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Abstract:

We apply an extension of Kohonen’s algorithm for the formation of topologically
correct feature maps to the task of learning movements of a three-link robot arm.
We find an increased robustness of the learning algorithm and an adaptive, demand
driven representation of the input-output relationship as significant benefits of the
topology conserving map. We suggest one-dimensional topology conserving maps as
an interesting approach to trajectory formation for robots.

1.Introduction

One of the most prominent features of the brain is its organization into a col-
lection of two-dimensional “modules” in which neighboring neurons contribute to
similar tasks. These modules often represent “topology-conserving maps” in which
neurons are dedicated to input data in such a fashion that the most essential inter-
relationships of the data are captured in the two-dimensional spatial arrangement
of the corresponding neurons (for a review, see e.g. [5]). Examples are the auditive
maps of sound location in the hippocampus ([3]), the motor map of eye-movements
in the superior colliculus ([17]) or the crescent-shaped arrangement of motor-neuron-
pools in the motor cortex innervating arm muscles ([11]).

In view of the ubiquity of these maps, a better understanding of their significance
is highly desirable, not only for a better understanding of biological nervous systems
but for the construction of artificial neural networks too.

A possible functional role of such maps would be to provide a matching of a two-
dimensional storage and processing medium to its input and output data in such a
way, that the most important communication and processing requirements can be
satisfied by local interactions, spanning small distances only. In addition, there are
cases where the maps are found to be capable of gradually changing the allocation
of their neurons, committing neurons to more frequent stimuli at the expense of the
representation of less frequent ones ([4]).

In the following, we want to present some simulation results, demonstrating
the benefits of these possibilies for the solution of motor control tasks. This is a



continuation of our previous work ([12]-[16]), which is based on a model by Kohonen
capable of establishing topology-conserving maps from a random sequence of sensory
inputs ([6-8]). We give an extension of Kohonen'’s original algorithm which is capable
of generating a mapping between an input and an output space and which can be
applied to motor control tasks.

The resulting algorithm is applied to several tasks from robot control. In the
first task, a topographic map learns the kinematics for the visuo-motor coordination
of a three-link robot arm from two camera images of its end effector position. A
similar approach to this problem has been taken by Kuperstein ([9],[10]). In his
approach, however, the topographic organization of the maps is given beforehand
and is fixed, whereas in our approach it evolves during learning. In the second
task, a topographic map is used to learn the unknown dynamics of the robot arm
required to execute rapid “ballistic” movements, where inertial effects and couplings
between different joints become significant. The third task, hole drilling, gives some
suggestion how one-dimensional topographic maps may be useful for the formation
of robot trajectories. ‘

2. The mapping algorithm

The algorithm to be described will be useful for motor tasks, which can be for-
mulated as a continous mapping of some task specification x into a specification y
of suitable motor output. We assume that both data can be represented mathemat-
ically as vectors x € X and y € Y of fixed dimensionality from suitable spaces X
and Y. The mapping shall be represented by an array of formal neurons, arranged
as a lattice and implementing an adaptive and topographically organized look-up
table. The neurons are labelled by their lattice positions r. Two vectors, wi® € X
and w2 € Y are associated with each neuron. The network responds to each input
x € X by selecting the neuron s(x), for which

Wiy = || = min [fwi® - x| M

and provides as output
8(x) = wlk). | (2)
We are interested in the case when there is no a-priori information about the correct

input-output relationship y(x), i.e. when suitable values of the vectors (wi®, w2u)

are not known initially. In this case we want each movement to give rise to a learning
step improving the values of the vectors wf.",»wgut towards a better representation
of the correct input-output relationship. In addition, we require the adjustments to
be such, that neighboring neurons learn similar vector pairs (wi, w%), i.e. that



inputs and outputs get mapped in a topology preserving fashion onto the lattice.
This requirement allows spatially neighboring neurons to assist each other, because
they have to learn similar data. We shall see subsequently that this can significantly
speed up learning and increase the robustness of the algorithm to poor initial values
of the wy. A suitable adjustment rule for the input values is given by

w;n,(new) _ W;‘n,(old)

+€- hrs . (x - Winy(o{d)). (3)

Here € > 0 scales the size of the learning step and hrs is an unimodal function of
the distance ||r — s|| between neurons r and s which is peaked at zero argument. A
convenient choice is a Gaussian

hes = exp(~||r — s||?/252). (4)

Eq.(3) can be interpreted in terms of Hebb-like synaptic modifications with active
memory loss term and has been suggested by Kohonen for the formation of topol-
ogy conserving feature maps of sensory signals ([6]-[8]). However, to extend this
procedure to the output values w@* we need to provide a suitable signal taking a
role analogous to the sensory input x for the input map. To this end, we use a
linear error correction rule of Widrow-Hoff type ([18]), which derives an improved
estimate y* of what the correct output should have been by comparing the actual
outcome x!™¥€ of the movement with the desired task specification x. Postponing
the description of the error correction rule to the simulations, we then take for the
. output values the analogous adjustment rule

w:ut,(new) - wgut,(old) +e. h;s (y* - w:ut,(old))' (5)

Agiain, ¢ scales the learning step size and hlg is defined similarly to s before.

The maps are formed during a learning phase, consisting of a sufficiently long
sequence of randomly chosen movements. During the learning phase the widths o,
o' of h, I’ and the learning step sizes ¢, € are slowly reduced. A convenient choice

for each of these parameters is

p(t) = p; - (pg/p;)!/tmos, (6)

where ¢ and ¢mqz are the current and maximal number of learning steps, and p;,
ps denote initial and final values of the respective parameter. By this procedure,
the system can rapidly learn the gross mapping during the early stages of learning,
and include increasingly finer details towards the end (a detailed investigation of



Fig.1 The simulated sys-
tem. Two cameras observe
the robot arm behind the
table. Each camera has a
quadratic image plane and
maps a specified location
from the scene to a pair of
coordinates X; (i = 1,2).
The four-component vec-
tor x = (Z1,43) is fed as
input to the array of neu-
rons. The output of the
array is determined by the
neuron s whose vector wi®
matches the “sensory in-
put” x best.

the significance of the range of hrs and the learning step size is given in Ref.[14]).
It simultaneously forms two topographic maps, one between the sampled subset of
input values from X and the lattice, and one between the lattice and the required
subset of output values from Y. Both maps are matched in such a way as to provide
an approximation ¢(x) of the desired correct input-output relationship y(x).

3. Simulation results

In this section we will report results from the application of the previous mapping
algorithm to the control of a three-link robot arm mounted behind a table (Fig.1).

In the first simulation, the task is to learn to point to given target locations
on the table. Here the task specification x is the desired target location. However,
instead of providing cartesian coordinates, we use a pair of cameras (as shown in
Fig.1) and provide the two coordinate pairs Xy = (z11,219), X3 = (291, 292) of the
target location in the two camera images, i.e. we take the four-component vector
x = (X1,X9) as input. The desired output of the network is a triple of joint angles
g = (61,09,03) for which the end effector of the arm coincides with the target
location. No prior information about the geometry of the arm (apart from having
three joint angles), the placement of the cameras and their imaging characteristics
is provided to the network.

Following section 2, we associate with each neuron a four-component vector w",
whose components specify two image points, one in each camera image. To improve
the accuracy of the representation, we use each output. vector w2 not only to



Fig.2a-c Error of end effector positions as seen
from camera 1. For each of the 12 x 21 tar-
get positions associated with wi® the resulting
end effector location is indicated by a cross

of the system. (b) After 4000 trial movement
only small errors remain. Furthermore, tar-
get positions outside the table surface, being
never required during training, are no longer
represented by neurons. {c) After 20000 it-
erations, no visible deviations between target
and achieved end effector locations remain.
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represent three joint angles 0y, but also a 3 x 4 Jacobian Ay. Hence w2 is the pair

(Gr, Ar), arranged as a 15-dimensional vector. The Jacobian Ay shall transform the
residual deviation x — W;’(‘x) between the sensory input x and the best matching

vector wé'(‘x) of the input map into a linear correction of the output angles é‘s(x)

associated to wi"x . Therefore, the response of the network to a sensory input x
from the cameras will be given by

- P

= Os(x) + As(x) (x - Wg(zx)) (7

To derive from each trial movement improved estimates * and A* for joint angles



and Jacobian, each movement is separated into two phases: (i) A “gross movement
phase”, where the contribution of the Jacobian is neglected and the joint angles
are set to é‘s(x). The corresponding pair of locations of the end effector in the two
camera images is denoted by the four component vector xy. (ii) A “fine movement
phase”, correcting the joint angles to their final values given by (7). The resulting
image locations of the end effector are denoted by xz. Then

0* = 05 + As(x — xF), (8)
A* = Ag + Ag(x — ws — xp + x7)(xp — x7) T ||xp — x7]| 72 (9)

-

can be shown to provide an improved estimate y* = (6*, A*) for the adaptation
step (5) of the output map ([16]).

The results of a simulation with a lattice of 12 x 21 neurons are shown in
Figs.2a-c. Any error in the input-output relationship represented by the network
manifests itself in a mismatch between the desired target location and the end effec-
tor position achieved by the network. Fig.2a shows these mismatches from the view
of camera 1 for the initial network, which was initialized with random numbers. The
resulting mismatches are shown for the subset of target locations which belong to
the discretization points w{'." of the neurons. Each mismatch is depicted as a line
segment joining the desired target location with the actually achieved end effector
location (cross mark). The fairly long line segments indicate a very unsatisfactory
initial performance of the network. However, after 4000 movements to randomly
chosen target points on the table, only small mismatches remain (Fig.2b). In ad-
dition, the discretization points chosen by the network have retracted to the table
surface exclusively, i.e. only the region to which movements are actually requested
is represented. Finally (20000 movements, Fig.2c) target positions and end effector
positions agree to within the resolution of the diagrams. For a real system of mean
size of 1m the positioning error now would have fallen below a value of 1mm.

In the previous simulation, the topology conserving map has learnt to associate
arm postures to visually designated target locations. This is a valid approach to
movement control as long as inertial effects, i.e. the dynamics of the movement, can
be neglected. Such effects, however, come into play for rapid movements and lead
to couplings between different joints (see e.g. [1]). The next simulation addresses
this problem for the case of so-called “ballistic” movements, which are initiated
by a brief torque pulse and proceed freely thereafter. The task to be learnt by
the network is to specify a torque pulse d(t) = (di(t), da(t), d3(t)) (d; =torque for
joint ¢) which accelerates the end effector to a desired velocity v. Taking d(¢) to be
a delta-function in time,

d(t) =7 6(¢), (10)



we need to specify its “vectorial amplitude” ¥ = (71,79, 73), which will depend on
v and on the current arm configuration d. Therefore, a straightforward approach
would be to take the 6-component vector (v, 5) as input x, and 7 to be the desired
output of the network. However, as a general feature of Newton’s equations of
motion, there is a linear relationship

-

7=A(6)v (11)

between 7 and the desired velocity v, involving a configuration dependent matrix
A(6). This admits the following much more convenient representation. Input is
x = 0 and output is A(é‘), from which 7 can be easily obtained via (11). Hence,
each vector wi® specifies three joint angles, and each vector w2¥ contains nine
elements specifying a 3 x 3 matrix Ay. Whenever neuron s(x) was selected for a
movement, an improved estimate A* of As(x) is given by

— (7= AgV)¥ Y. (12)

Here 7 = Asv is the torque used to accelerate the end effector to the desired velocity
v, and V is the velocity actually obtained.

Figs.3a-c show the results of a simulation with 360 neurons, arranged as a
15 x 24-lattice, controlling the (simulated) robot arm of Fig.l. As mass distribu-
tion we took three point masses of equal magnitude, located at the end effector and
the two outer joints of the arm (this gives stronger inertial couplings than for the
case of a more uniform mass distribution). The initial values wi® were chosen to
correspond to random locations of the end effector in the table surface, and for the
outputs w2¥ we chose the correct matrices plus a random error of 25% (relative
to the euclidean norm ||w2%||) per matrix element. As a direct visualization of
the 9-dimensional output map is not possible, we show instead the reaction of the
end effector to test movements. Each figure is a perpendicular view of the table
surface and the arrows indicate the velocities of the end effector obtained from 360
pairs of test movements, each pair originating from one of the end effector locations
associated with the vectors wi®. Each test movement required to accelerate the end
effector from rest to unit velocity, directed parallel to one of the table edges. Fig.3a
shows the poor outcome of the initial test movements, resulting from the random
initialization of the system. After 1000 trial movements (acceleration of end effector
to randomly directed unit velocity from randomly chosen location of table surface)
the performance is already much better (Fig.3b), until after 10000 trial movements
the accuracy of the test movements is very good (Fig.3c).



Fig.3a-c Learning of ballistic movements. Each diagram shows the resulting velocities (indicated
by arrows) of the end effector to a set of test movements. For each of the end effector locations
associated with the 360 arm postures specified by w;® acceleration of the end effector from rest
to unit velocity along the two table edges was required. From left to right: (a) initial poor per-
formance, reflecting initialization with random numbers. (b) after 1000 trial movements reactions
begin to resemble task. (c) after 10 000 trials test movements are executed accurately.

For both simulations, participation of neighboring neurons in each adjustment
step, effected by the nonzero width of the Gaussians hrs and ALg, was found to
be an essential ingredient for good convergence. For the input map, this ensures
that neighboring neurons become “responsible” for similar task specifications x.
Consequently they have to learn similar outputs by the assumed continuity of the
input-output mapping. Hence participation of a whole subpopulation of neighboring
neurons in each adaptation step is a rudimentary form of generalization, speeding
up learning and made possible by the topographic organization. In addition, it
greatly increases robustness to poor initial values, as false adjustments from different
neurons with poor outputs tend to cancel, whereas the spatially slowly varying
- correct parts from different neurons accumulate. As an example, running the second
simulation from the same initial data, but restricting each neuron to adaptation
steps resulting from its own output only, yields (again after 10000 iterations) the
result shown in Fig.4. Only part of the neurons has managed to learn the correct
responses and the performance compares very poorly with Fig.3c. This behaviour
is shown in a more quantitative fashion in Fig.5, which shows the average velocity
error ||v — V|| versus the number of trial movements for three different initial widths
o} (in lattice units) of the Gaussian hlg (the final width was aff = 0.2 for all three

8



(o
i

PEERY,

,
;
o
:
A
ND
S

i
X

Fig.4 Resulting poor convergency in the ab-
sence of cooperation between the neurons.
Shown is the end result of a repetition of the
simulation of Fig.3. The only difference was
restriction of each adjustment step to the se-
lected neuron only (i.e. hig = &;s). As a
consequence, only very few neurons managed
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Fig.5 Influence of cooperation between neu-
rons on convergence. The diagram shows the
average velocity error of the achieved end ef-
fector velocity versus the number of move-
ment trials for three different initial values of
o;. For weak cooperation (i.e. small values
of ¢;) a significant residual error remains.

to learn the correct matrix Ay.

cases). For the two cases with small initial neighborhoods, the significant residual
error indicates that only a fraction of the neurons manages to achieve convergence
to correct output values. Only the simulation with o} = 2 shows good convergence.
A mathematical analysis of this behavior is possible (Ref.[13]) and shows, that the
inclusion of neighboring neurons in each learning step results in an effective increase
of the set of initial values from which convergence to the correct output matrices
occurs.

A further important problem in robot control is the formation of trajectories.
A trajectory can be considered as a one-dimensional topology-conserving map be-
tween a line and the phase space of the robot arm. Learning a good trajectory for
a repetitive task can therefore be formulated as formation of a topology-conserving
map. An immediate application is provided by the solution of the “Travelling Sales-
man Problem”, based on a topology conserving map as first suggested by Durbin
and Willshaw ([2]). In terms of a robotics application, this approach can be used
to yield close to optimal task space trajectories for the “hole drilling problem”: A
robot is required to repetitively drill a set of holes with fixed, prespecified positions



Fig.6 Gradual formation of trajectory for visiting a set of 200 randomly positioned holes on a
square workpiece. Initial trajectory is assumed circular (top left) and comes close only to a small
subset of all holes. Intermediate trajectories (after 5000 and 7000 adaptation steps) do increasingly
better. Final trajectory (after 10000 adaptation steps) visits all holes and has a close-to-optimal
length of 10.98

v

on a workpiece. A good trajectory will minimize the total distance travelled by the
arm to drill all holes. Such trajectory can be learnt by visiting the holes in random
order for some time and taking each visited hole position x as input to a set of
“neurons” arranged as a closed chain instead of a lattice. Each adaptation step is
performed according to (5) (vectors wg"® are not needed in this case) and the linear
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sequence of positions wi" as r passes around the chain specifies a discretized version

of the current trajectory learnt so far.

Fig.6 shows the development of a trajectory for a square workpiece with 200
randomly positioned holes. The final trajectory has a length of 10.98 (assuming a
unit square). Although it is not the global minimum (using an annealing method,
we found trajectories which are a few percent shorter), it is reasonably close to an
optimal path. Modifying (4) to optimize measures other than euclidean distance,
e.g. curvature or energy dissipation, is an interesting direction for further research.

4.Conclusion

Based on an algorithm of Kohonen for the self-organized formation of topologi-
cally correct feature maps, we have developed an extension of the original approach
which can be applied to motor learning tasks. Necessary prerequisite for the applica-
tion of the algorithm is a continuous relationship between input and output signals.
Random movement trials are used to gradually build two topology-conserving maps
on the same neural sheet simultaneously. One map provides an image of the sensory
inputs specifying the desired movements. The other map is a representation of the
required motor outputs. Both maps are matched such that each input signal gets
associated to the correct motor output. We present results from two simulations of
the algorithm for the control of a three-link robot arm. In the first simulation, the
task is to learn the arm postures associated with visually designated target locations
for the end effector. The second task requires learning suitable arm torque pulses for
accelerating the end effector to a specified velocity. The topographic organization of
the input-output map for both applications allows generalization between spatially
neighboring neurons. In particular, neighboring neurons can participate in their
learning steps, which greatly improves speed and robustness of convergence to the
correct input-output mapping. As a further promising field for algorithms based on
topographic maps, we suggest the problem of trajectory formation for robots. Find-
ing a trajectory can be viewed as the formation of a one-dimensional topographic
map. As an illustrative problem, which is feasible with the present algorithm, we
present the hole drilling problem.
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