
J Comput Neurosci (2016) 41:15–28
DOI 10.1007/s10827-016-0602-z

Modeling the effect of sleep regulation on a neural mass
model

Michael Schellenberger Costa1 · Jan Born2 · Jens Christian Claussen3 ·
Thomas Martinetz1

Received: 25 September 2015 / Revised: 9 March 2016 / Accepted: 11 March 2016 / Published online: 11 April 2016
© Springer Science+Business Media New York 2016

Abstract In mammals, sleep is categorized by two main
sleep stages, rapid eye movement (REM) and non-REM
(NREM) sleep that are known to fulfill different functional
roles, the most notable being the consolidation of memory.
While REM sleep is characterized by brain activity similar
to wakefulness, the EEG activity changes drastically with
the emergence of K-complexes, sleep spindles and slow
oscillations during NREM sleep. These changes are reg-
ulated by circadian and ultradian rhythms, which emerge
from an intricate interplay between multiple neuronal popu-
lations in the brainstem, forebrain and hypothalamus and the
resulting varying levels of neuromodulators. Recently, there
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2 Institute for Medical Psychology and Behavioural
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has been progress in the understanding of those rhythms
both from a physiological as well as theoretical perspective.
However, how these neuromodulators affect the generation
of the different EEG patterns and their temporal dynamics
is poorly understood. Here, we build upon previous work
on a neural mass model of the sleeping cortex and investi-
gate the effect of those neuromodulators on the dynamics of
the cortex and the corresponding transition between wake-
fulness and the different sleep stages. We show that our
simplified model is sufficient to generate the essential fea-
tures of human EEG over a full day. This approach builds
a bridge between sleep regulatory networks and EEG gen-
erating neural mass models and provides a valuable tool for
model validation.

Keywords Neural mass · EEG · Sleep regulation ·
Neuromodulators · Sleep · Sleep rhythms

1 Introduction

During sleep, the brain alternates between two core sleep
stages: rapid-eye-movement (REM) and non-REM (NREM)
sleep (Fig. 1), the latter being predominant during early
sleep while decreasing in duration during the night and
vice versa. NREM sleep is further subdivided into sleep
stages N1-N3, that are dominated by low-frequency high-
amplitude oscillations in the electroencephalogram (EEG).
Sleep stage N2 as a lighter form of non-REM sleep is
hallmarked by the occurrence of sleep spindles and K-
complexes (KCs), whereas deeper N3 sleep is dominated
by slow wave activity (SWA) (Iber et al. 2007). In con-
trast, REM sleep exhibits low amplitude activity of higher
frequency, which resembles the EEG found during wakeful-
ness (Rasch and Born 2013).
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Fig. 1 Typical human sleep profile This picture depicts a typical
hypnogram during a night. The early night is dominated by NREM
sleep, that is further subdivided into sleep stages N1-N3, whereas REM
sleep prevails during the second half (late sleep). During NREM sleep,
cholinergic activity is at a minimum, while REM sleep shows simi-
lar or even higher levels than wakefulness. Aminergic activity is high
during waking, intermediate during SWS, and minimal during REM
sleep. Modified from Rasch and Born (Rasch and Born 2013)

The EEG as a macroscopic quantity is generated by
the activity of neurons in different areas of the brain. For
detailed single neuron approaches such as the classical
Hodgkin-Huxley models such large scale simulations are
challenging due to their complexity and the resulting com-
putational load. Here, neural mass models pioneered by the
work of Wilson and Lopez da Silva (Wilson and Cowan
1973; Lopes da Silva et al. 1974), have shown great suc-
cess generating rhythms present in the wake EEG, as well as
evoked responses (Jansen et al. 1993; Wendling et al. 2002;
David and Friston 2003). Rather than considering individual
neurons, they describe the dynamics of a neural population
through an averaged representation of that specific cell type,
which relates directly to mesoscopic measurements like the
EEG (Coombes 2005; Deco et al. 2008).

Recently, we could demonstrate that a neural mass model
of the cortex, extended by an additive activity-dependent
feedback current, is able to generate the EEG signal of sleep
stages N2 and N3 (Weigenand et al. 2014). Based upon a
bifurcation analysis, we found two key parameters, neural
gain 1/σp and the strength of pyramidal firing rate adap-
tation gKNa, to be responsible for the transition between
wakefulness and the different NREM sleep stages. Impor-
tantly, both bifurcation parameters are known to be affected
by neuromodulators. Application of acetylcholine blocks
potassium currents (McCormick 1989; McCormick and
Huguenard 1992), such as IKNa, whereas they are activated
by GABA. Furthermore, the neural gain is modulated by
acetylcholine (Disney et al. 2007; Gulledge et al. 2009; Soma
and Shimegi 2016), serotonin (Zhang and Arsenault 2005),
and noradrenalin (McCormick 1989; Timmons et al. 2004),
with those levels changing in specific patterns throughout
the sleep-wake cycle (Léna et al. 2005).

The transition between wakefulness and the sleep stages
and therewith the corresponding levels of neuromodulators
(Lydic and Baghdoyan 2005), is coordinated by the activ-
ity of neuronal populations distributed in different brain
areas, primarily the forebrain, brainstem and hypothalamus
(Moruzzi 1972; Saper et al. 2005). Depending on the partici-
pating neuromodulators and brain structures and due to their
specific temporal dynamic there is a differentiation between
a wake-NREM switch and REM-NREM cycling, respec-
tively (Booth and Diniz Behn 2014). The wake-NREM
switch has been successfully described by the two-process
model, which is based on a homeostatic sleep drive (Borbély
1982; Daan et al. 1984) or more specifically mutual inhibi-
tion between wake-promoting (locus coeruleus (LC), dorsal
raphe nucleus (DR)) and sleep-promoting populations (ven-
trolateral preoptic nucleus (VLPO)) (Saper et al. 2001;
Diniz Behn and Booth 2010). Additionally, the sleep wake
transition is heavily influenced by the circadian rhythm,
which is mainly acting through the suprachiasmatic nucleus
(SCN).

The activity of those populations is closely related to the
levels of the neurotransmitter noradrenalin and serotonin.
The NREM-REM cycling has originally been assumed to be
driven by reciprocal interaction between cholinergic REM
promoting and aminergic wake promoting REM-on popula-
tions (McCarley and Hobson 1975; Luppi et al. 2006; Datta
and MacLean 2007). However, recent research indicates an
involvement of GABAergic populations in the regulation
of REM sleep (Lu et al. 2006; Fuller et al. 2007; Brown
et al. 2008), that also involve mutual inhibition. Addition-
ally, the NREM-REM rhythm is affected by orexinergic
neurons located in the perifornical area (Peyron et al. 1998).

Early approaches on modeling the sleep-wake transition
focused on homeostatic regulation (Borbély 1982; Forger
et al. 1999). Only recently the faster cycling between NREM
and REM sleep has been incorporated with varying levels
of anatomical detail (Tamakawa et al. 2006; Diniz Behn
et al. 2007; Phillips and Robinson 2007; Diniz Behn and
Booth 2010; Rempe et al. 2009; Kumar et al. 2012). These
models describe the sleep-wake transition through firing
rates of the involved neuronal populations. Depending on
whether wake-promoting, REM-off or REM-on popula-
tions are active the system is assumed to be in a state of
wakefulness, REM or NREM sleep. The transition between
those stages is driven by synaptic interactions between the
involved populations and the corresponding level of neu-
rotransmitters, which is modulated by circadian and home-
ostatic drives. For the sake of simplicity we will restrict
ourselves to a simplified model (Diniz Behn and Booth
2012), that accumulates populations which serve similar
functionality into a singe population neglecting more com-
plex interactions (Rempe et al. 2009; Diniz Behn and Booth
2010; Kumar et al. 2012), including interactions with the
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SCN and circadian modulation. This results in a simple
model with only three populations (WAKE, NREM, and
REM). See (Fleshner et al. 2011; Gleit et al. 2013) for
extended models incorporating circadian modulation of the
sleep regulatory network.

Here, we demonstrate that sleep regulatory networks
and neural mass models of the sleep EEG can be com-
bined, to provide a unified generating model of EEG activity
for both wake and sleep. In addition to generating activ-
ity that closely resembles the EEG signals of the different
sleep stages in humans, our model captures the ultradian
cycling between NREM and REM sleep as well the transi-
tion between wakefulness and sleep. This approach enables
us to infer activity within the sleep regulatory network from
the EEG activity and vice versa, providing a useful tool for
model validation.

2 Methods

In the following section, we briefly describe the neural mass
formalism and our previous work on modeling the sleep
EEG (Weigenand et al. 2014). Afterwards, we introduce the
model of Diniz Behn and Booth (Diniz Behn and Booth
2012) of a sleep regulatory network and define the relation
between the concentration of the neuromodulators and the
bifurcation parameters of the cortical model. It is important
to note, that while (Weigenand et al. 2014) and Diniz Behn
and Booth (2012) are both firing rate models, they utilize
slightly different formalisms.

2.1 Neural mass framework

The time course of a sufficiently large ensemble of indi-
vidual neurons can be approximated by the evolution of
the population average. Rather than considering the indi-
vidual spikes, the averaged membrane voltage Vk of the
neurons of population k is turned into a firing rate through a
phenomenological firing rate function

Qk(Vk) = Qmax
k

1 + exp(−(Vk − θk)/σk)
, (1)

with maximal firing rate Qmax
k , firing threshold θk and

inverse neural gain σk . The firing rate function has a sig-
moidal shape, which stems from the fluctuations of neuronal
states or a distribution of thresholds in the population
(Marreiros et al. 2008).

Spikes are generated at the soma and transmitted along
the axons to the receiving population. For long range con-
nections between different brain structures, delay plays an
important role (Atay and Hutt 2006; Deco et al. 2009). As

intra-cortical connections are rather short and the sleep reg-
ulation acts on a slow timescale, we assume that the trans-
mission is instantaneous and thereby neglect any delays.
The postsynaptic response smk of synapse type m, which
is either e for excitatory AMPA or g for inhibitory GABA
synapses, on population k is then given by

smk(t) =
∑

k′
αm(t) ⊗ Nkk′Qk′(Vk′(t)),

=
∑

k′

t∫

0

αm(t − τ)Nkk′Qk′(Vk′(τ ))dτ. (2)

Here, the firing rate Qk′(Vk′) of the presynaptic popula-
tions k′ is scaled by a connectivity constant Nkk′ , where k

and k′ can either be p for pyramidal or i for inhibitory pop-
ulations. It is convoluted with the average synaptic response
to a single spike

αm(t) = γ 2
mt exp(−γmt). (3)

The rate constant γm defines the time course of the
response of synapse type m. The evolution of the membrane
voltage Vk is then given through summation of inputs from
other populations as well as a passive leak current IL,

τkV̇k = −ḡL(Vk − Ek
L)

−ḡAMPAsek(Vk − EAMPA)

−ḡGABAsgk(Vk − EGABA),

= −IL − IAMPA(sek) − IGABA(sgk), (4)

Here, E denotes the Nernst potential, ḡ the maximal con-
ductivity of the respective channel and τk the membrane
time constant. The membrane potential is then again turned
into an updated firing rate according to Eq. (1).

2.2 Sleeping cortex

To generate sleep EEG the basic neural mass framework is
adapted as previously proposed in (Weigenand et al. 2014),
such that it exhibits the key features of NREM sleep. It con-
sists of a pyramidal (p) and an inhibitory (i) neural mass,
that are coupled via AMPA and GABAergic synapses.

τpV̇p = I
p
L + IAMPA(sep) + IGABA(sgp) − C−1

m τpIKNa,

τi V̇i = I i
L + IAMPA(sei) + IGABA(sgi). (5)

In addition to the synaptic currents, the pyramidal pop-
ulation contains an activity dependent potassium current
IKNa, that is coupled via the membrane capacity Cm. This
current acts as a slow, additive and activity-dependent
firing rate adaptation, which is thought to be the main
driver for the Up/Down state transition during NREM sleep
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(Sanchez-Vives and McCormick 2000; Compte et al. 2003;
Benita et al. 2012). It is implemented as

IKNa = gKNawKNa([Na])(Vp − EK),

τNa[Ṅa] = αNaQp − Napump([Na]). (6)

Please note that gKNa is a dynamic variable, that depends
on the maximal conductance ḡKNa and the concentration of
the neuromodulators as defined by Eq. (11). The transition
between wakefulness and the different NREM sleep stages
is governed by the neural gain, 1/σp and adaptation strength
gKNa as previously described in Weigenand et al. (2014).

2.3 Sleep regulation

Rather than considering all neural populations involved in
sleep regulation and their complex interaction (Rempe et al.
2009; Diniz Behn and Booth 2010; Kumar et al. 2012),
we utilize a reduced sleep regulatory network, that merges
neural populations with the same functionality into one of
three types: wake-, NREM- and REM-promoting (Diniz
Behn and Booth 2012). Each neuronal population is associ-
ated with a specific neurotransmitter. The wake-promoting
neurons release noradrenalin, the NREM-promoting popu-
lation acts through inhibitory GABA synapses and finally
the REM-promoting population is linked to acetylcholine.
This effectively reduces the sleep regulation to a twofold
switch, between wakefulness-NREM and NREM-REM
respectively.

In contrast to the model introduced in the previous
section, Diniz Behn and Booth use a mathematically equiv-
alent formulation, directly considering the firing rates
Qk(Vk) rather than the membrane voltages Vk as their sys-
tem variables (Diniz Behn et al. 2007; Diniz Behn and
Booth 2010; 2012). To provide a direct link to their work,
we will keep this formulation and denote the firing rate of
population k as Fk for the sleep regulatory model. In the
context of the sleep regulatory network k can either be W

for the wake, N for the NREM, or R for the REM promoting
population.

The firing rate Fk of the presynaptic population k elic-
its the release of neurotransmitters into the synaptic cleft.
In their study on the reduced model, Diniz Behn and Booth
assumed τk � τX, approximating the change in neurotrans-
mitter concentration to be instantaneous. However, given
that the time constants of the cortical model τp and τi

are in the range of milliseconds, we cannot utilize this
approximation. Consequently, the change of neurotransmit-
ter concentration CX is given by

τXĊX = tanh(Fk/γX) − CX. (7)

Here, X depicts the type of neurotransmitter (i.e. E for nora-
drenalin, G for GABA or A for acetylcholine), γX the gain

of neurotransmitter release and τX the corresponding time
constant.

Varying levels of neurotransmitters then change postsy-
naptic activity

τkḞk = QSR
k

(
∑

X

gX,kCX

)
− Fk, (8)

with the time constant τk and weights gX,k that scale the
strength of the synaptic responses. It is important to note,
that due to the long timescale τk the synaptic inputs are
assumed to act instantaneous. This is equivalent to Eq. (2)
for αm = δ(t). The formulation of the firing rate function
QSR

k utilized by Diniz Behn and Booth is mathematically
equivalent to

QSR
k (Y ) = F max

k

1 + exp(−(Y − βk)/αk)
. (9)

Here βk denotes the firing rate threshold, αk the cor-
responding inverse gain and Y the sum of the weighted
neurotransmitter inputs. Note that for the NREM population
the threshold is dependent on the homeostatic sleep drive h

through βN = κh, where κ scales the influence of the sleep
drive.

Following the two-process model originally proposed
by Borbély (1982), the sleep-wake transition is driven by
homeostatic sleep drive h(t). It builds up during wake-
fulness, due to high activity FW of the wake population
and declines during sleep, when FW is low. Assuming a
maximal strength of hmax, This can be described by

ḣ = hmax − h

τw
h

H(FW − θh) − h

τ s
h

H(θh − FW), (10)

where H stands for the Heaviside function, θh defines
the sleep/wake transition threshold and τw

h and τ s
h depict

the time constants for increase and decline of h during
wakefulness and sleep, respectively.

Please notfe that within the sleep regulatory network,
noradrenalin, GABA, and acetylcholine act as neurotrans-
mitters, i.e. they elicit a synaptic response. However, given
the assumption that GABA from the sleep regulatory net-
work is released on extrasynaptic sites in the cortex, they
only modulate cortical dynamics. Therefore, whenever we
are in the context of the cortical module, we refer to them as
neuromodulators.

2.4 Action of neuromodulators

According to previous findings changes in the inverse neu-
ral gain σp and the adaptation strength gKNa can lead to
the transition between wakefulness and sleep stages N2/N3
(Weigenand et al. 2014). These parameters are known to be
influenced by neuromodulators.
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Acetylcholine blocks potassium currents (McCormick
1989; McCormick and Huguenard 1992), such as IKNa and
reduces firing rate adaptation of cortical neurons (Madison
et al. 1987; Barkai and Hasselmo 1994; Hasselmo 1995;
Liljenström and Hasselmo 1995). Likewise, serotonin
(Colino and Halliwell 1987; Davies et al. 1987) and nora-
drenaline (Madison and Nicoll 1982; 1986) have been
shown to affect firing rate adaptation. In contrast, extrasy-
naptic release of GABA increases activation of potassium
currents (Saint et al. 1990; Gage 1992). Consequently
gKNa increases during the transition into NREM sleep and
declines during REM and wakefulness, see Table 1 for an
overview. As there are no quantitative measurements, our
choice of the dependency between the neuromodulator con-
centrations and gKNa is arbitrary. For the sake of simplicity,
we assume the following relationship for the strength of
firing rate adaptation

τgġKNa = ḡKNa(1−0.95CA)(1−0.6CE)(2CG)−gKNa. (11)

The neural gain, on the other hand, is increased by acetyl-
choline (Barkai and Hasselmo 1994; Disney et al. 2007;
Gulledge et al. 2009; Soma and Shimegi 2016), serotonin
(Zhang and Arsenault 2005), and noradrenalin (McCormick
1989; Timmons et al. 2004). With σp acting as the inverse
gain, it is maximal during NREM sleep and at the low-
est during REM and wakefulness (see Table 1). Due to the
lack of quantitative measurements which might hint to a
more complex dependency, we work with the most simple
assumption, namely a linear dependency between σp and
the neuromodulator concentrations

τσ σ̇p = σ̄p − (4CE + 2CA) − σp. (12)

Computational methods The model was implemented in
C++ and run within MATLAB R2015a, using a stochastic
Runge-Kutta method of 4th order (Rößler 2010) with a step
size of 0.1ms. The code is available at github (Schellen-
berger Costa 2006a). Each simulation had a duration of 24h
with an initial onset of 10 seconds until recording. Back-
ground noise was given as white noise with zero mean and
a standard deviation of φsd

n = 2ms−1. Symbol descriptions
and parameter values are given in Tables 2, 3, 4 and 5.

Table 1 Neuromodulators and bifurcation parameters

Wake NREM REM

Acetylcholine low low high

Noradrenalin/Serotonin high low increasing

extrasynaptic GABA low high high

gKNa low high low

σp low high low

Qualitative levels of neuromodulators and their influence on the
bifurcation parameters

3 Results

3.1 Sleep regulation

Here, we will recapitulate our results in comparison to the
reduced Diniz Behn model and relate them to changes of
the bifurcation parameters of the cortex model. As illus-
trated in Fig. 3, the system is primarily in a state of
wakefulness, accompanied by high levels of noradrenalin,
during which the homeostatic sleep drive increases. Given
sufficiently large sleep pressure the cortex will then tran-
sition into NREM sleep, characterized by elevated levels
of GABA. As can be seen in Fig. 2 the NREM popula-
tion also inhibits REM sleep. However, inhibition through
GABA is weaker than that by noradrenalin during wakeful-
ness (|gGR| > |gER|), which leads to a slow increase in
REM activity that ultimately switches the system into REM
sleep.

The high levels of acetylcholine during REM sleep pro-
mote release of noradrenalin. As noradrenalin suppresses
the REM population, REM sleep is terminated through
reciprocal interaction between the Wake and the REM pop-
ulation. The ultradian cycling between NREM and REM
sleep continues until the homeostatic sleep drive is suffi-
ciently low. At that point the Wake population takes over
and the system transitions from REM sleep to wakefulness.
Following Diniz Behn and Booth wakefulness is defined as

Fig. 2 Connectivity within the model. In the cortical submodule
one pyramidal (p) and one inhibitory (i) population are all-to-all cou-
pled, with connection strength Nkl where k denotes the postsynaptic
and l the presynaptic population. Circles indicate excitatory and butts
inhibitory synaptic input. Background activity from other unspecified
brain areas modulates cortical activity through noisy inputs φn and φ′

n.
The sleep regulatory network consists of three populations, Wake (W),
NREM (N), and REM (R), that are associated with a specific neu-
romodulator, which is noradrenalin (E) for Wake, acetylcholine (A)
for REM, and GABA (G) for the NREM population. They interact
mainly through inhibition, with the interaction strength given by the
synaptic weights g. The sleep regulatory network modulates activity of
the pyramidal population through the respective neuromodulators C.
The different types of neuromodulatory input are indicated by colored
triangles connected through dashed lines
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states with CE > 0.4, REM through CA > 0.4, and all other
states as NREM. As described below, we utilize the activ-
ity of the cortical model to score the different sleep stages
similar to experimental sleep research.

Due to its simplicity the presented sleep regulatory net-
work exhibits differences with regard to human sleep EEG.
In the model, the ultradian rhythm is uniform over the night,
with equal portions of NREM and REM sleep for every
cycle. This is in contrast to human sleep EEG, where NREM
sleep is dominant in the first half of the night, whereas REM
sleep occupies the better part of the second half. In the cho-
sen 3 population regulatory network, the duration of REM
episodes is directly linked to those of NREM through the
reciprocal interaction with the Wake population. Initiation
of REM sleep is due to declining levels of noradrenalin
during NREM, whereas termination of REM is driven by
increasing levels of noradrenalin (Fig. 3). Therefore, pro-
longing a REM episode would also lead to a longer NREM
stage.

Furthermore, as there is only one NREM population,
the model is not able to capture the deepening of NREM
sleep within an ultradian cycle, which can be observed in
the human EEG. This is exemplified in the lower panel of
the Fig. 3, where the classification of sleep stages is based

Fig. 3 Activity of the sleep regulatory network. In the upper panel
the concentration of the different neurotransmitters in the sleep reg-
ulatory network is shown over the course of one day, together with
the homeostatic sleep drive. The concentrations are directly related
to the firing rates of the different populations. In the mid panel the
hypnogram according to Diniz Behn and Booth (Diniz Behn and Booth
2012) is shown, which is based on the activity of the sleep regula-
tory network. In contrast, the lower panel depicts the hypnogram based
on scoring of the activity of the pyramidal population, following the
AASM rules for the EEG. There, we further subdivide NREM sleep
into stages N1-N3

on the activity of the cortex. Except for the last ultradian
cycle, where the NREM population shows a distinct drop in
activity, the transition into sleep stage N3 is nearly instant,
whereas in human sleep, N2 occupies a majority of NREM
sleep (Fig. 1 for comparison). Interestingly the last ultra-
dian cycle shows a prolonged transition from N1 over N2 to
finally sleep stage N3. This is due to reduced sleep pressure
h, that results in a reduced activity of the NREM population.
Here a more sophisticated model, where NREM promoting
populations are silenced during REM sleep might lead to
more realistic results.

3.2 Modulation of the bifurcation parameters

As discussed above, the varying levels of neuromodulators
affect the two bifurcation parameters gKNa and σp. The
combination of the three different neuromodulators leads to
an increase of both parameters during NREM sleep and a
decline during REM and wakefulness (See Fig. 4). Given
the slow timescale of the sleep regulatory network, the bifur-
cation parameters can be assumed as quasi-static, so that our
findings on the isolated cortex (Weigenand et al. 2014) are
still valid for the coupled system and we can use the same
bifurcation diagram.

During wakefulness the model is close to the z-axis
around σp = 4 and gKNa=0, which corresponds to a param-
eter configuration of the wake state given by a similar
model of Steyn-Ross et al. (2005). During the transitions
into NREM sleep, declining levels of noradrenaline lead
to an increase in σp and gKNa. At the same time GABA
activates potassium channels, increasing gKNa. When the

Fig. 4 Trajectory of the bifurcation parameters. The figure illus-
trates the time course of the two bifurcation parameters, modulated by
the sleep regulatory network. To better relate the change of the bifurca-
tion parameters to the activity of the cortical populations, the trajectory
is color coded with respect to the scored sleep stage. During NREM
sleep, both gKNa and σp increase, to drop again during REM sleep.
Over the night, the system undergoes four ultradian cycles, with the
last cycle being strongly influenced by the drop in NREM activity
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model switches into REM sleep, rising levels of acetyl-
choline rapidly decrease the adaptation strength gKNa. In
addition, neural gain is increased by acetylcholine and nora-
drenalin, leading to smaller values of σp. Over the night the
ultradian cycle is repeated multiple times (See Fig. 5).

However, there are notable differences between the
respective ultradian cycles, that are not reflected in the clas-
sification of Diniz Behn and Booth. Especially during the
last cycle, the activity of the NREM populations is sig-
nificantly decreased after the REM episode (See Fig. 5).
Importantly, this leads to a different trajectory in the bifur-
cation diagram of the cortex model, that directly affects the
dynamics of the cortical populations, resulting in a differ-
ent scoring in the EEG based hypnogram in Fig. 3. Due to
decreased levels of GABA, the firing rate adaptation gKNa

recovers slowly. This puts the cortex in a trajectory farther
away from the Hopf bifurcation, where it is unable to gen-
erate a canard explosion, leading to a prolonged period of
N1. This puts the cortex in a trajectory farther away from
the Hopf bifurcation, where it is unable to generate a canard
explosion, leading to a prolonged period of N1.

In the wake state, the cortex is far away from the Hopf
bifurcation in a single active state. When the homeostatic
sleep drive intensifies, the NREM population activates. This
leads to an release of extrasynaptic GABA and the cor-
tex approaches the Hopf bifurcation as both gKNa and σp

increase (See Fig. 6 red line). As NREM sleep deepens fur-
ther, the canard vanishes in a cusp bifurcation, with only
the limit cycle of the Hopf bifurcation remaining. At the
onset of REM sleep, rising levels of acetylcholine block fir-
ing rate adaptation through gKNa, pushing the cortex away

Fig. 5 Trajectory of the ultradian cycles. The panels depict the four
ultradian cycles, the model fulfills during a night. Notably, the last
ultradian cycle differs considerably from the others, as it is influenced
by reduced NREM activity. This leads to a slower increase in gKNa.
The resulting trajectory is farther away from the Hopf bifurcation lead-
ing to a prolonged period of N1 and a slower transition phase into slow
wave sleep (N3). As indicated the time flows counterclockwise

Fig. 6 Trajectory in the bifurcation diagram. This figure depicts,
the projection of the time course of the bifurcation parameters onto the
bifurcation diagram from Weigenand et al. (2014). Here, the red line
denotes Hopf bifurcations, whereas the black line stands for saddle
nodes. The trajectory of the cortex model is color coded with respect to
the classification of the sleep stages. With the cortex moving closer to
the Hopf bifurcation, the high frequency oscillations during wakeful-
ness turn into low frequency large amplitude oscillations. During REM
sleep increasing concentrations of acetylcholine push the model back
to the lower left leading to higher frequency oscillations. It should be
noted, that the projection does not reflect the time spend at the given
point

from the Hopf bifurcation. Without its influence, the model
returns to high frequency oscillations generated by synaptic
interactions.

3.3 Effect of sleep regulation on the EEG

Cortical activity modulated by the sleep regulatory network
is shown in Fig. 7. In the wake state, the cortex is in a
depolarized stable equilibrium. Without influence of the
Hopf bifurcation synaptic interactions dominate and it gen-
erates the typical high frequency low amplitude oscillations
observed in the EEG during the day (Fig. 8-Wake).

During the early part of the wake-sleep transition, the
system is increasingly affected by the ghost of the homo-
clinic orbit generated by the Hopf bifurcation. After pertur-
bations through the background noise, the system does not
directly return to the equilibrium, but follows a trajectory
that is shaped by the homoclinic orbit. This results in a slow
down in oscillation frequency and an increase in amplitude,
corresponding to sleep stage N1 (Fig. 8-N1).

As sleep deepens further, the cortex moves closer to
the Hopf bifurcation, where a canard phenomenon (Benoıt
et al. 1981) emerges through the interaction between the fast
cortical activity and the slow firing rate adaptation. Impor-
tantly, the low frequency background oscillations may be
interrupted by large amplitude deflections, which resemble
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Fig. 7 Modulation of cortical activity over the day. Here, we illus-
trate the effect of modulation by the sleep regulatory network on the
activity of the cortical model represented by the averaged membrane
voltage of the pyramidal population Vp . After a period of wakefulness,
the model transitions into NREM sleep, characterized by large ampli-
tude oscillations. NREM episodes are interrupted by REM sleep, that
resembles wakefulness. After 4 cycles of the ultradian rhythm, the cor-
tex returns to a state of wakefulness. The vertical lines indicate the
position of the respective episodes depicted in Fig. 8

K-complexes. They are initiated by background noise that
pushes the system into the attractor of the canard, result-
ing in a single canard cycle around the silent hyperpolarized
state (Fig. 6-N2).

With increasing σp the canard vanishes in a cusp bifur-
cation (marked by the upper dotted line in Fig. 6) and only
a limit cycle remains. The previously isolated K-complexes
are replaced by continuous noise driven large amplitude
oscillations which resemble slow oscillatory activity dur-
ing sleep stage N3 (Fig. 8-N3). Importantly, at no time
the system actually crosses the Hopf bifurcation, but rather
approaches it. Otherwise the highly regular limit cycle
oscillations would generate pathologically seizure behavior.

When the sleep regulatory network switches to REM
sleep, the increasing levels of acetylcholine push the cortex
away from the Hopf bifurcation. Without its influence the
cortex returns to low amplitude high frequency oscillations
which are typical for REM sleep (Fig. 8-REM). The transi-
tion between the different sleep stages is depicted in Fig. 9.
It occurs rapidly as close proximity to the limit cycle is nec-
essary for slow wave activity, and blockage of gKNa through
acetylcholine moves the system perpendicularly to the Hopf
bifurcation (Fig. 6).

3.4 Transition between sleep stages

In human sleep research, the classification into different
sleep stages is based on electrophysiological measurements.
However, in the Diniz Behn and Booth model as well as
the related literature, there is no correlate of such activity.
Here, we can directly relate the EEG signal generated by
the activity in the cortical model to the ongoing activity
in the sleep regulatory network. Therewith, we can pro-
vide a classification that directly relates activity of the sleep

Fig. 8 Individual sleep stages generated by the model. The indi-
vidual panels depict example epochs from Fig. 7, that correspond
to different sleep stages following the classification scheme by the
AASM (Iber et al. 2007). Activity during REM sleep resembles wake-
fulness, with the exception, that the cortex is relatively hyperpolarized.
The panels N1-N3 show NREM sleep of increasing depth, with K-
complexes emerging during N2 and slow wave activity during N3.
Please note the different scales of the y axis especially for N2 and N3

regulatory network to experimental measurements. We fol-
low the more recent classification scheme provided by the
American Academy of Sleep Medicine (AASM) (Iber et al.
2007), although the classical rules by Rechtschaffen and
Kales (1968) would apply equally. It should be noted, that
our classification is solely based on the EEG part of the
manual, as our model cannot generate EOG or EMG activ-
ity. The sleep scoring based on the activity of the pyramidal
population is shown in Fig. 3.

The transitions between the different sleep stages are
heavily dependent on two sets of time scales. The first
are the time scales of neurotransmitter release in the sleep
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Fig. 9 Transition between sleep stages. This figure demonstrates the
ability of the cortex model to rapidly switch between NREM and REM
sleep. During NREM the cortex is close to the Hopf bifurcation leading
to low frequency large amplitude oscillations. When the system transits
into REM sleep, the increasing levels of acetylcholine block potassium

channels, pushing the cortex away from the Hopf. Immediately the
slow oscillatory activity vanishes and gives rise to high frequency low
amplitude oscillations typical for REM sleep. For brevity the transition
between wakefulness and NREM sleep is omitted, as it is identical to
the REM-NREM transition

regulatory network, τE , τG, and τA respectively. They are
directly related to the intrinsic dynamics of the sleep regula-
tory network. Given the large timescales the sleep regulatory
populations act upon, the behavior of the model is more sen-
sitive to changes in τX than to changes in cortical timescales.
The larger the time constants, the slower the transition
between the different sleep stages.

The other set are the time constants of the bifurcation
parameters τg and τσ in Eqs. (11) and (12) respectively.
Here, we assume them to be in the range of tens to hundreds
of milliseconds, which yielded the best results. It might be
difficult to directly measure them in vivo, as they cover
rather unspecific processes, e.g. neuronal gain is affected
by many neuromodulators which might have different time
scales individually. For the sake of simplicity we have also
assumed that activation and inactivation of neuromodulators
has the same time constant.

Importantly the two time constants τg and τσ cover dif-
ferent aspects of the sleep transitions. The change in firing
rate adaptation gKNa is crucial for the generation of large
amplitude oscillations, as its axis is mostly orthogonal to the
line of Hopf points. Therefore, τg has a strong influence on
the ability of the model to rapidly switch into and out of
NREM sleep, which is depicted in Fig. 9.

In contrast, changes in σp move the system on a trajec-
tory parallel to the Hopf bifurcation. Therefore, it does not
determine whether the cortex is able to generate large ampli-
tude oscillations, but rather if they are generated through
a canard explosion or through a limit cycle. Therefore, τσ

mainly affects the speed, the system transitions from early
NREM sleep (N2) to late NREM sleep (N3). However, as

sleep is scored in epochs of 30s, physiological values of
τσ have only a minimal effect on the hypnogram (data not
shown). To effectively change the distribution between N2
and N3, τσ would have to be in the range of minutes to
hours, which suggests that the lack of N2 is not of cortical
origin.

Note, that τg and τσ cannot be chosen arbitrarily, as the
line of Hopf points is not fully parallel to the σp axis. There-
fore, if τσ is sufficiently large compared to τg , the cortex
might cross the Hopf bifurcation at a smaller gKNa and
generate unrealistic limit cycle oscillations.

4 Discussion

In this study we combined two different yet related model-
ing frameworks. On the one hand sleep regulatory networks
and their complex interactions, that govern the transition
between different states of vigilance. On the other hand
EEG generating models, with a special emphasize on sleep.
We utilized the modulatory effect of the neurotransmitters
released by the sleep regulatory network, e.g. noradrenalin,
GABA, and acetylcholine, on key parameters of the corti-
cal neural mass model to regulate the transition between its
different dynamics modes.

4.1 Neuromodulators and bifurcation parameters

A key aspect of this work is the modulation of the bifur-
cation parameters of the cortical model through the sleep
regulatory network. We have shown, that the combined
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model is able to generate key patterns observed in the
EEG over a full day, independently from external input.
While physiological studies provide a very clear grand pic-
ture of the qualitative effect the neuromodulators have on
the different parameters (see Table 1), the literature lacks
quantitative measurements of these changes. Therefore, we
choose a simple dependency between gKNa, σp, and the
neuromodulators as a starting point for Eqs. (11) and (12).
Here, neurophysiological measurements might help to elu-
cidate the dependency of those bifurcation parameters on
the respective neuromodulators and provide a better fit of
their relationship.

4.2 Distribution of NREM and REM sleep

In the original model from Diniz Behn and Booth (2012),
the NREM and REM episodes are uniformly distributed
over the duration of the night. This is in contrast to human
sleep data, where NREM sleep occupies the majority of
the first half of the night and vice versa. Inclusion of the
circadian rhythm through activity in the SCN has been
shown to introduce a distribution of the REM bout durations
(Fleshner et al. 2011; Gleit et al. 2013). However, this
increases the complexity of the sleep regulatory network
significantly. Also the reduction to a single REM population
with reciprocal interactions might be critical, as other mech-
anisms beyond reciprocal interaction have been hypoth-
esized to be involved in REM sleep regulation (Brown
et al. 2008; Lu et al. 2006; Luppi et al. 2006; Sapin et al.
2009), which are also subject to circadian modulation. This
requires more detailed models of both the REM sleep reg-
ulation as well as the circadian rhythm to elucidate the
mechanisms underlying the distribution of REM sleep.

It is also possible to scale the strength of REM sleep
related weights gER and gAW in the sleep regulatory net-
work with the homeostatic sleep drive h, to prolong REM
episodes over the night (data not shown). However, given
the high level of simplification in the chosen sleep regu-
latory model, it is questionable whether there is a physio-
logical process corresponding to this scaling. The aim of
this study is to provide a minimal physiologically plausible
model of sleep regulation in a neural mass model. There-
fore, we believe that rather than fixing minor aspects of an
oversimplified sleep regulatory network, one should relate
to more sophisticated models, e.g. (Rempe et al. 2009; Diniz
Behn and Booth 2010; Kumar et al. 2012).

4.3 Subdivision of NREM sleep

Currently the literature on sleep regulatory network focuses
on two cardinal rhythms, the sleep-wake transition as well

as NREM-REM cycling. However, in human sleep there is
a further subdivision of NREM sleep into the sleep stages
N1-N3, which corresponds to increasing depth of sleep and
are characterized by unique features in the EEG. While our
model can generate EEG activity that shows the character-
istics of all stages of NREM sleep (See Fig. 8), N1 and N2
only appear as transients during the transition to sleep stage
N3. In human sleep, N1 occupies only a minimal fraction
of the night and is indeed assumed transient, whereas N2
accounts for the majority of sleep.

The small influence the timescales of the bifurcation
parameters have on the hypnogram suggests that it is not
possible to represent both N2 and N3 by a single population
to fully reproduce human sleep EEG. Here, more sophisti-
cated models, that include the subdivision of NREM sleep
into two distinct sleep stages N2 and N3, will be necessary
to fully capture sleep dynamics. Similar to REM sleep, the
distribution of NREM varies over the night. This includes
not only the total amount of NREM compared to REM, but
also the distribution between N2 and N3. Modulation by the
circadian rhythm might also play a crucial role, as changes
in REM bout duration also affect NREM distribution.

Finally, the assumption, that all neuromodulators manip-
ulate the bifurcation parameters on the same time scale
might not be valid and those different time scales might
play an important role in the transition between the different
sleep stages.

4.4 Outlook

Our approach provides a direct relation between the activ-
ity of a sleep regulatory network and a generating model of
human EEG. As sleep regulation affects the cortical model
only indirectly though a slow modulation of the bifurcation
parameters, the sleep regulatory network can be replaced by
a different one, making it a useful tool for validating other
sleep regulatory models.

Similar to the estimation of effective connectivity in
the dynamic causal modeling framework (Kiebel et al.
2008), the EEG signal generated by the cortical model can
be utilized to infer a mapping from human EEG data to
the bifurcation parameters and therewith levels of neuro-
modulators. As this translates to the activity of the sleep
regulatory network, it provides insights into activity of regu-
latory networks that otherwise might not be easily measured
in vivo. This might allow the investigation of sleep related
pathological conditions e.g. narcolepsy.

In addition to pathological conditions, our model can
provide predictions for neuropharmacological interventions
that either target the bifurcation parameters or neuromod-
ulators, e.g. the model suggests that the application of



J Comput Neurosci (2016) 41:15–28 25

a cholinergic antagonist during REM sleep should lead
to the emergence of slow oscillatory activity. Further-
more, anesthetic agents and neuromodulators have simi-
lar targets (Nicoll et al. 1990; Patel et al. 1999; Talley
and Bayliss 2002), which could be incorporated in our
model as an additional way of modifying the bifurcation
parameters.
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Appendix

A Model equations

The cortex model is given by the following set of equations:

τpV̇p = −I
p
L − IAMPA(sep) − IGABA(sgp) − τpC−1

m IKNa,

τi V̇i = −I i
L − IAMPA(sei ) − IGABA(sgi),

s̈ep = γ 2
e

(
NppQp(Vp) + φn − sep

) − 2γeṡep,

s̈gp = γ 2
g

(
NpiQi(Vi) − sgp

) − 2γgṡgp,

s̈ei = γ 2
e

(
NipQp(Vp) + φ′

n − sei
) − 2γeṡei ,

s̈gi = γ 2
g

(
Nii Qi(Vi) − sgi

) − 2γgṡgi ,
[
Ṅa

] = (αNaQp(Vp) − Napump([Na]))/τNa.

τgġKNa = ḡKNa(1 − 0.95CA)(1 − 0.75CE)(1 + 0.85CG) − gKNa,

τσ σ̇p = σ̄p − (4CE + 2CA) − σp.

With the currents defined by:

IL = ḡL(Vk − EL),

IAMPA = ḡAMPAsek(Vk − EAMPA),

IGABA = ḡGABAsgk(Vk − EGABA),

IKNa = gKNawKNa(Vp − EK),

wKNa = 0.37

1 +
(

38.7
[Na]

)3.5
.

The sodium pump and firing rate functions are given by:

Napump([Na]) = Rpump

(
[Na]3

[Na]3 + 3375
− [Na]3

eq

[Na]3
eq + 3375

)
,

Qk(Vk) = Qmax
k

1 + exp(−(Vk − θk)/σk)
,

QSR
k (Y ) = F max

k

1 + exp(−(Y − βk)/αk)
.

The sleep regulatory network is described by:

τW ḞW = QW (gGWCG + gAWCA) − FW,

τN ḞN = QN (gENCN) − FN,

τRḞR = QR (gERCE + gGRCG + gARCA) − FR,

τEĊE = tanh(FW/γE) − CE,

τGĊG = tanh(FN/γG) − CG,

τAĊA = tanh(FR/γA) − CA,

ḣ = hmax − h

τw
h

H(FW − θh) − h

τ s
h

H(θh − FW).

B Parameter values

Here, we describe the different symbols used in the
cortex and sleep regulation module and give their
values.

It should be noted, that in the original manuscript
by Diniz Behn and Both the parameter values for
the sleep regulatory network are given in seconds or
hours. However, since we combine the cortical and the
sleep regulatory model, we have to decide on one time
unit.

Table 2 Symbol description cortex

Cm Membrane capacitance in the HH model

Qmax
k Maximal firing rate of population k

θk Firing threshold of population k (half activation)

σk Default gain coefficient of the firing rate function of

population k (inverse neural gain)

τk Membrane time constant of population k

τσ Time constant of neural gain modulation

τg Time constant of the modulation of the firing

rate adaptation

γm Synaptic rate constant of synapse type m

Nkl Connectivity constant for presynaptic population l to

postsynaptic population k

ḡX Conductivity of channel X

EX Nernst reversal potential of channel X

αNa Sodium influx through firing rate

τNa Time constant of sodium extrusion

Rpump Strength of the sodium pump

Naeq Resting state sodium equilibrium

φsd Standard deviation of background noise



26 J Comput Neurosci (2016) 41:15–28

Table 3 Symbol description sleep regulation

τK Membrane time constant of population K

τX Membrane time constant of neuromodulator X

F max
K Maximal firing rate of population K

βK Firing threshold of population K (Half activation)

αK Default gain coefficient of the firing rate function of

population K (neural gain).

γX Synaptic rate constant of neuromodulator X

gXK Synaptic weight of neuromodulator X acting on

postsynaptic population K

hmax Maximal sleep drive

θh Sleep drive threshold

τw
h Time constant of sleep drive build up during wakefulness

τ s
h Time constant of sleep drive decline during sleep

κ NREM firing threshold modulation parameter

Table 4 Parameter values cortex model

Symbol Value Unit

Cm 1 μF/cm2

τp, τi 30 ms

Qmax
p 30·10−3 ms−1

Qmax
i 60·10−3 ms−1

θp, θi −58.5 mV

σ̄p 7 mV

σ̄i 6 mV

τσ 100 ms

γe 70·10−3 ms−1

γg 58.6·10−3 ms−1

Npp 120 −
Nip 72 −
Npi 90 −
Nii 90 −
ḡL 1 −
ḡAMPA 1 ms

ḡGABA 1 ms

E
p
L −66 mV

Ei
L −64 mV

EK −100 mV

EAMPA 0 mV

EGABA −70 mV

ḡKNa 1.33 mS/cm2

τg 10 ms

αNa 2 mM/mA ms

τNa 1.7 ms

Rpump 0.09 mM ms−1

Naeq 9.5 mM

φsd
n 2 ms−1

Table 5 Parameter values sleep regulation

Symbol Value Unit

τW 1500·103 ms

τN 600·103 ms

τR 60·103 ms

τE 2.5·103 ms

τG 1·103 ms

τA 1·103 ms

F max
W 6.5·10−3 ms−1

F max
N 5·10−3 ms−1

F max
R 5·10−3 ms−1

βW −0.4 ms−1

βR −0.9 ms−1

αW 0.5 ms−1

αN 0.175 ms−1

αR 0.13 ms−1

γE 5·10−3 ms−1

γG 4·10−3 ms−1

γA 2·10−3 ms−1

gGW −1.68 −
gAW 1 −
gGR −1.3 −
gAR 1.6 −
gER −4 −
gEN −2 −
hmax 1 −
θh 2·10−3 ms−1

τw
h 34830·103 ms

τ s
h 30600·103 ms

κ 1.5 −
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