. We construct the set X = {x},x;',...,x},x, '} from

X by substituting
o (X)) 4 1+e w*
’ Yi w2 +1\ ~1

1 X; 1+4+e€ w*
X, = —
yi) w1\ -1
and assigning the classes y¢ = a. The Support Vector solution of this classification

N w* . . . .
problem is W* = ( 1 apart from its norm with functional margin 1, because

min max y((Ww*)"x? — b) = min mg;txy((w*)Txi —y; —b) (1)

iy b By
+1+e€ 2)
=—c+1+e€
=1

and for each vector v # Ww* (with ||V|| = |[W*|)) it holds both v7w* Hwﬁgﬂ <

(W*)T w* le*JHrj +1 = 1+ e (compare eqn. part[2) and at least for the Support Vectors

either vix; — yi—b>eory; — vIix, +b>¢ using any bias b (compare eqn. part[T),
because w* is the Support Vector solution of the actual regression problem.
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Now suppose an interim solution w. Then MaxMinOver for classification and for
regression choose the same vectors in the next iteration. It holds for the first two find-
statements of algorithm[T]

arg leln (wai —y;) = arg miin (WTXi -y + S) 3)
= arg miin wlx!

arg max (WTXZ' —y;) = arg max (WTXZ‘ — Yy — S) @)
= argmax wlx; !

= arg miin (—vAvTx;l)

1+e)(whw* +1)

o
th S =
WIS = e 11

and further for the the second two statements concerning the dememorisation of non
Support Vectors

arg max (WTXZ‘ —y;) = arg max (WTXi —y; + S) (5)
i,06 >0 1,00 >0
ST 1
= arg max w' x,
gi,(xi>0 g
arg min (WTXi —y;) = arg min (WTXi —yi — S) (6)
1,00 <0 1,0, <0

T 1

= arg min w

Xi
1,0, <0

ST —1
= argiyrgiago (—w X; )

Note that the constraints o;; > 0, respectively a; < 0 implicitly hold for eq. 3] re-

spectively eq. [ while for eqn. [§ and [l it is necessary to choose only potential Support

Vectors of the correct classes for dememorisation.

The presented interrelationship implies that, if the classification algorithm will in-
crement or decrement some y;c;, then the regression algorithm does so as well. But
while ||welassification|| jncreases linearly in time and converges to W* (apart from its
norm), || W"e9ression || must not increase arbitrarily. There exists a time 4.+ < t, from
which on 3C1,Cs € R : Oyt < —weassification — cny with €y < Cs. But for

I+1
wregression ig vizlrjglre""sw" = —1 implicitly given. Hence ||w"¢97¢55%°" || has to be con-

strained and therefore we choose an appropriate step width of order O (1) (instead of
normalising after each iteration). Although the harmonic series diverges and hence any
possible solution vector within the feature space is reachable, we want to emphasize
that the convergence speed can be tuned significantly by normalising Y or choosing an
appropriate constant factor for the step width.
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We derive the criterion for dememorisation of non Support Vectors from the clas-
sification method, where R?, i rication < MaX;jy:=14;=—1 (X; — X;)* has already
been proven [112]. As far this criterion must only be an upper bound, we estimate

- 1+e€ w*
R? on = Max Xi) 4

regression i (((le ) ||W*||2 +1 —1

() e (D))
Yi [wel|>+1\ 1
3e2 +4e+1
2
< Rclassification +4 (1 + ”W*HQ +1 )
< Rglassification +4 (2 + 362 + 46) '

Note that we do not need to know the solution w*. Hence it is possible to apply this
estimation in practice.

5 Experimental Results on Artificial Data

To evaluate the MaxMinOver Regression algorithm we constructed randomly generated
artificial datasets and modified the variance, the regression error, the parameters C' and
€, the number of iteration steps, the distribution of the data points, the number of training
examples, and the dimension of the feature space. The table shows the averaged results
of these evaluations. It can be seen that the regression error is comparable to the one
achieved by the LibSVM Toolbox. The higher the number of iterations the better is the
performance of our method and the closer to the results of the LibSVM, whose step
width was not changed. Only the number of Support Vectors is sometimes different.
More iteration steps in both methods should lead to a convergence of the number of
Support Vectors to each other.

Table 1. Averaged regression results obtained with MaxMinOver Regression (B) on artificial
data. For comparison averaged results obtained with the e-SVR of the LibSVM Toolbox (A) are
listed. The simple MaxMinOver Regression algorithm achieves comparable results with a few
training steps. (Caption: w norm of weight vector, L2 squared error, L2 . squared error tolerating
error €, | SV | number of Support Vectors)

Parameters Results
steps  distr number [wal| [|wp| Loa Lap Loea Locs [SVal [SVa| ™A, P!
1200 2.0218 2.0431 0.0052 0.0043 0.0007 0.0008 106 111  0.0368
2400 2.0231 2.0358 0.0052 0.0041 0.0007 0.0008 107 107  0.0289
6000 2.0372 2.0426 0.0051 0.0045 0.0007 0.0007 107 89  0.0134
uniform 2.3792 2.3922 0.0054 0.0044 0.0003 0.0004 71 102 0.0137
normal 0.9718 0.9853 0.0045 0.0041 0.0020 0.0020 215 105 0.0639

50 1.9600 1.9827 0.0080 0.0063 0.0006 0.0006 42 43 0.0342
500 2.0947 2.0983 0.0024 0.0023 0.0009 0.0010 171 162 0.0183
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6 Conclusions

Regression is an important mathematical problem which occurs in a wide variety of
practical applications. Support Vector regression achieves results with a high gener-
alisation capability. Different complicated Support Vector regression approaches have
been introduced in the past.

The main goal of this paper is hence to show that even Support Vector regression can
be dealt with in a simple way with the MaxMinOver Regression approach. In bench-
marks the method achieves performances as good as the LibSVM Toolbox. Both, its
simplicity and its good performance makes this approach interesting for implementa-
tions in industrial environments.
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