Neural Networks, Vol. 2, pp. 159-168, 1989
Printed in the USA. Al rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/89 $3.00 + .00
Copyright © 1989 Pergamon Press plc

Topology-Conserving Maps for Learning
Visuo-Motor-Coordination

HELGE J. RITTER, THOMAS M. MARTINETZ AND KLAUS J. SCHULTEN

Technical University of Munich

(Received 16 September 1988; revised and accepted 18 October 1988)

Abstract—We investigate the application of an extension of Kohonen’s self-organizing mapping algorithm to
the learning of visuo-motor-coordination of a simulated robot arm. We show that both arm kinematics and arm
dynamics can be learned, if a suitable representation for the map output is used. Due to the topology-conserving
property of the map spatially neighboring neurons can learn cooperatively, which greatly improves the robustness

and the convergence properties of the algorithm.

Keywords—Visuo-motor-coordination, Topology-conserving maps, Learning, Motor control, Robotics.

1. INTRODUCTION

Control of their limbs is one of the oldest tasks bi-
ological organisms had to solve in order to survive
successfully. Therefore we have good reason to as-
sume that much will be gained by elucidating the
principles of biological motor control systems, which
outperform todays robot control algorithms still by
far.

A major one of the few generally recognized or-
ganizational principles in the brain is its organization
into a collection of two-dimensional ‘“modules” in
which neighboring neurons contribute to similar
tasks. These modules often represent ““topology-con-
serving maps”’ in which neurons are dedicated to
input data in such a fashion that the most essential
interrelationships of the data are captured in the two-
dimensional spatial arrangement of the correspond-
ing neurons (Knudsen, du Lac, & Esterly, 1987).
Examples are the auditive maps of sound location in
the hippocampus, the motor map of eye-movements
in the superior colliculus (Lee, Rohrer, & Sparks,
1988; Robinson, 1972), or the crescent-shaped ar-
rangement of motor-neuron-pools in the motor
cortex innervating arm muscles (Murphy, Kwan,
MacKay, & Wong, 1977).

It seems that the functional role of such maps

This work has been supported by the German Ministry of
Science (BMFT) under contract ITR-8800-G9.

Requests for reprints should be sent to Helge J. Ritter, De-
partment of Physics, Technical University of Munich, D-8046
Garching, Federal Republic of Germany.

159

consists in providing an organization of a two-di-
mensional storage and processing medium such that
the most important communication and processing
requirements can be satisfied by local interactions,
spanning small distances only.

In the past, study of such maps, both experimen-
tally and theoretically, has mostly centered on the
side of sensory perception (Harris, 1986; Kaas, Nel-
son, Sur, Lin, & Merzenich, 1979). Only recently,
these maps have also been recognized as important
for the generation of output for motor control
(Sparks & Nelson, 1987) and theoretical approaches
using topology conserving maps for robot control
have been proposed (Grossberg & Kuperstein 1986,
Kuperstein 1987, 1988; Ritter & Schulten 1986, 1987,
1988b). In this paper, we want to pursue this ap-
proach further and demonstrate the control of move-
ments of a simulated three-link robot arm.

Our approach is based on an extension of Ko-
honen’s self-organizing mapping algorithm (Koho-
nen, 1982a, 1982b, 1982c¢; Ritter & Schulten, 1988a)
suggested earlier by two of the authors (Ritter &
Schuiten, 1986, 1987), which is capable of learning
a mapping between a (sensory) input space and a
(motor) output space by establishing a topology-con-
serving map on a (usually) planar array of neuronal
units. The map is learned from a sequence of random
movements of the arm, which are observed by a cam-
era and used to gradually improve the map. The
topology-conserving map allows neighboring units to
cooperate during learning, which greatly contributes
the efficiency and robustness of the algorithm. We
investigated two different situations with this ap-
proach.

160

The first situation is a simulation of a robot arm
controlled by a neural network, which receives its
input from a pair of cameras observing the arm. The

task consists of learning to position the end effector

of the arm at a specified target location on a table,
that is, to learn the kinematic visuo-motor-coordi-
nation between camera output and desired end
effector location. An essential aspect is the
“closedness” of the whole system, observing its own
reactions and learning from them. As a consequence,
the whole “interfacing” to the outside world (output
signals to joint motors and input signals from cam-
eras) can be left to the adaptive capabilities of the
internal map.

The second situation also includes the dynamics
of the robot arm. For heavy limbs and fast move-
ments, independent feedback control of the individ-
ual joints becomes inaccurate due to inertial effects
and feedforward control with precomputed joint
torques is a much superior approach (Brady, Hol-
lerbach, Johnson, Lozano-Perez, & Mason, 1984).
However, these torques depend in a very complex
way on the full dynamic and kinematic characteristics
of the arm. Learning this relationship, together with
the arm characteristics, is the focus of the second
simulation. We consider the case of so-called “bal-
listic” movements, which are controlled by brief
“torque pulses and proceed freely in the intervals be-
tween the pulses. During a sequence of trial move-
ments the system learns to accelerate the end effector
from given postures to prespecified velocities without
any prior knowledge about arm kinematics and dy-
namics. '

Together, these simulations address two impor-
tant issues of robot control: adaptive learning of arm
kinematics and of arm dynamics. Although we rec-
ognize that there is still a significant way towards a
level of practical applicability, the results so far ob-
tained appear very promising to contribute to build-
ing a flexible, self-organizing neural controller for
robot arm movements in the future.

2. THE MAPPING ALGORITHM

In this Section we will describe the learning algorithm
used for the two simulations.

For both simulations, a control task must be
solved. Sensory input (a visually designated end ef-
fector location in the first case, an arm configuratfbn
together with a desired velocity in the second case),
specifying the desired state of the arm, must be
mapped into suitable motor output signals. Our only
assumption for this mapping will be (a) suitable and
fixed dimensionalities of the input and output signals
and (b) a continuous relation between both. Then
input and output can be represented by vectors x €
X and y € Y respectively. The system must learn an
initially unknown control law y = y(x) for the so-

H. J. Ritter, T. M. Martinetz, and K. J. Schulten

lution of the control task. The control law will be
adaptively represented by a “winner-take-all”’-net-
work of formal neurons, receiving the sensory input
x in parallel. Each neuron r is “responsible” for some
small subset (its “receptive field”) F, of the input
space X. Whenever x € F,, neuron r determines the
output. In the nervous system, the output will be
specified by the average behavior of a localized sub-
population comprising many simultaneously active
neurons with overlapping receptive fields (Georgo-
poulos, Schwartz, & Kettner, 1986). Their average
behavior is summarized by a single formal neuron in
our model and the subsets F, are non-overlapping.
To specify for each neuron r the subset F, and the
required output, two vectors, w, € X and u, € Y are
associated with each neuron. u, specifies the output
if neuron r “wins”’, that is, for x € F,, and F, consists
of all points of X, which are closer to w, than to any
other w,, s # r, that is,

F, = {x € X|lw, — x| = |w, — xl¥s}. (1)
The mapping ® represented by the network is
PxEX—y=yyEY,)]

where s(x) is defined by the condition x € Fy). In-
itially, the vectors w, and u, are assigned randomly,
and the task of the learning phase is to gradually
adjust them in such a way, that ® approximates the
required control law y(x) as accurately as possible.
This is achieved in the following way. For each sen-
sory input X, specifying a desired movement, the out-
put uyy, of the network is used to effect an actual
movement which during learning will be subject to
some error. Using an error-correction rule of Wid-
row-Hoff-type (Widrow & Hoff, 1960), this error is
used to obtain an improved estimate u* of what the
correct output should have been (the details differ
for the two simulations and are given in the subse-
quent sections). Then for all neurons the following
adaptation step is made

W = Wi 4 eh(x — W), ()
wey = ud + e’ (u* — ud). O]

Here s = s(x), the neuron selected by input x, €
and €’ scale the overall size and h,, and Ak, determine
the spatial variation of the adaptation steps.

If hy, = h), = 3, the systém is equivalent to a
perceptron. However, an essential ingredient here is
a topological arrangement of the neurons. Each neu-
ron r is considered as occupying a position r (chosen
from a discrete square lattice for computational con-
venience) in a two-dimensional sheet!, and the coef-

! The two-dimensionality is suggested from the situation in the
cortex, where the neurons are essentially arranged in a sheet-like
fashion. For technical applications, however, more elaborate to-
pologies may offer advantages.

Learning Visuo-Motor-Coordination

ficients A, h) are taken to be unimodal functions of
Gaussian shape, depending on the. distance [r — ||
and with a maximum at r = s (to remove the am-
biguity in the scaling of € and €', we require the
normalization kg = hg = 1). Hence, neighboring
neurons in the sheet share adaptation steps with the
same input and get tuned to similar inputs x. Ko-
honen was the first to recognize this property for the
formation of abstract sensory maps onto two-dimen-
sional sheets analogous to the sensory maps found
in the brain (Kohonen, 1982a, 1982b, 1982c). Our
algorithm extends his method by associating with
each formal neuron a second piece of data, the out-
put quantity u, (Ritter & Schulten, 1986, 1987).
Hence in this case, there are two topology conserving
maps, a map between the input space X and the
neuron sheet, and a map between the output space
Y and the sheet. Both maps develop simultaneously
and therefore get matched in such a way as to ap-
proximate the desired input—output-relationship
y(x). The resulting representation is an adaptive dis-
cretization, which adjusts its resolution dynamically
to the probability density of the required control ac-
tions (x, y(x)) € X ® Y by allocating a higher pro-
portion of neurons to regions of X @ Y for which
this probability density is high, that is, for which
control actions are needed especially frequently. In
particular, neurons are only allocated to those re-
gions of X ® Y actually required for representing
the control law y(x). This results in a very economical
use of the available storage elements. As a second
important benefit, we have found that the cooper-
ation (4) in the learning steps greatly improves the

161

convergency for the output map (Ritter' & Schulten,
1987). Often, the learning rule yielding the improved .
estimate u* has only a limited radius of convergency.

If the initial starting guess w, is outside of this con- -

vergency zone, having the neurons learn their out-
puts in isolation (i.e.'}\h,’, = d,,) will be unsuccessful.
However, if the range of h/, is nonzero, each neuron
participates in learning steps resulting from the ac-
tions of a whole subset of neighboring neurons, each
trying to learn a similar output due to the topology-
conserving map. Hence, false adjustments from neu-
rons with bad starting values will tend to cancel, and
the contributions from correct adjustments, which
are similar for neighboring neurons, will be favored.
This contributes significantly to the robustness of the
method against poor starting values.

3. LEARNING ROBOT ARM KINEMATICS

In this Section we will present a demonstration of the
above algorithm for the learning of the kinematics
part of the visuo-motor-coordination of a simulated
robot arm.

The robot arm is shown in Figure 1. It consists of
three links and is mounted behind a table. Two cam-
eras provide two pairs ¥; = (x;, X;5), i = 1, 2 of
“retinal coordinates” for any chosen target point in
the scene. These are grouped into the four-compo-
nent vector x = (¥,, X,), which is fed as sensory input
to a rectangular array of 12 X 21 neuronal units.
The desired output of the array is the triple of joint
angles positioning the end effector of the arm at the
target location specified by x.

FIGURE 1. The simulated system. Two cameras observe the robot arm to the right of the table. Each camera has a quadratic
“retina” and maps a specified location from the scene to a pair of retinal coordinates %,(/ = 1, 2). The pair x = (%,, %,) Is fed
as Input to the array of neurons. The output of the array is determined by the neuron s whose vector w, matches the sensory

input x best.

162

The vectors w, associated with the neurons are
chosen as pairs w, = (W, W;,) of two component
vectors w,,, Wy. W,; is a two-dimensional location on
the “retina” of camera i, i = 1, 2. Therefore each
neuron is “binocular” and “looks” essentially at two
small spots centered at w,; and W,, on the two camera
“retinas.”

To specify the output associated with neuron r,
we use a 15-component vector u,. Three components
are joint angles, grouped into a triple 6, = (6;, 6,,
0;). After learning, 6, shall represent the joint angles
for which the end effector is at the target location
specified by retinal coordinates w,.

To reduce the discretization error due to the lim-
ited number of neurons, we include the first term of
a Taylor expansion for each value pair (w,, 6,). The
remaining 12 components of w, specify the necessary
3 X 4-Jacobians A,. If x € F,, that is, neuron s is
selected, its output then is given by

6 = és + 'Y(t) : A,(X - ws)' (5)

Here y(t) € [0, 1] is a time-dependent prefactor
explained below.

In the absence of any further information, starting
values for w, and u, = (6,, A,) may be chosen ran-
domly. It is the task of the learning algorithm to
adjust these to their correct final values. Each learn-
ing step involves execution of a trial movement of
the end effector to some randomly designated target
location. The camera output x for this target location
selects a neuron s “looking” at x, that is, x € F,,
for determining this movement. From the actual
-outcome of the movement we derive an improved
estimate u* = (8*, A*) for u, and perform an
adjustment according to (3) and (4). To obtain 6*
and A*, the following strategy is used. First the array
generates motor output for a ‘“‘gross movement,”
which results from setting the joint angles to the
values 8, associated with the selected neuron. This
corresponds to an initial choice of y(0) = 0 and
brings the end effector to a location in the vicinity
of the desired target point. The retinal coordinates
of the end effector after this gross movement are
denoted by x;. The gross movement is followed by
a “fine movement” by increasing y(f) to its final
value of unity, that is, switching on the linear cor-
rection term in (5). Denoting the resulting retinal
coordinates of the end effector by xr, we take as
improved estimate 6*, A*

-

e*

I

és + As(x - Xp), (6)

A* = A + A(x — w, — xp + X))

X (xr = x)7lxr — x/72 (7)

The first equation can be recognized as a linear error
correction rule for the discretization values 6,. The

H. J. Ritter, T. M. Martinetz, and K. J. Schulten

motivation for the second equation is more obvious,
if it is written as

A* = A, + (A6 — AAX)AXT|AX]2, (8)

where Ax = x; — x; and A§ = A Ax are the
changes in the retinal coordinates of the end effector
and the joint angles during the fine movement phase.
As these are related by the matrix A™ to which A,
shall converge, (8) is seen to be equivalent to

A* = A, + (Afe — A)AXAXT|AX]|2, (9)

that is, a linear error correction rule for A,.

The splitting of the movement into a first “gross
movement” phase and a second “fine movement”
phase has a counterpart in human arm movements
(Keele, 1981). Although we do not claim that learn-
ing of such movements strictly adheres to the rules
suggested here, it is interesting to note that the for-
mulation of these rules was significantly simplified
by such division of the movement and separate ex-
traction of the “differential information” obtained
in the fine movement phase (i.e., A8, Ax).

In the following simulation we chose target lo-
cations from the table surface only. However, we
also have carried out simulations without this restric-
tion and with similar results, using an array with a
three-dimensional topology. The table size is 0.7 X
0.4 units and the robot arm segments, beginning at
the base, have lengths of 0.5, 0.4, and 0.4 units,
respectively. Function A, was taken to be the Gaus-
sian

h = exp(—Ir — sl?/20%(t)) (10)

and A/ likewise. Parameters €, €' and the widths o,
o’ all had the same time dependence p(t) = p,(p;/
p:)!== with ¢ as the number of the already performed
learning steps and ¢,,, = 20,000. The values were
chosen as follows: ¢, = 1, ¢, = 0.005,¢/ = 1,¢; =
0.5,0; = 3,0, = 02,0/ = 2,and oy = 0.05.

Figure 2 shows the results of the simulation from
the view of camera 1. Upper, center, and bottom
rows show the state of the network initially, after
4000 and after 20,000 learning steps, respectively.
Robot arm and table borders are indicated sche-
matically by lines.

The leftmost picture of each row represents the
part of the mapping r — w, relevant to camera 1.
Each node r of the lattice is mapped to a location
Wy, in the image plane of camera 1. Initially the vec-
tors w,; and W, were distributed randomly in the
image plane of their camera. This provided a ho-
mogenous distribution of the values w, over the four-
dimensional input space and the corresponding im-
age of the lattice is highly irregular (top diagram).
After only 4000 learning steps the initial distribution
has retracted to the relevant two-dimensional subset
corresponding to the table surface (center left). Fi-

Learning Visuo-Motor-Coordination 163

M " o
PR FAT pumsy s 4 ARE PR pog pE© R ARE
N N OA I Y SRR N e rer DL T
N et r
T1 PP N ~.“’:’"~‘A T ,.""’_rr“ e e s
Rpen B VLAV L ; - iaris PR
LI RS AR T “) r [rF r
' U ror e o
Maaspa s T LW il S
l el P o 4 \\\ r .o e e
ORI [G L P A A SR r
e lLrsd Mas o $EMAy rFe Iy FE R
LEAZ IR TH I e FRORe FREE T e@s

sferer VAUV EFF;FFF'F;W??’;FT‘? r

LU 1 MR R R R R A P PR . I w e o r
e N R R L R r FrrrrFr-rrr'rrrrrr r

- 0 A 0SBSOS BRI NA Lon o oo oo o g o o o ol o
f I I SOOI DR TR [0 o o oo o L
! AR XsE s aan R E s bR FelcrrrertrrE e e rErEre

) [l SOOI [y ol o o T s

-1 .. D I S R) -r r-,-'_’—r-r-l—,—[—r.’_'_'_r_r_‘_r_l_

1 PR I A A A PSR R R rr r-r-r-r-r’-r-‘—r'r-'_’_r_r'_r_rr

) ceLtiiiiiie s [o ol ko O N o ol ol o

ook el SO ol 0 L o ol ol i 0

FIGURE 2. Simulation results from the view of camera 1. Robot arm and table surface are indicated schematlically by lines.
Each leftmost picture shows the retinal locations w,, the neurons get tuned to. The pictures in the center show the end
effector locations x, (cross marks) resulting from the joint angles 6,, together with thelr deviation (appended line) from the
retinal locations Ww,, assoclated with 6,. Each rightmost picture visualizes the convergence of the matrices A, by showing the
reaction of the end effector to a “L”-shaped test movement. Upper row: initial state, values of w,, & and A, chosen randomly.
Middle row: after 4000 learning steps only small deviations are left and test movements are performed to good approximation.
Bottom row: final state after 20,000 learning steps. Deviations are no longer visible and test movements are traced out very
accurately.

nally (bottom left) a very regular distribution of the initial values of 8, were chosen randomly (with the
nodes has emerged, indicating a good representation only restriction that the resulting end effector posi-
of the workspace by the discretization points w,. tions should lie in the space in front of the robot)

The picture in the center of each row shows the and consequently the errors are very large for the
mismatches between target positions and end effec- initial state (topmost, center). However, after 4000
tor locations which occur for the subset of visual learning steps all errors have markedly decreased
inputs x = w,. Each target position is indicated by (center), until finally (20,000 steps, bottom) mis-
a cross mark and the associated positioning error of matches are no longer visible. :

the end effector by an appended line segment. The As the 12-dimensional Jacobians A; cannot easily

164

be visualized directly, we instead show for each lo-
cation x; the reaction of the end effector to two test
movements. Both movements are of equal length and
directed parallel to the borders of the table. If A, is
correct, the end effector will trace out a little “L’’-
shaped right angle in the table plane, testing A, along
two orthogonal space directions. The gradual con-
vergence of these two movements, as seen from cam-
era 1, are shown in the rightmost picture of each
row. The initial Jacobians were chosen by assigning
arandom value from the interval [— 100, 100] to each
element of A,. Therefore, the initial test movements
are very poor. However, after 4000 iterations the
movements are seen to be already much better, and
after 20,000 learning steps, the desired ‘“L”-shape is
traced out very accurately.

In Figure 3 we have plotted the average position-
ing error versus the number of learning steps. With
cooperation (¢’ = 2) between the neurons, the error
decreases very rapidly to a final value of 0.4 x 103
after 20,000 iterations. Without cooperation (i.e.,
o' = 0 and hence h; = 3,), the convergence is very
unsatisfactory and a significant residual error re-
mains.

4. LEARNING ROBOT ARM DYNAMICS

The previous simulation was restricted to learning
the unknown kinematics of the robot arm. In this
section, we want to extend the task to also include
learning of unknown arm dynamics. This will be
demonstrated for the case of ballistic movements dri-
ven by short torque pulses at the joints.

Instead of finding the joint angles for each target
location, we now ask for the joint torques necessary

1 I T
Average error

0.5

0.4

0.3

0.2

0.1

Learning steps
1 1

5000. 10000. 15000. 20000.

0.0

FIGURE 3. Average positioning error versus the number of
learning steps. With cooperation between the neurons (o =
2.0) the error decreases rapldly to a final value of 0.4 x 10-°
after 20,000 learning steps. If we switch off the cooperation
(o = 0.0), the decrease Is much slower and a significant
residual error remains even after 20,000 iterations.

H. J. Ritter, T. M. Martinetz, and K. J. Schulten

to accelerate the end effector from a given initial
position to a specified velocity v. As we have dem-
onstrated in the previous section that the joint angles
can be learned from the camera output, we now as-
sume that the task is specified by providing the initial
joint angles 8 and the desired velocity v directly. The
equations of motion of the arm can be shown to be
(see, e.g., Brady et al., 1984)

di(t) 2 A(e)qu + 2 B(e)ukq[qk + gt(e)

(11

Here d = (d,, d,, d5) are the applied joint torques,
A,,((-)) and B,,k((-)) are configuration dependent matrix
elements, depending on the dynamic properties of
the arm and q = (q;, g2, ¢;) are the Cartesian co-
ordinates of the end effector location. The terms
8:(0) account for the effect of gravity. A brief torque
pulse, idealized by

d(®) = 7-3(¢), (12)
changes the velocity of the end effector to a value
= § obeying

3= A(§)v. (13)

* = (11, Ty, T3) is the vectorial amplitude of the torque
pulse. In particular, coefficients B;; and gravity g; do
not affect the velocity immediately attained after the
pulse (in the further course of the free movement, v
will change due to the By, and g;. This change will
not be considered here). To learn the relationship
between the inputs (8, v) and the torque amplitude
#, we could in principle proceed straightforwardly
and associate with each neuron a 6-dimensional vec-
tor w, from the space spanned by 6 and v, and a 3-
dimensional vector u, for specifying . However, the
linear relationship (13) suggests a much more eco-
nomical representation. For each neuron we take a
three-dimensional vector w, from the space of joint
angles only, and a 9-component output vector u,
specifying an approximation A, to the matrix A(D)
in (13). For joint angles § € F, and desired end
effector velocity v, the array returns the output

= Ay (14)

The trial movements for the learning steps (3), (4)
were generated by choosing some random arm con-
figuration x = 0 and requiring some random velocity
v (isotropically distributed and with uniform distri-
bution of magnitude in the unit interval) for each
step. Using the actual velocity ¥ resulting from the
response (14) of the array

A* = A, + “;—"2 G — AV’ (15)

was taken as an improved estimate of the output
matrix A,.

Learning Visuo-Motor-Coordination 165

27 1 17

:

(@ (€ U]

FIGURE 4. Development of the motor map represented by the array. The top row shows for each neuron r the corresponding
end effector position on the table (viewed from above) associated with the joint angles w,. End effector positions associated
with neighboring neurons in the lattice are connected by lines. In the course of learning the initially random correspondence
between lattice locations r and end effector locations (Figure 4a) gradually changes into an well ordered mapping preserving
the topology of the array (Figure 4b, 500 trials and Figure 4c, 10,000 trials). The bottom row shows learning of the matrices
A.. To this end, for each of the end effector locations of the upper figures the reaction of the robot arm to two test movements
is shown. Each test movement requires accelerating the arm to unit velocity parallel to one of the table edges. The figures
show the response of the arm, that Is, the actual movement velocities obtained. Initially, these conform very poorly to the

required task, (Figure 4d), however, after 500 movement trials (Figure 4e), the movements are approximately correct and are

performed very accurately after 10,000 trials (Figure 4f).

The velocities v were allowed to point along any
3-dimensional direction and the workspace was re-
stricted to the table surface as before. Functions A,
and k), were Gaussians with €’ = 1 and the same
functional dependence for o' (¢), o'(t), €(¢) and €"(¢)
as before. The movement of the robot arm was sim-
ulated using an algorithm of Walker and Orin (1982).
For the mass distribution we chose three point

masses of equal magnitude, located at the end ef-
fector and the two outer joints. The array consisted
of a rectangular lattice of 15 X 24 neurons. Initially
each vector w, was assigned the joint angles belong-
ing to a randomly chosen end effector position and
A, was set to

(A = Ay + oAl - . (16)

166

Here, A is the correct matrix for joint angles w, and
M € [—1, 1] is a uniformly distributed random vari-
able. This procedure was used to generate statistical
initial errors whose magnitude can be controlled by
a parameter a. The simulation parameters were
a=025,¢=1,¢=05,¢ =08,¢ef =0.02,0;, =
g/ = 3,0 = of = 0.2, and £, = 10,000 trials.
Figures 4a~c show the development of the mapping
between arm configurations and the lattice. To this
end, each figure shows a perpendicular view of the
table plane, together with the end effector positions
associated with the neurons. Positions associated
with nearest lattice neighbors are connected by lines
to display the degree of topological ordering of the
map. Figures 4a—c show the progression from the
initial random mapping (Figure 4a) to a more or-
dered intermediate state (Figure 4b, after 500 steps)
and to the final well ordered mapping obtained after
10,000 learning steps (Figure 4c).

To visualize the convergence of the matrices A,,
we again use test movements. Each test movement
required to accelerate the end effector from one of
the postures w, to unit velocity parallel to one of the
table axes. The resulting velocities are depicted as
arrows in Figures 4d-f. Figure 4d shows the initial
poor performance of the array. However, after 500
trial movements, the performance has improved sig-
nificantly (Figure 4e), until finally (10,000 movement
trials, Figure 4f) all test movements are performed
to good accuracy.

To demonstrate the automatic adaptation of the
resolution of the mapping for movements required
with different frequency, Figure 5 shows the resulting
map between end effector locations and neurons for
a simulation, in which movements from a central
circular region of the table were performed three
times as frequently as those from the region outside.
It can be seen that the map has assumed a particularly
high resolution for this part of the table. This is a
very useful property which seems to be characteristic
of biological motor systems too.

The good convergence of the output map is again
largely a consequence of the participation of a whole
subpopulation of neighboring units in each adapta-
tion step. To demonstrate this, Figure 6 shows the
result of the same simulation, if A = &, that is,
each neuron performs its adaptation step in isolation.
In this case, only part of the neurons manage to learn
the correct matrix A,. This is shown in a more quan-
titative way in Figure 7, which displays the average
error |lv — v™| between desired and actual move-
ment over the number of movement trials. In this
case, averaging was done over all neurons and an
isotropic distribution of desired velocities of unit
magnitude. The three graphs belong to the same
starting state (with « = 2, i.e., even stronger initial
errors than for Figure 4), but different initial values

H. J. Ritter, T. M. Martinetz, and K. J. Schulten

FIGURE 5. Non-uniform mapping between neurons and end
effector locations resulting from requiring movements from
a circular subregion of the table especially frequently. As a
result, more neurons are used to represent these movements
allowing for a flner resolution.

o/ = 0.5, 0/ = 1.0 and ¢/ = 2.0 for the radius of
the adjusted neuron population at each step. All
other simulation parameters were as before. In the
case of large initial diameter ¢/ = 2 the error declines
the fastest and to a very small final value. However,
for the smaller diameters o = 1 and ¢/ = 0.5 only
part of the neurons manage to converge, giving rise

et
MEE

N
S
£

Q
\\

.
N
AF
s

ek
fealts

FIGURE 6. Resulting poor convergency in the absence of
cooperation between the neurons. Displayed are reactions
to test movements after 10,000 iterations, as in Figure 4f.
However, each adjustment step now was confined to the
selected neuron only (l.e, h;, = 5,). As a consequence, only
very few neurons manage to learn the correct matrix A,

Learning Visuo-Motor-Coordination

5. T T T T

Average Error

g =2.0
o‘ L 1
0. 2000. 4000. 6000. 8000. 10000.

Learnir{g Steps

FIGURE 7. Improvement of convergence by cooperation be-
tween neurans. The diagram shows the average deviation
between desired and achieved end effector velocity versus
number of movement trials for three ditferent initial values
of a,. For weak cooperation (l.e., small values of ¢) a sig-
nificant residual error remains.

to slower decrease of the average error and its sat-
uration at a significant non-zero final value, which
is larger for the smaller diameter. The saturation
shows that these errors cannot be avoided by em-
ploying more movement trials. The wrong responses
are due to additional, undesired fixed points of the
learning algorithm. A mathematical analysis of this
behavior has been given in Ritter and Schulten
(1987). Therefore, the cooperation of a whole pop-
ulation of neurons at each learning step greatly fa-
cilitates learning and significantly improves the ro-
bustness of our learning algorithm. This is a very
interesting feature which may be worthwhile of fur-
ther study in the context of other learning algorithms,
too.

5. CONCLUSION

Topology conserving maps seem to play an important
role in the organization of higher brains. We have
investigated the potential of such maps for the con-
trol of robot arm movements. Qur algorithm is an
extension of Kohonen’s algorithm for the formation
of topologically correct feature maps. The basic idea
is to use an input and an output map evolving si-
multaneously on the same sheet of neurons, thereby
automatically matching corresponding input—output
pairs in a topology-preserving fashion. This approach
allows robust and flexible learning of continuous in-
put—output-relations from a sequence of examples.
We applied our method to learn the required trans-
formations for visuo-motor-coordination of a robot
arm. Using suitable representations, both, kinematic
and dynamic properties of the arm can be learned.
The use of an adaptive topology conserving map re-
sults in at least two benefits: (a) the map can assume

167

a variable resolution, representing frequent move-
ments more accurately, and (b) spreading adjust-
ments over local subpopulations of neurons greatly
increases the convergency speed and robustness of
the output map. For low dimensional spaces, the
method may offer an interesting alternative to back-
propagation (Rumelhart, Hinton, & Williams,
1986). An interesting future task will be the coupling
of several maps to represent more complicated and
higher-dimensional input-output relationships.

REFERENCES

Brady, M., Hollerbach, J. M., Johnson, T. L., Lozano-Perez, T.,
Mason, M. T. (1984). Robot motion: Planning and Control.
Cambridge, Ma: MIT Press.

Georgopoulos, A. P, Schwartz, A, B., & Kettner, R. E. (1986).
Neuronal population coding of movement direction. Science,
233, 1416-1419.

Grossberg, S., & Kuperstein, M. (1986). Neural dynamics of adap-
tive sensory-motor control. Amsterdam: North Holland.

Harris, W. A. (1986). Learned topography: The eye instructs the
ear. Trends in Neuroscience, March, 97-99.

Kaas, J. H., Nelson, R. J., Sur, M., Lin, C. S., & Merzenich,
M. M. (1979). Multiple representations of the body within the
primary somatosensory cortex of primates. Science, 204, 521
523.

Keele, S. W. (1981). Behavioral analysis of movement. In V. B,
Brooks (Ed.), Handbook of physiology: The nervous system
I1. Motor control (pp. 1391-1414). Bethesda, MD: American
Physiological Society.

Knudsen, E. 1., du Lac, S., & Esterly, S. D. (1987). Computa-
tional maps in the brain. Annual Reviews of Neuroscience, 10,
41-65.

Kohonen, T. (1982a). Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43, 59-69.

Kohonen, T. (1982b). Analysis of a simple self-organizing process.
Biological Cybernetics, 44, 135-140.

Kohonen, T, (1982c¢). Clustering, taxonomy and topological maps
of patterns. Proceedings of the 6th International Conference on
Pattern Recognition (pp. 114-128). Munich: IEEE Computer
Society.

Kuperstein, M. (1987). Adaptive visual-motor coordination in
multijoint robots using parallel architecture. Proceedings of
the IEEE International Conference on Robotics and Automa-
tion (pp. 1595-1602). Raleigh, NC: IEEE Computer Saciety.

Kuperstein, M. (1988). Neural model of adaptive hand-eye co-
ordination for single postures. Science, 239, 1308-1311.

Lee, C., Rohrer, W. H., & Sparks, D. L. (1988). Population
coding of saccadic eye movements by neurons in the superior
colliculus. Nature, 332, 357-360.

Murphy, J. T., Kwan, H. C., MacKay, W. A,, & Wong, Y. C.
(1977). Spatial organization of precentral cortex in awake pri-
mates. III. Input-output coupling. Journal of Neurophysiol-
ogy, 41, 1132-1139,

Ritter, H., & Schulten, K. (1986). Topology conserving mappings
for learning motor tasks. In J. S. Denker (Ed.), Neural net-
works for computing, AIP Conference Proceedings 151, (pp.
376-380). Snowbird, Utah.

Ritter, H., & Schulten, K. (1987). Extending Kohonen’s self-
organizing mapping algorithm to learn ballistic movements. In
R. Eckmiller & C. von der Malsburg (Eds.), Neural computers,
(pp. 393-406). Heidelberg: Springer.

I 68 , ‘ . H.J. Ritter, T.' M. Martinetz; cdeJ Schulten

Ritter, H., ‘& Schulten, K. (1988a) Convergency propemes Rumelhart D. E, Hmton, G. E., & Williams, R. J (1935) |
- ,0f Kohonen’s Wiﬂﬂ comcrvmg maps: Fluctuatwns, sm i ; : ting
b:lity md f‘,.. ; -

: maprExpim m&roammtﬁonﬂcmmes IEEEEIENN ‘ ne ' =
= WCmf&ém (pp 109-116) Sdn Biegs IEEE' Compter Waiker M.W., &Orin,D B((1982). Efﬁmentdynmccompm:
_--Sacie . : : smmlatmn of robotﬁe mchanm }aurml of Dynamzc Sys-:f

