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Abstract—In this paper we propose the novel algorithm GF-
OSC, which learns an orthogonal basis that provides an optimal
K-sparse data representation for a given set of training samples.
The underlying optimization problem is composed of two nested
subproblems: (i) given a basis, to determine an optimal K-sparse
coefficient vector for each data sample, and (ii) given a K-sparse
coefficient vector for each data sample, to determine an optimal
basis. Both subproblems have closed form solutions, which can be
computed alternately in an iterative manner. Due to the nesting
of the subproblems, however, this approach can only find an
optimal solution if the underlying sparsity level is sufficiently
high. To overcome this shortcoming, our GF-OSC algorithm
solves subproblem (ii) via gradient descent on the corresponding
cost function within the underlying lower dimensional space of
free dictionary parameters. This algorithmic substep is based on
the geodesic flow optimization framework proposed by Plumbley.
On synthetic data, we show in a comparison with four alternative
learning algorithms the superior recovery performance of GF-
OSC and show that it needs significantly fewer learning epochs
to converge. Furthermore, we demonstrate the potential of GF-
OSC for image compression. For five standard test images, we
derived sparse image approximations based on a GF-OSC basis
that was trained on natural image patches. In terms of PSNR,
the approximation performance of the GF-OSC basis is between
0.09 to 0.32 dB higher compared to using the 2D DCT basis, and
between 1.66 to 3.4 dB higher compared to using the 2D Haar
wavelet basis.

I. INTRODUCTION

Early work on sparse coding is based on the efficient-
coding hypothesis which proposes that the goal of visual
coding is to accurately represent the visual input with minimal
neural activity, an idea that goes back to Barlow [1] and is
based on earlier work of Ernst Mach and Donald MacKay.
From image statistics it is known that natural images do not
occupy the entire signal space. As a consequence, they can
be encoded sparsely, meaning that they can be represented by
a linear combination of rather few elementary signals out of
a given collection. Sparsity is a generic principle that is not
restricted to visual data only, but applies also to other classes
of natural signals, for instance acoustic signals [2].

The fact that natural images can be sparsely encoded has
already been utilized in technical applications such as image
compression and compressive sampling. By choosing an ade-
quate analytic transform, e.g. the Discrete Cosine Transform
(DCT) or suitable wavelets, many transform coefficients of
natural images are small and thus need not be encoded [3], [4].

An important progress has been made by going from such pre-
defined transforms to dictionaries that are learned and thereby
adapted to particular signal classes [5]. However, to optimally
encode natural image patches or even full size images by such
learned dictionaries is computationally demanding, due to their
non-orthogonal and redundant nature.

Furthermore, sparse representations are important for ob-
ject recognition and do indeed often emerge in the first layers
of deep convolutional neural networks when trained with
labelled or unlabelled data.

A. Overcomplete versus Orthogonol Dictionaries

Learning a dictionary for sparse coding is equivalent to
identifying, given a set of training samples, an appropriate
collection (dictionary) of directions (atoms) in the input space,
such that any K-subset of it spans a K-dimensional subspace.
The objective is to accurately represent each sample by its
projection onto one specific K-simensional subspace, which
is optimal for that particular sample.

Learning overcomplete dictionaries allows to arbitrarily
increase the collection of atoms to a size larger than the
dimensionality of the input space, which in turn increases
the number of possible subspaces that can be used for sparse
encodings. Subspaces composed from an overcomplete dictio-
nary are, in general, mutually non-orthogonal, which enables
a better adaptation to the training data set and can “represent
a wider range of signal phenomena” [6]. However, not to
require further conditions on the dictionary is problematic
when it comes to calculating optimal sparse encodings. In
general, this problem is NP-hard for overcomplete dictionaries
[7]. Approximative greedy algorithms like Basis Pursuit or
Orthogonal Matching Pursuit can only find optimal encod-
ings if the dictionary obeys particular incoherence conditions,
which require that the dictionary atoms are not too similar.
Incoherence conditions can be interpreted as a relaxation of
orthogonality. Note, however, that when learning a dictionary
such incoherence conditions are much more difficult to enforce
than orthogonality conditions.

Orthogonal dictionaries, on the other hand, are mathe-
matically simple and, moreover, maximally incoherent. All
possible K-dimensional subspaces are mutually orthogonal
with the implication that optimally sparse encodings can be
calculated simply by inner products. Moreover, an orthogonal
dictionary can be easily inverted and serves simultaneosuly



as analysis and as synthesis operator. Nevertheless, orthogonal
bases learned for sparse coding are able to provide efficient
encodings as will be shown by our numerical experiments.

B. Related Work

1) Analytic Transform Design: The problem to design
suitable signal transforms to efficiently encode image patches,
and to compress images can be traced back to the Fourier
Transform and local versions thereof [8] that finally converged
to the first JPEG standard [3] based on the DCT. Pioneering
work in the field of wavelet analysis [9] led to a signal
decomposition scheme [10], [11] that provides orthogonal
multiscale transforms simply by translating and dilating an
elementary function (see, e.g., [12], [13]).

2) Learning Overcomplete Dictionaries: Olshausen and
Field introduced SparseNet, the first batch learning algo-
rithm to learn an overcomplete dictionary that minimizes a
regularized joint cost function composed of a representation
error term and a term that promotes the sparsity of the data
representation [14]. Meanwhile, many alternative algorithms
have been proposed to learn such overcomplete dictionaries.

Lewicki and Sejnowski proposed a probabilistic approach
by gradient ascent on a log posterior with respect to the
dictionary [15]. The authors also deduced that learning an
overcomplete sparse coding dictionary is a generalization of
Independent Component Analysis (ICA) [16].

Aharon et al. proposed K-SVD [17], an algorithm that
generalizes K-means clustering and iterates two alternating
stages. In the first stage, a pursuit algorithm approximates
the optimal K-sparse representations of the training set. In the
second stage, each dictionary atom, as well as associated non-
zero coefficients, are sequentially updated via Singular Value
Decomposition (SVD) of a particular error matrix.

Alternative approaches to learn overcomplete dictionaries
for sparse coding can be found in [18], [19], [20], [21], [22], or
[23] to name a few. However, all the above learning algorithms
do not attempt to enforce orthogonality and thus learn, in
general, non-orthogonal overcomplete dictionaries that can,
e.g., capture invariances [6].

3) Learning Orthogonal Dictionaries: A few authors pro-
posed to learn orthogonal dictionaries for sparse coding.

Coifman et al. proposed the Wavelet Packet Transform
[24], which is an early attempt to enhance orthogonal trans-
forms with a certain degree of adaptivity to the represented
signal by allowing to select a basis from a large collection of
dyadic time frequency atoms.

Mishali et al. proposed a two-stage method to learn an
orthogonal sparse coding basis [25]. The first stage estimates
the entire support pattern of the sparse coefficient matrix, the
second stage iteratively adapts (i) the non-zero coefficients
and (ii) the orthogonal basis via SVD based on the estimated
support pattern from the first stage. Their approach suffers
from a considerable dependence on very high sparsity levels
and on the existence of a strictly K-sparse representation of
the training data.

Dobigeon et al. proposed the Bayesian framework BOCA
to learn undercomplete orthogonal dictionaries for sparse cod-
ing [26]. BOCA, however, relies on knowing specific prior

distributions of unknown model parameters. Their approach
models the sparse coefficients by a Bernoulli-Gaussian process
and uses a uniform prior distribution on the Stiefel manifold
to find the orthogonal dictionary. A comparison between GF-
OSC and BOCA is out of the scope of this paper, because
we here only address the task of learning complete orthogonal
dictionaries.

Gribonval et al. considered the problem of learning an
orthogonal sparse coding basis by minimizing the `1-norm of
the coefficient matrix, such that the product of both matrices
synthesizes the training data set [27]. Their main results
are identifiability conditions that guarantee local convergence
to the generating dictionary by the `1-norm minimization
approach. They showed that the sparse Bernoulli-Gaussian
model satisfies these conditions with high probability provided
that enough samples are given. However, an explicit algorithm
is not proposed. Furthermore, the convergence to the right
solution relies on a sufficently good initialization.

Schütze et al. proposed the online learning algorithm OSC
to learn an orthogonal basis for a sparse data representation
[28]. OSC performs Hebbian-like updates of the dictionary
atoms in decreasing order of their encoding relevance. Or-
thogonality of the dictionary is repeatedly reimposed by a
Gram-Schmidt process. On natural image patches, the learned
OSC basis attains superior K-term approximation performance
compared to analytic orthogonal transforms and PCA. In [29],
the same authors present results and argue that with OSC the
true sparsity level can be very low and does not even need to
be known.

In [29] a “canonical” approach (CA) is introduced to
find orthogonal sparse coding bases via batch learning. CA
iteratively alternates between (i) a sparse coding stage, and
(ii) a dictionary update stage. For each stage, the closed form
solution of the corresponding subproblem is computed.

Bao et al. proposed a batch algorithm to learn an orthogonal
sparse coding basis [30]. Their method is related to CA
as it computes closed form solutions of the two underlying
subproblems. However, they address an unconstrained sparse
model with a regularized joint cost function different from the
one defined by Eq. (5) - see below. The sparse coding stage
is realized by a hard thresholding operator that is applied to
the coefficient matrix with a threshold heuristically derived
from the regularization parameter λ that implicitly controls
the trade-off between reconstruction error and sparsity. Without
modifications, their approach does not bound the sparsity level
of each sample and is therefore not suitable for a comparison
in our experiments. Note that their dictionary update stage is
also used by CA and variants of it have also previously been
used, e.g., in [19] and [25].

C. Structure of the Paper

In Section II, we formally introduce the orthogonal K-
sparse coding problem and summarize Plumbley’s geodesic
flow framework, which is the tool kit used for our GF-OSC
algorithm. We derive an online learning rule for GF-OSC that
is most relevant for an efficient update of the dictionary.

In Section III, we investigate the performance of GF-OSC
when recovering a generating orthogonal basis from synthetic



K-sparse data and compare it to four alternative methods. We
then apply GF-OSC to natural image patches and visualize the
learned atoms. Moreover, we compute sparse approximations
of test images by using the learned GF-OSC basis and compare
its compression performance to that of the 2D DCT and 2D
Haar wavelet bases.

II. METHODS

A. Learning an Orthogonal Basis for Sparse Coding

This paper addresses the task of learning an orthogonal
basis that provides an optimal K-sparse representation of a
given training data set. We say that matrix U ∈ RN×N is
an orthogonal basis if it satisfies UTU = IN . Given such a
basis, any signal x ∈ RN has a unique representation by its
coefficient vector a = UTx. We say x is K-sparse in U , if its
corresponding a has exactly K non-zero entries, which will be
denoted by ‖a‖0 = K. In the following, let K ∈ {1, ..., N−1}
be a specific sparsity level.

Suppose U is given, then an optimal coefficient vector
(having a sparsity level of at most K) of a single sample x is
found as a solution to

a∗U ,K(x) = arg min
a,‖a‖0≤K

‖x−Ua‖22 . (1)

Due to orthogonality and completeness of U , a minimizer of
the sparse approximation problem (1) can be easily determined
by keeping the K largest entries |an| of a = UTx and setting
the remaining entries to zero, which can be written as

a∗U ,K(x) = DK(x,U)UTx , (2)

where DK(x,U) is a diagonal matrix having K entries equal
to 1 (indicating the K largest entries |an|) and otherwise the
entries equal to 0.

Let X = (x1, ..., xL) be a given training data set and
A∗U ,K(X) a matrix of equal size as X which contains, for
each sample xi, solution (2) to the sparse approximation
problem (1) in its columns. The proper cost function which
has to be minimized is given by

EX,K(U) = ‖X −UA∗U ,K(X)‖2F (3)

=
L∑

i=1

‖xi −Ua∗U ,K(xi)‖22 (4)

= ‖X‖2F −
L∑

i=1

xTi UDK(xi,U)UTxi . (5)

Note that the first term in (5) does not depend on U and can
therefore be disregarded. We denote the minimizer of (5) by
U∗X,K . When there is no risk of confusion, we will simply
write E(U) for (5), and U∗ for its minimizer, respectively.

Our experiments have shown that minimizing (5) via batch
learning is not as effective as via pattern-by-pattern learning.
Therefore, we additionally write the cost function in terms of
a single training sample, which is equivalent to (5) apart from
the sum that is taken over a single summand only.

Ex,K(U) = ‖x−Ua∗U ,K(x)‖22 (6)

= ‖x‖22 − xTUDK(x,U)UTx . (7)

B. The Geodesic Flow Optimization Framework

In general, minimizing a scalar-valued cost function with
respect to a square matrix is an optimization problem with an
N2-dimensional search space. If, in addition, an orthogonality
constraint is incorporated, the search space can be considerably
reduced because any orthogonal N × N matrix has merely
N(N−1)

2 degrees of freedom, rather than N2.

For this kind of optimization problems, Plumbley proposed
the geodesic flow framework [31] which exploits the reduced
search space. Suppose the corresponding cost function is
differentiable, then the geodesic flow approach allows to derive
its gradient within the reduced space of free parameters,
and therefore gradient based optimization techniques can be
applied to minimize the cost function.

The set of orthogonal matrices, O(N) = {U ∈ RN×N |
UTU = IN}, is called (general) orthogonal group and con-
sists of two disjoint subgroups1: SO(N), the set of orthogonal
matrices with determinant +1, and O(N) \SO(N), the set of
orthogonal matrices with determinant −1. The geodesic flow
approach is restricted to the subgroup SO(N), because it is
not possible to go smoothly from one subgroup to the other.
SO(N) forms a Lie group with an associated Lie algebra
given by the set of skew-symmetric matrices, so(N) = {B ∈
RN×N | BT = −B} and the Lie bracket given by the
matrix cummutator [Q,R] = QR −RQ. Since SO(N) is a
matrix Lie group, the matrix exponential exp (B) =

∑∞
n=0

Bn

n!
provides a surjective mapping from so(N) to SO(n).

Let E : RN×N → R be the differentiable cost function
that is to be optimized under the orthogonality constraint. By
using gradient ∇UE, the gradient of E with respect to the Lie
algebra so(N) is derived as follows:

∇BE = (∇UE)UT −U (∇UE)
T
. (8)

The geodesic flow approach starts with some initial U0 and
optimizes U t sequentially according to the iteration variable
t = 1, ..., tmax. For the most recent U t−1 an adaptation within
so(N) into the steepest descent direction ∆B = −η∇BE
is determined by (8), where η is a sufficiently small step
length. This adaptation within so(N) is mapped to SO(N) by
the matrix exponential, i.e., ∆U = exp (∆B). Subsequently,
the adaptation within SO(N) is applied rotationally to U t−1,
thus providing the new orthogonal matrix U t = (∆U)U t−1.
This iterative scheme enables the minimization of a scalar-
valued cost function subject to the SO(N) and based on a
gradient descent in so(N), which is the space of the underlying
degrees of freedom. Each gradient descent step yields naturally
a new orthogonal basis U t. As a consequence, reimposing the
orthogonality constraint separately is unnecessary.

C. Geodesic Flow Orthogonal Sparse Coding (GF-OSC)

We now present the online learning algorithm GF-OSC for
minimizing (5). In order to solve the basis update subproblem
by the geodesic flow framework, we first derive ∇UE of the
(single sample) cost function (7) and insert it subsequently into
(8) to obtain ∇BE.

1However, each of the two subgroups is connected.



Suppose x is the current training sample randomly selected
from X . We solve (1) by using (2) and fixate the locations
of the K largest coefficients subject to the current U . The
gradient with respect to U is given by

∇UE = −2xxTUDK(x,U) . (9)

Inserting (9) into (8) yields the desired gradient ∇BE of the
cost function (7) with respect to the Lie algebra so(N). Note
that the derived ∇BE is the key ingredient of our GF-OSC
algorithm and that it can be simplified as follows:

∇BE = x̂U ,K(x)xT − xx̂U ,K(x)T , (10)

where x̂U ,K(x) is an optimal K-term approximation of the
sample x with respect to U .

Algorithm 1 GF-OSC

Input: training data set X = (x1, ..., xL) ∈ RN×L

number of learning steps tmax

expected sparsity level K
initial orthogonal basis U0

Output: orthogonal basis U ∈ SO(N)
1: for all t = 1, ..., tmax do
2: select a sample x from X randomly
3: compute its optimal K-term approximation x̂Ut−1,K

(x)
4: compute ∇BE according to Eq. (10)
5: select a suitable step length ηt
6: ∆B ← −ηt∇BE
7: ∆U ← exp (∆B)
8: U t ← (∆U)U t−1
9: end for

10: U ← U tmax

The pseudo code of GF-OSC is listed in Algorithm 1.
To update the basis by GF-OSC, different strategies can be
chosen to select the step length ηt. It seems natural to apply
a dynamic step length that decreases from a large intial value
to a small final value over the number of conducted learning
steps. We also tested an adaptive step length η calculated
via backtracking line search based on the Armijo-Goldstein
condition [32] and observed that the convergence of GF-OSC
is increased for synthetic data wheras it is worsen in a learning
scenario with natural image patches, at least for the constant
value of α = 5 that we tested.

III. EXPERIMENTS

A. Experiments on Synthetic Data

We investigated how reliable GF-OSC and four alternative
methods recover a generating orthogonal basis from K-sparse
synthetic data. To this end, we fixed the signal dimensionality
to N = 256 and sample size to L = 1000, and generated
training data sets for sparsity levels K ∈ {2, 6, ..., 58, 62}.
Each data sample was generated as a 16 × 16 patch being
K-sparse in the non-standard 2D Haar wavelet basis, see
Fig. 2a. We modeled the sparse coefficients by a Bernoulli-
Gaussian process. The support pattern of each sample, i.e.,
the K locations of non-zero coefficients (in the Haar wavelet
domain) were uniformly selected at random. Subsequently, the
K non-zero coefficients were drawn from a standard Gaussian
distribution. To investigate deviations of recovery rates over

multiple runs, we created 10 different training data sets for
each sparsity level. We also randomly generated one initial
U0 for each training data set, such that each method starts its
iteration at the same initial position.

To measure the basis recovery performance, we followed
the procedure proposed in [17], i.e., for each generating basis
vector its most similiar estimated basis vector is identified in
terms of mutual overlap2. We considered a generating basis
vector as recovered, if its overlap to its most similar estimated
version is at least 0.8. The recovery rate of a full basis is then
given by the relative number of recovered basis vectors.

Considering the generated data sets, we compared the basis
recovery performances between K-SVD [17], the algorithm
of Mishali et al. [25], CA [29], OSC [28], and GF-OSC.
All methods were provided with the known sparsity level as
user parameter K. Each method was allowed to conduct at
most 1000 learning epochs. In the case that all reference basis
vectors were already recovered after fewer learning epochs, the
learning phase was stopped. Note that K-SVD is an algorithm
for learning arbitrary, non-orthogonal sparse coding dictionar-
ies and does therefore not benefit from the orthogonality of an
underlying dictionary. Nevertheless, orthogonality is a good-
natured scenario for K-SVD, because the mutual coherence is
minimal.

With GF-OSC we applied a backtracking line search based
on the Armijo-Goldstein condition [32] for which we set
α = 5. With OSC we let the learning rate decrease expo-
nentially from the initial value η1 = 10−1 to the final value
ηtmax

= 10−4. Note that the choice of this combination affects
the ability to converge as well as the speed of convergence.
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Fig. 1: Mean basis recovery rate (and standard deviations)
against sparsity level K on synthetic data sets (1000 patches
of size 16× 16 being K-sparse in the 2D Haar wavelet basis)
over 10 runs. For each method, the total number of learning
epochs was limited to 1000.

From Fig. 1 can be seen that the algorithm proposed by
Mishali et al. achieves perfect recovery up to K ≤ 6. Its

2The overlap between two unit length vectors v and w is defined as |vTw|.



recovery performance decreases for 6 < K ≤ 22, and is zero
for K ≥ 22. The recovery rate of K-SVD is not perfect in
all runs, but on average above 0.95 for K ≤ 22. It decreases
for 22 ≤ K ≤ 34, and is zero for K ≥ 38. CA recovers the
generating basis nearly perfectly for K ≤ 30. The recovery
performance decreases fast and is nearly zero for K ≥ 38.
OSC recovers the generating basis in a similar range as CA
but its recovery performance deacreses very slowly, and is zero
for K ≥ 58. The proposed GF-OSC algorithm performs best
with a nearly perfect recovery up to K ≤ 50.

(a) Reference Basis (b) K-SVD [17]

(c) Mishali et al. [25] (d) CA [29]

(e) OSC [28] (f) GF-OSC

Fig. 2: Sparse coding bases learned from a synthetic data
set (1000 patches of size 16 × 16 being 42-sparse (≈ 16.4%
non-zero coefficients) in the 2D Haar wavelet basis). For this
rather low sparsity level, OSC [28] and GF-OSC are able to
extract the underlying reference basis whereas K-SVD [17],
the approach of Mishali et al. [25], and CA [29] fail. For
display purposes, the entries of each basis patch (except the
estimated DC component) are shifted to have zero mean and
are subsequently scaled to unit supremum norm.

Fig. 2 illustrates the dictionaries that were learned on a
synthetic data set with the rather low sparsity level of K = 42
(≈ 16.4% non-zero coefficients). For this quite challenging
scenario, K-SVD, the algorithm of Mishali et al., as well as
CA fail to recover the generating basis from the synthetic data
set, see Fig. 2b - 2d. The bases learned by OSC and GF-OSC
distinctly reveal the underlying Haar wavelet basis, see Fig. 2e
- 2f. Note that an optimal solution is merely unique up to the
order and signs of the basis vectors.
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Fig. 3: Recovery rate against the number of performed learning
epochs for a single run on a synthetic data set (1000 patches
of size 16× 16 being 10-sparse in the 2D Haar wavelet basis)

Fig. 3 shows, exemplarily for a single run, a plot of the
recovery rate of the sparse coding basis against the number of
performed learning epochs. In order to adequately compare the
investigated sparse coding methods, a data set with the rather
high sparsity level of K = 10 was selected. The algortihm of
Mishali et al. is merely able to recover ≈ 40% of the reference
basis and is saturated at this rate after 50 epochs. K-SVD
converges after 337, OSC after 117, CA after 85, and GF-
OSC already after 13 learning epochs.

B. Experiments on Natural Image Patches

We let GF-OSC learn orthogonal bases to sparsely encode
natural image patches. We extracted image patches from set
one of the Nature Scene Collection [33], i.e., from images of
nature scenes containing no man made objects or people. The
uncompressed RGB images have a resolution of 2844× 4284
pixels. The color channels are linearly scaled, each with a
depth of 16 bits per pixel (bpp). Each color channel was trans-
formed by log2( · + 1) and subsequently scaled by 2−4 into
the double precision floating point range [0, 1]. Subsequently,
the color images were converted to grayscale images. From the
entire set of 308 images, we randomly selected 250 images.
From each image, we extracted 400 patches of size 16 × 16
pixels at random positions. These 105 image patches were
used for the learning with GF-OSC. We set user parameter
K = 64 and let the learning rate ηt decrease exponentially
from η1 = 100 to ηtmax

= 10−1, where the total number of



Fig. 4: Orthogonal sparse coding basis learned by GF-OSC on
natural image patches. On different scales, the learned basis
patches reveal selectivity for inputs with particular frequencies,
orientations, and spatial localizations. For display purposes,
the entries of each basis patch (except the estimated DC
component) are shifted to have zero mean and are subsequently
scaled to unit supremum norm.

learning steps was tmax = 107. The initial basis U0 was an
orthogonalized N ×N random matrix.

Fig. 4 shows the orthogonal sparse coding basis learned
by GF-OSC on the data set of natural image patches. On
different scales, the learned basis patches reveal selectivity
for inputs with particular frequencies, orientations, and spatial
localizations.

C. Sparse Image Approximation using GF-OSC

We conducted experiments to investigate how well natural
test images, which were not included in the training, can be
sparsely approximated by using the GF-OSC basis depicted in
Fig. 4. From each test image (512× 512 pixels), we extracted
patches of size 16 × 16 pixels and computed their optimal
8-sparse approximation with respect to the GF-OSC basis.
The sparsely approximated patches were then fused back to
reconstruct the image. To avoid blocking artifacts we extracted
overlapping patches with a stride of 4 pixels, such that all
pixels (except for pixels at the margins) of the image are
averaged from 16 approximated patches. For a comparison,
we interchanged the orthogonal GF-OSC basis with (i) the
orthogonal 2D DCT basis, and (ii) the orthogonal non-standrad
2D Haar wavelet basis. At the chosen parameter set, the test
images were approximated more accurately by the GF-OSC
basis than by the DCT and Haar wavelet bases. Table I lists
the sparse approximation performance as measured by the peak
signal-to-noise ratio (PSNR) for five standard test images. Fig.
5 shows results of the sparse image approximation approach

for the test image Pirate and the three different orthogonal
bases.

TABLE I: Sparse approximation performance for test images
(512 × 512 pixels) as measured by the peak signal-to-noise
ratio (PSNR).

GF-OSC 2D DCT 2D Haar

Cameraman 31.02 dB 30.93 dB 27.62 dB
Lena 31.26 dB 31.12 dB 28.51 dB
Mandril 26.39 dB 26.30 dB 24.11 dB
Peppers 31.08 dB 30.88 dB 28.82 dB
Pirate 28.85 dB 28.57 dB 27.19 dB

(a) Original test image Pirate (b) Sparse approx. by GF-OSC basis

(c) Sparse approx. by 2D DCT basis (d) Sparse approx. by non-standard
2D Haar wavelet basis

Fig. 5: Sparse approximations of test image Pirate (512× 512
pixels) based on optimal 8-sparse image patch representations
(patch size: 16×16 pixels) with respect to different orthogonal
bases.

IV. CONCLUSION

In this paper we have adressed the problem of learning a
complete dictionary with orthogonal atoms to sparsely encode
a given set of training data samples. The corresponding opti-
mization problem consist of two nested subproblems: (i) given
a basis, to determine optimal K-sparse coefficient vectors for
each data sample, and (ii) given a set of K-sparse coefficient
vectors for each data sample, to determine an optimal basis.
Both subproblem have per se closed form solutions. Solving
these subproblems by alternation in an iterative scheme, as
with CA [29], yields acceptable results. However, the GF-
OSC algorithm that is proposed in this paper significantly



outperforms CA as well as three other alternative methods
(K-SVD [17], the algorithm of Mishali et al. [25], and OSC
[28]) at the task of recovering a generating orthogonal basis
from synthetic K-sparse data. The superiority is twofold. First,
GF-OSC needs fewer learning epochs to converge to the right
solution. Second, GF-OSC accurately recovers the correct basis
even if the sparsity level is very low, i.e., K is very large.

GF-OSC is an online learning algorithm that solves sub-
problem (ii) via stochastic gradient descent within the space
of free dictionary parameters. The corresponding gradient is
derived according to the geodesic flow optimization framework
proposed by Plumbley.

We used GF-OSC to learn an orthogonal basis from nat-
ural image patches and derived basis functions with distinct
sensitivity to particular frequencies, orientations and spatial
localizations of the inputs. Furthermore, the learned GF-OSC
basis seems to be organized over several scales.

We have demonstrated the applicability of GF-OSC by
using a basis learned on natural image patches to sparsely
approximate images. Due to performance improvements by the
learned sparse coding basis over fixed ones, the possibility to
integrate GF-OSC into an image compression codec should
be further investigated. Since the basis is learned from train-
ing examples, it can be adapted to a particular image class
and should facilitate further improvements of approximation
accuracy and compression rate.

A further future research direction for GF-OSC could be
pursued in the field of compressive imaging. Gan proposed a
compressed sensing framework for images based on a block
decomposition [34]. Since compressed sensing relies on an
accurate, sparse representation of the signal in an orthogonal
basis, it would be interesting to investigate if a GF-OSC
basis (learned on a particular image class) can improve the
reconstruction performance of such a compressed sensing
approach.
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