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ABSTRACT

In this paper, we present Adaptive Hierarchical Sensing (AHS), a novel adaptive hierarchical sensing algorithm
for sparse signals. For a given but unknown signal with a sparse representation in an orthogonal basis, the sensing
task is to identify its non-zero transform coefficients by performing only few measurements. A measurement is
simply the inner product of the signal and a particular measurement vector. During sensing, AHS partially
traverses a binary tree and performs one measurement per visited node. AHS is adaptive in the sense that
after each measurement a decision is made whether the entire subtree of the current node is either further
traversed or omitted depending on the measurement value. In order to acquire an N -dimensional signal that is
K-sparse, AHS performs O(K logN/K) measurements. With AHS, the signal is easily reconstructed by a basis
transform without the need to solve an optimization problem. When sensing full-size images, AHS can compete
with a state-of-the-art compressed sensing approach in terms of reconstruction performance versus number of
measurements. Additionally, we simulate the sensing of image patches by AHS and investigate the impact of the
choice of the sparse coding basis as well as the impact of the tree composition.
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1. INTRODUCTION

Natural images can be encoded sparsely, meaning that they can be represented with rather few coefficients in
an appropriate basis.1,2 This is a prerequisite that facilitates efficient sampling of visual scenes by compressed
sensing (CS), a signal acquisition principle3–5 whose theory has rapidly emerged during the last decade. With
CS, it is possible to simultaneously compress and acquire an unknown signal of interest. Given the unknown
signal, a certain number of measurements is recorded. A measurement, which can be considered as a filter
operation, is the inner product of the signal and a predefined measurement vector. The objective is to approx-
imate the signal accurately by performing only few informative measurements. If the signal is K-sparse in a
specific orthogonal basis and the matrix of measurement vectors satisfies certain incoherence conditions, e.g. the
restricted isometry property,3,6 then the number of measurements required for a faithful signal reconstruction is
of order O(K logN/K). The signal is typically reconstructed from the collected measurement values by solving
an optimization problem, namely by seeking for the sparsest solution of an underdetermined system of linear
equations.

Here, we address a similiar sensing task, for which the sparse coding basis is assumed to be known in advance.
This is reasonable e.g. for the class of natural images or other signal classes, for which sparse coding bases are
already known or can be learned7,8 from training data. Let ~x ∈ RN denote the given but unknown signal that
we wish to acquire. We assume that ~x has a sparse representation ~a = ΨT~x in the orthonormal basis Ψ ∈ RN×N

(ΨTΨ = IN ), meaning that the signal energy is spread over only few coefficients. We denote ~x to be K-sparse
in Ψ if exactly K entries of ~a are non-zero (‖~a‖0 = K). The sensing task is to identify the non-zero signal

coefficients in the basis Ψ by performing preferably few measurements yi = ~φTi ~x, where we denote ~φi ∈ RN as a
measurement vector.
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Figure 1: Schematic illustration of an AHS tree. During sensing, AHS partially traverses the tree. For each
visited node, one measurement, i.e., the inner product of the unknown signal ~x with a particular measurement
vector, is conducted.

We propose the novel sensing algorithm Adaptive Hierarchical Sensing (AHS). From the given sparse coding
basis, a binary tree is constructed that assigns a measurement vector to each node. AHS partially traverses the
tree and for each visited node the corresponding measurement value with the signal is recorded. Based on the
measurement value at each node a decision is made, whether the subtree of the current node should be further
traversed or not.

In contrast to CS, the new algorithm is highly adaptive because the selection of the next measurement
vector depends on the previous measurement values. The tree gives a hierarchy that deterministically defines
the measurement vectors and avoids random measurements. Moreover, solving an optimization problem for the
reconstruction is unnecessary, because the signal approximation is obtained simply by a basis transform with Ψ.

Deutsch et al. addressed a similar sensing task but their approach is limited to sparse representations within
wavelet bases. They proposed the algorithm Adaptive Direct Sampling (ADS) that directly samples relevant
transform coefficients of an image in a specific wavelet domain.9 The approach uses a heuristic based on the
Lipschitz exponent. ADS starts to sample all coefficients in all subbands assigned to the coarsest scales. For
each spatial location and subband, the corresponding coefficients of the next finer scale are sampled depending
on the slope of spatially corresponding coefficients across already sampled (coarser) scales.

Note that an alternative hierarchical sensing scheme is presented by Burciu et al.10 in this volume.

Finally, a further motivation for our work is due to the fact that human vision seems to involve related sensing
schemes - see section 4.

2. ADAPTIVE HIERARCHICAL SENSING (AHS)

2.1 The AHS algorithm

In the following, we assume that the signal dimensionality N is a power of 2. The fundamental AHS data
structure is a binary tree with N leaves which we denote as AHS tree in the following. Given a particular
basis Ψ that provides sparse signal representations, each leaf i of the AHS tree (i ∈ N = {1, ..., N}) represents

one particular basis vector ~ψi ∈ RN as a measurement vector. Any other node of the AHS tree represents a
measurement vector which is composed by the sum of measurement vectors that belong to its two descendant
nodes. Figure 1 illustrates such an AHS tree. If N is not a power of 2, a balanced AHS tree can nevertheless be
constructed and used for sensing.

AHS works in the following fashion: to acquire a given but unknown signal ~x, the AHS tree is traversed
starting from the root. At each visited node, one measurement is performed, namely the inner product of ~x
with the measurement vector associated with that node. If the magnitude of the measurement value is larger
than a threshold, the traversion is continued for the subtree of that node. Otherwise, the entire subtree of the
node remains unvisited. Each visited leaf provides one transform coefficient of ~x because the corresponding



measurement vector is a basis vector of Ψ. Finally, these measurement values recorded at the leaves can be used
to reconstruct the signal. For a pseudocode∗ formulation of AHS, see Algorithm 1.

Algorithm 1 Adaptive Hierarchical Sensing (AHS)

Input: unknown signal ~x ∈ RN ,
binary sensing (sub)tree represented by leaf index vector ~l = (l1, ..., lL)T

orthogonal basis Ψ ∈ RN×N ,
canonical threshold τ0 ≥ 0

Output: approximate coefficients ~̂a ∈ RL according to ~l
1: Create measurement vector ~φ←

∑L
i=1 ψli

2: Perform one particular measurement y ← ~φT~x
3: if L > 1 then
4: if |y| >

√
Lτ0 then

5: ~̂aI ← AHS(~x, (l1, ..., lbL/2c)
T ,Ψ, τ0)

6: ~̂aII ← AHS(~x, (lbL/2c+1, ..., lL)T ,Ψ, τ0)

7: ~̂a←
(
~̂aTI , ~̂a

T
II

)T
8: else
9: ~̂a← ~0L

10: end if
11: else
12: ~̂a← y
13: end if

If the transform coefficients of an AHS subtree with a leaf set J ⊂ N do not carry any signal energy, i.e.
∀j ∈ J , ~ψT

j ~x = 0, then the measurement at the root of this subtree gives y = ~φT~x = (
∑

j∈J
~ψj)

T~x = 0. Even if
the transform coefficients are contaminated with small amplitude noise, the magnitude of the measurement value,
|y|, is relatively small. Please note that the converse is not necessarily true, meaning that a small measurement
value does not necessarily imply exclusively unrelevant transform coefficients. In unfavorable cases, the negative
and positive terms of the sum may cancel each other out or yield a low absolute measurement below the threshold,
although relevant coefficients are present. Such a case would result in the wrong decision to omit a subtree and
hence in a loss of information.

The threshold is slightly adapted depending on the position of the current node in the AHS tree. A multi-
plication of the canonical threshold τ0 by

√
L attempts to capture the signal energy relative to the number of

leaves, i.e. relative to the number of coefficients in consideration.

2.2 Signal reconstruction

When the traversion of the AHS tree is completed, each visited leaf i has provided one transform coefficient
ai of the signal, i.e. one entry of the true coefficient vector ~a = ΨT~x. In order to reconstruct the signal ~x, an
approximate coefficient vector ~̂a ∈ RN is created, containing entries âi = ~ψT

i ~x for each visited leaf i and zero

for each unvisited leaf. Then, the signal approximation ~̂x is merely obtained by the basis transform ~̂x = Ψ~̂a.
Note that, in contrast to CS, solving an inverse optimization problem is unnecessary. If ~x is K-sparse in Ψ, it
can be perfectly reconstructed, if every leaf that corresponds to a non-zero coefficient is visited. If some small
coefficients are missed, one obtains an approximate reconstruction.

2.3 Sensing performance

The sensing performance is considered to be high, if merely few measurements are performed and the approxi-
mation error is low. How many sensing actions AHS eventually conducts depends on several conditions.

If the signal is not strictly sparse (e.g. if noise is present) the applied threshold is crucial. A rather low
threshold tends to increase the total number of sensing actions. It leads to higher sensitivity because subtrees

∗The AHS pseudocode contains minor corrections of the original version, i.e. the indexing of the subtree representation
as well as the order of the two conditional statements.



are traversed whose leaves do not significantly contribute to the signal energy. A rather high threshold, on the
other hand, tends to decrease the number of sensing actions. It is more likely to lead to wrong decisions by which
subtrees are omitted whose leaves would provide relevant non-zero coefficients and hence the approximation error
would increase. In the ultimate worst case, e.g. the signal is not sparse or the threshold is all too small, each
node of the AHS tree is visited and consequently 2N − 1 measurements would be performed.

For K-sparse signals, the canonical threshold τ0 = 0 can be applied. Under mild conditions, e.g. if the
non-zero coefficients stem from a probability density function, the signal will (almost surely) be perfectly sensed
by AHS, and we can easily determine upper and lower bounds on the number of measurements. For K = 1, AHS
needs 2 log2N + 1 measurements in order to track down the only non-zero leaf. For K > 1 we have two limiting
cases which yield the lower bound and the upper bound respectively.

The lowest number of AHS measurements arises, if all K non-zero leaves are maximally clustered within one
subtree. Such a subtree has at least K leaves, and within this subtree, at least 2K − 1 nodes need to be visited.
In addition we have to visit the nodes on the way from the root of the AHS tree to the root of the subtree. Note
that the latter need to be counted twice, because one additional measurement per node is required in order to
decide to omit all other subtrees. Hence, the lower bound on the required number of measurements for perfectly
sensing a K-sparse signal is 2 log2(N/K) + 2K − 1.

The highest number of measurements is necessary, if the K non-zero leaves are uniformly distributed. This
leads to K disjoint subtrees of equal size, each carrying one non-zero leaf. The number of leaves of each of
these K subtrees is at most N/K. Consequently, the number of measurements within each subtree is at most
2 log2(N/K) + 1. Starting from the root of the AHS tree, K − 1 measurements are required to reach the roots
of these subtrees. Hence, the upper bound on the number of measurements is 2K log2(N/K) + 2K − 1.

3. RESULTS

3.1 Results on full-size images

We applied AHS to three uncompressed gray scale images of size 512×512 pixels with a gray level depth of 8 bit
(Lena, Cameraman, Pirate). We chose non-standard 2D Haar wavelets as sparse coding basis Ψ. The images
were normalized to unit energy before sensing and were inversly scaled after reconstruction. In order to evaluate
the approximation performance as a function of the number of performed measurements, we applied for each
image 200 different canonical thresholds ranging from τ0 = 5 · 10−6 to τ0 = 10−4.

For comparison, the same images are also sensed with conventional compressed sensing (CS). In order to
evaluate approximation performances for various numbers of measurements, multiple measurement matrices Φ
were generated by row-wise selecting basis vectors from the (real valued) noiselet basis uniformly at random. The
measurement ratios m = M

N were increased from 0.1 to 0.9 in steps of 0.1. As for AHS, non-standard 2D Haar
wavelets were used as sparse coding basis Ψ for the reconstructions. Both ensembles are mutually incoherent11

and this significantly reduces the required number of measurements. The CS reconstructions were obtained by
solving the following `1-optimization problem:

~x∗ = arg min
~̂x∈RN

‖ΨT ~̂x‖1 , s.t. ‖Φ~̂x− ~y‖2 ≤ ε . (1)

In order to solve (1), we used the log-barrier algorithm l1qc logbarrier.m from the L1-MAGIC package.12 For
the reconstructions, we set ε = 10−4‖~y‖2.

In Figure 2, the approximation performances of the reconstructed images are plotted in terms of peak signal-
to-noise ratio (PSNR) against measurement ratio m. With the image Lena, the approximation performance with
AHS is around 2 dB better than with conventional CS if m ≤ 0.8. For higher measurement ratios, i.e. m ≥ 0.9,
CS reconstructs the image Lena slightly better than AHS. With the image Cameraman, we also obtain superior
sensing performance with AHS for measurement ratios m < 0.65. For 0.65 ≤ m ≤ 0.8 both sensing aprroaches
perform approximately equally well. For higher values of m, CS reconstructs the Cameraman image better than
AHS. With the image Pirate, the approximation performance with AHS is around 1 dB better than with CS,
for measurement ratios m ≤ 0.4. For the investigated thresholds, no AHS reconstructions were available for
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Figure 2: Sensing performance from a simulation with uncompressed images (Lena, Cameraman, Pirate) of size
512×512 pixels. AHS is compared to a conventional compressed sensing approach (CS). The peak signal-to-noise
ratio (PSNR) is plotted against the measurement ratio.



(a) Original image (b) AHS reconstruction (29.79 dB) (c) CS reconstruction (28.98 dB)

Figure 3: Reconstructions of the test image Cameraman with a measurement ratio #measurements
#pixels = 0.6.

0.45 ≤ m ≤ 0.75. For measurement ratios larger than 0.8, CS has better approximation performance than AHS.
Note that performance at high values of m is not really relevant.

Figure 3 depicts the original Cameraman image and exemplarily its reconstructions with AHS and CS at the
measurement ratio m = 0.6. Note that the overall image quality is slightly better with AHS than with CS. On
the other hand, edges and contours as well as facial details seem to be more accurate for the CS reconstruction
at the cost of coarser block artifacts in the background. Block artifacts, however, appear in reconstructions of
both methods, due to discontinuity properties of the Haar basis. These artifacts increase as m decreases. In
order to reduce artifacts and to improve AHS performance, other orthogonal sparse coding bases might be more
suitable.

3.2 Results on natural image patches

We investigated the impact of (i) the choice of Ψ, and (ii) the arrangement of leaf nodes within the AHS tree
regarding uncompressed natural image patches of size 16×16 pixels. We extracted the image patches randomly
from set one of the Nature Scene Collection,13 i.e. from images of nature scenes containing no man made objects
or people. In our analysis, we compared the 2D Discrete Cosine Transform (DCT) basis, non-standard 2D Haar
wavelets, and a basis learned by Orthogonal Sparse Coding (OSC)7,8 from training data. In the first scenario, we
randomly assigned the basis vectors to the leaves of the AHS tree. In the second scenario, an ordered assignment
was done as follows. We merged all basis vectors into disjoint sets of size two such that the correlation of the
squared coefficients within the sets is maximal with respect to a training data set. This procedure is iteratively
continued by merging these sets into disjoint sets of size four, eight, etc.. This scheme provides a natural
composition rule for the AHS tree, such that commonly active coefficients share a common subtree more likely.

In Figure 4, the average AHS performance of a test set (6 · 103 samples) is plotted against the measurement
ratio m. Each marker corresponds to the mean of the scatter plot derived with the test data set for a particular
canonical threshold. The findings indicate, that the Haar wavelet basis is not the optimal choice to sense
natural images by AHS. The 2D DCT basis and the OSC basis yield equally good sensing performances, both
significantly superior to the 2D Haar basis. Furthermore, the comparison of Figure 4a and Figure 4b demonstrates
that sensing performance increases if the leaf nodes of the AHS tree are properly arranged. Figure 5 illustrates
the measurement vectors, i.e. the filters, of a structured AHS subtree based on the OSC basis.

4. DISCUSSION

We introduced Adaptive Hierarchical Sensing (AHS), a novel sensing algorithm that measures the relevant
transform coefficients of a sparse signal by performing fewer measurements than the number of signal dimensions
depending on the degree of sparseness. AHS performs O(K logN/K) sensing actions for K-sparse signals. We
simulated the sensing of natural visual scenes with AHS and a conventional compressed sensing approach (CS).
With AHS, we obtained sensing performances that can compete with those of CS. With AHS, higher PSNR values
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(a) Unstructured AHS tree: leaves randomly arranged. The
dashed curve gives a naive baseline obtained by random DCT
measurements and direct reconstruction.
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Figure 4: Average AHS performance for different bases from a simulation with uncompressed natural image
patches of size 16×16 pixels. The peak signal-to-noise ratio (PSNR) is plotted against the measurement ratio.

Figure 5: Measurement vectors (filters) of an AHS subtree. The leaves correspond to a subset of a sparse coding
basis Ψ that was learned with OSC on natural image patches. For display purposes, the measurement vectors
are scaled.



are obtained, especially for the more relevant cases of fewer measurements. Furthermore, we demonstrated on
natural image patches that AHS performance can be improved if an appropriate sparse coding basis Ψ is chosen
and the AHS tree is properly arranged. AHS performs deterministic measurements in an adaptive fashion. New
sensing actions depend on previous measurements. Signals, measured with AHS, can be easily reconstructed and
do not require to solve inverse optimization problems.

Our hierarchical and adaptive sensing procedure is related to known phenomena in human vision. With AHS,
measurements at the higher layers of the AHS tree are used to gather rough information about the scene. This
corresponds to a ’gist’ of a scene, since these coarse measurements give rise to actions which lead to more refine
sampling, i.e., further samples are acquired in some of the branches and leaves, and an increasingly more detailed
representation of the scene is thus obtained. A further analogy to human vision is due to eye movements: the
periphery provides a coarse, but not simply blurred,14 view of the scene, based on which further more detailed
measurements are made in the fovea.

Several improvements and extensions of AHS are possible. Currently, the decision making is based on
relatively simple comparisons of the measurement values with a threshold. We intend to improve the decision
strategy by employing more sophisticated rules, for instance Bayesian reasoning. In general, for making a decision
at a particular node, it might be helpful to additionally involve the values measured at the ancestor nodes.
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