
Using Coarse-Grained, Discrete Systems for Data-Driven
Inference of Regulatory Gene Networks: Perspectives and

Limitations for Reverse Engineering

Dirk Repsilber∗, Jan T. Kim†, Hans Liljenström∗, and Thomas Martinetz†

∗ Institute for Biometry and Informatics
SLU, Johan-Brauners väg 3
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Abstract

This contribution gives an initial report of a new project exploring the perspectives and limits
of reversely engineering regulatory gene networks from gene expression data. The availability
of such data is currently increasing dramatically due to the microarray technology. However,
inferring the underlying network from expression data is difficult. We address the reverse
engineering problem by simulating the regulatory network and the process of extracting ex-
pression data. The simulated expression data thus obtained are then subjected to an algorithm
for inferring regulatory networks. With this concept, we intend to assess the effects of sta-
tistical properties of the data extraction process on the suitability of the expression data for
reverse engineering.

1 Introduction

It is well known that the genetic information of an organism, stored in its genome, is used to de-
termine the phenotypic traits of that organism. Consistent with the central dogma of molecular
biology, the genome itself is not modified in this process. Rather, processes such as cell differ-
entiation during development and phenotypic adaptation to varying environmental conditions are
achieved by differential expression of genes. Recent advances in molecular biology have revealed
that gene expression is controlled by genetic information through networks of regulatory genes.
These findings have been reflected in many computer models of evolution and of development
[5, 6, 13, 4, 8]. All these models are abstract and highly simplified in their respective ways, due to
constraints in computational complexity as well as due to scarcity of data which could be used for
parameterising more detailed models.

Since the last few years, an increasing number of genomes have been completely sequenced. Re-
cent technological advances, in particular microarray technology, now allow direct measurements
of gene expression on a genomic scale. This raises the challenge of using such expression data for
inferring the architecture and dynamic rules of genetic networks. For an introductory review see
[11]. This challenge is also referred to as the reverse engineering (RE) task [3]. At the same time,
availability of expression data opens up new perspectives for modelling.
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The size of the state space of regulatory networks i.e. the number of networks that can be con-
structed with a given number of nodes (genes) and links (regulatory interactions) is subject to ex-
treme combinatorial growth as the number of genes increases. The complexity of these networks
and the number of parameters that need to be fitted from data frustrate all attempts to reverse en-
gineer any, but the smallest and simplest regulatory networks from data by brute force (e.g. by
exhaustively sampling the state space).

Thus, reverse engineering requires considerable abstractions and simplifications in order to tackle
biologically relevant regulatory networks. Even given the enormous amount of sequence and ex-
pression data, it is still not realistic to attempt reconstructions of regulatory networks in full detail.
All we can try, at the moment, is obtaining coarse-grained models of regulatory networks. There-
fore, it is necessary to investigate in which respects such coarse-grained network reconstructions
provide insights into true biological regulatory gene networks.

In the current project, we intend to approach this issue by generating simulated expression data
with a detailed computer model of a regulatory network, and using these data to assess the perfor-
mance of a reverse engineering system. For simulating expression data, we use transsys [9], a
detailed and powerful system for modelling regulatory networks. The reverse engineering system
is HypoNet [10], a system which uses a genetic algorithm to evolve regulatory networks which
generate expression patterns similar (or, ideally, identical) to the observed data.

Among the many approaches to reverse engineering regulatory networks, two assumptions are
frequently made. First, it is often assumed that the networks are small, usually limited to no more
than 10 to 20 interacting genes. This assumption can be motivated biologically from studies on
the number of interacting genes for quantitative trait loci in plants and in Drosophila [2, 7]. Fol-
lowing this argument, we will (at least initially) investigate relatively small networks. Biologically
relevant networks can thus be defined as groups of genes, which work together in controlling and
regulating a trait by interacting and regulating the expression of the genes in the network (and
possibly additional genes which then actually ”implement” the trait). Secondly, it is frequently
assumed that genes can be modelled to have only a small number of discrete activity states. This
assumption can be motivated by the observation that phenotypes resulting from mutations of a
given locus can often be grouped into two or a few distinct classes. It is unclear, however, whether
this argument is relevant to the level of gene regulatory networks.

Regardless of biological motivation, discrete state modelling is convenient for using microarray
data. As these data are often quite noisy, it is common practice to discretise the primary relative
expression levels into ”fold-increase” values, i.e. to group transcript-levels into classes which are
n-fold increased or decreased in expression, with respect to some reference condition. As a special
case of this approach, genes are classified as ”up-regulated”, ”not regulated” or ”down-regulated”.
Current technology also induces a strong discretisation on the temporal axis, as each temporal
sample requires an individual microarray.

In the initial phase of the current project, we discretise the real-valued, simulated expression data
from transsyswith respect to (sampling) time and to expression levels. These discretised, sim-
ulated samples are then used to assess the effects of discretisation on the reconstructions obtained
with HypoNet. The concept of our approach is illustrated in Fig. 1.

2



output [i]

HypoNet transsys

Genetic Algorithm

Output: best coarse−grained model

experimental design

comparison

single parameter [k,i]

parameter set [i]
fitness[i]

model parameter [k,i]

Fitness function
(comparison)

simulated expression data

regulatory network model

Specification of a gene

discretization

genetic network model
coarse−grained

Mutation

Selection

Recombination

Figure 1: The general framework for using simulated regulatory networks for evaluating network inference by
reverse engineering driven by simulated expression data.

2 Model and Methods

2.1 Reverse Engineering with HypoNet

For the reverse engineering, we use the HypoNet system [10] which employs a genetic algorithm
(GA), as in [12], to generate a discrete, multi-state network which produces expression patterns
that are as consistent with the observed data as possible. Observed data are input as a set of time
series, measured upon exposing the biological system to different environmental conditions.

HypoNet can be used in different ways: First, it can generate a network without any information,
in addition to the discretised expression data. Secondly, HypoNet allows the incorporation of a
priori knowledge as hypotheses. A hypothesis specifies edges in the network, or parts of transition
tables of the nodes. Such information may e.g. be known from additional experiments or, more
generally, represent a priori biological knowledge. When given a hypothesis, HypoNet employs
the GA only to evolve those network components which are not specified. Finally, HypoNet
can be applied to different hypotheses. This mode allows checking which hypothesis is most
compatible with the experimental data.

In this initial phase of our project, we use hypotheses only to specify N , the number of nodes, and
K , the number of links per node. For the future, however, we intend to provide the system with
more elaborate hypotheses. This will allow us to

• evaluate the power of the RE-algorithm to discriminate false hypotheses

• identify key elements which, when provided in hypotheses, improve the reverse engineering
results
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The latter item is of particular interest, as this may provide a basis for the rational design of
additional experiments in the long run.

2.2 Simulating Gene Expression Data with transsys

transsys is a formal language for describing and ”programming” regulatory gene networks.
Using a given transsys network, time series of expression data are generated, starting with
random expression levels as initial conditions. To enable reverse engineering, regardless which
algorithm to be used, it is proven crucial to supply time series of expression data for a variety
of different experimental (environmental) conditions [1]. In our case, multiple environmental
conditions are simulated by generating series with multiple, different initial conditions.

For our initial tests, we generate transsys networks with N genes and K regulatory elements
per promoter at random. Here, regulatory elements are conceptualised descriptions of transcription
factor binding sites and the effect (activation or repression) induced upon binding. transsys
networks contain many real-valued quantities:

• A decay rate for each factor

• A maximum level of activation or repression for each regulatory element

• A value describing the affinity of each regulatory element to its binding factor

• A constitutive expression level for each gene (i.e. the expression level that is adopted for
absence of regulatory factors)

These parameters have straightforward biological motivations, but no correspondence in the dis-
crete, multi-state networks generated by HypoNet. For our initial tests, we use transsys net-
works in which these values are identical for all factors or regulatory elements, respectively. This
allows us to focus on reconstruction of the network topology rather than the details of the dynamic
rules. It should be noted, however, that transsys is suited for investigating more complex and
realistic networks in the future; of course, each factor and each cis-regulatory element can be pa-
rameterised individually, and parameters can even change dynamically. It will be interesting to test
HypoNetwith transsys networks with identical topologies but different dynamic parameters.

2.3 Discretisation

Expression levels for all genes in the transsys network are normalised to [0, 1] and subse-
quently discretised by dividing [0, 1] into S intervals of equal width.

The normalisation aims at generating input-values comparable to microarray-data, where only log-
ratios are available and absolute levels of gene expression are essentially incomparable between
genes. The discretisation step, on the one hand, aims at modelling the high error level for exper-
imental global expression data, which makes these data suitable for representation as qualitative
values. On the other hand, the discretisation is a step towards a simplified model and results in
a finite search space. Finally, sampling (temporal) discretisation is simulated by keeping only a
small set of samples from equidistant time points. An explaining example for both discretisation
procedures can be found in Figure 2.
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Figure 2: Discretisation of (simulated) expression data. Discretisation is in both sampling and expression level:
In this case 6 equidistant time-points were chosen to sample. The discretisation cutoff is indicated. Sampled
values above this cutoff are discretised as ”1”, samples with values below as ”0” (for this Boolean example).

2.4 Comparing Reverse Engineering Results with the Original Model

The transsys software package includes tools for graphically rendering transsys networks,
and tools for systematic comparison of networks are under development. These will be employed
for our study as they become available. Currently, we have a tool for translating the topology of
a discrete, multi-state network generated by HypoNet into a transsys network, and we use
this tool for visually comparing the networks obtained by reverse engineering with the original
transsys network.

3 Results

In our first approach we tested two transsys-networks (see Figures 3 and 6 respectively), a
most simple case, the cycler-network, and a more complicated random example for N = 5, the
xrnd-network.

Figures 3, 4 and 5 show data illustrating the process of generating simulated expression data using
transsys and running HypoNet to obtain reconstructed networks for a most simple example.
Results of reverse engineering with HypoNet are shown in Fig. 5. The genetic algorithm was run
for 100 generations with a population size of 50 individuals. Further parameters of the RE-GA
were a mutation rate of rmut = 0.5 per individual and reproduction event, a cross-over probability
of rcross = 0.5 per reproduction event and a generation gap of ∆g = 0.1. Selection was carried out
with the roulette wheel selection procedure, with keeping the individual with the highest fitness
value in the GA population.

A more complex network is shown in Fig. 6. The topology of this transsys network has
been generated randomly. The corresponding reverse engineering results are shown in Fig. 7.
No network obtained by reverse engineering reflects the topology of the original xrnd network
correctly. The examples provide an impression of the variability of the results. A more detailed
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transsys cycler
{

factor A { decay: 0.1; }
factor R { decay: 0.1; }

gene agene
{
promoter
{

constitutive: 0.01;
A: activate(0.01, 1.0);
R: repress(0.1, 1.0);

}
product
{

default: A;
}

}

gene rgene
{

promoter
{

A: activate(1.0, 10.0);
R: repress(1.0, 1.0);

}
product
{

default: R;
}

}
}

Figure 3: The transsys program cycler, shown as a network graph (top) and as transsys program code
(bottom). In the graph, activating interactions are shown as arrows on the left side, ending in a closed tip, arrows
on the right side and ending with an open tip depict inhibitory interactions.

analysis of these results will be conducted when tools for graph based similarity analyses for
transsys networks are ready.

4 Discussion

The main problem we address here concerns how the discretisation is done for both expression
levels and data sampling, and which consequences this has for reverse engineering possibilities.
Here, the advantage of using simulated expression data is that the topology and dynamical rules
of the underlying system are known, whereas in the case of molecular data, this information is
largely unknown.

The discretized, simulated expression data generated with transsys are indistinguishable from
empirical data while the underlying dynamical system, i.e. the transsys program, is known.
This allows us to systematically investigate the effects of data sampling and discretisation on the
results of reverse engineering with HypoNet, and to elucidate the perspectives and limitations of
reverse engineering in general.

The transsys network cycler, shown in Fig. 3, consists of two transcription factors and two
genes. Its dynamics is oscillatory over longer periods. However, this is not strongly reflected in the
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Figure 4: Five example time series of expression levels obtained with cycler, started with different random
initial conditions representing five different experimental conditions, and discretised to S = 2 states. Each col-
umn gives the time series for one of the two genes in this network, while each row gives the discretised expression
values for a single time-point. Note that, for conditions 3 and 5 the initial values (t = 0) are equal, but the single
time series are different. This is due to information loss in discretisation and disables full reverse engineering
(see text).
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Figure 5: Four multi-state networks obtained from independent runs of HypoNet on discretised expression
data generated with cycler starting with 20 different initial conditions. Networks with maximal fitness after
terminating the genetic algorithm are shown. The networks are rendered as transsys networks; all links are
shown as activation links in this process. Thus, the network best h001 r003 f084 (bottom left) reflects the
link structure correctly. However, this structure is not favoured by fitness, as all networks shown here have the
same fitness (0.84).

discretised data generated with cycler, as shown in Fig. 4. The five time series, consisting of five
samples each, provide an impression of the scarcity and the coarse-grainedness of the input data
with respect to the full network, especially when comparing these data to the full detailed structure
shown in the listing in Fig. 3. However, it is just this scarcity which is typical for expression-level
experiments, carried out using the microarray technology. In the reverse engineering results, the
correct network topology does appear, as exemplified by best h001 r003 f084 in Fig. 5.
However, this topology is not favoured by particularly large fitness value. As a tentative inter-
pretation of this finding, we assume this to be an indication that the input data is insufficient for
inferring the original network topology, due to a too coarse-grained discretisation either in the
expression level or in the temporal dimension, or both. For example, as in the case for conditions
3 and 5, discretisation in the expression levels led to two time series which are incompatible at the
level of the discrete deterministic network models: It does not exist a model which could represent
both time series correctly. Hence, a finer representation of possible expression states, i.e. increas-
ing S, might improve the discrete representation of the dynamic data and the subsequent reverse
engineering. However, preliminary explorations of this hypothesis indicate that increasing S, the
number of states, results in reduction of variability in reverse engineering results with cycler. It
appears that the correct topology is obtained more rarely, not more frequently. Increasing temporal
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Figure 6: xrnd is a randomly constructed transsys network with N = 5 genes and K = 2 links per gene. All
remaining parameters are the same for all genes.

resolution has not led to conclusive results.

Both studies have suffered from the fact that increasing resolution does not necessarily improve
the amount of information in the simulated expression data. Discretising larger data sets frequently
results in a strong over-representation of one particular state; in many cases, a pronounced pre-
dominance of the state 0 or the state S − 1 (i.e. the state corresponding to maximal activity) is
observed. These observations may indicate that a more sophisticated method for discretisation is
called for. As an example we plan to try a classification resulting in a uniform distribution of the
discretised data.

A denser temporal sampling additionally often results in longer repetitions of rows in the input
data. Insertion of additional zeros...

5 Summary and Outlook

Phenotypic processes, such as cell differentiation, development and genetically informed adapta-
tion to changing environments are all mediated through dynamics in networks of regulatory genes.
Currently, micro-arrays allow genome-wide access to gene expression data. Yet, the size of the
space of gene regulatory networks, and the complex structure of this space, preclude straightfor-
ward inference of the topology and the dynamic parameters of regulatory networks from current
gene expression data. Noise and limited resolution render expression data coarse-grained. These
coarse-grained data can be used for obtaining correspondingly coarse-grained models of regula-
tory networks. It is, however, an open question how much information about the real, underlying
regulatory network is conveyed by such coarse-grained models.

In this contribution, we introduce a project to address this issue by a modelling approach. We
present the concept of using transsys, a software system for detailed modelling of regulatory
networks, to generate simulated expression data. These data are then subjected to a normalisation
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Figure 7: Four multi-state networks obtained from independent runs of HypoNet on discretised expression data
generated with xrnd. 20 different initial conditions were used to compute expression levels at 80 time steps. The
simulated expression data were then discretised to S = 2 states, and 5 samples drawn equidistantly were stored
in the input set for HypoNet. As in Fig. 5, all links are shown as activation links. All networks shown here have
the same fitness value, 0.96, which was the highest value seen in 50 independent runs.

and discretisation procedure which simulates expression measurement using current technology.
The resulting data are then used for reverse engineering with HypoNet.

Currently, the software framework for implementing this concept has been established, and it has
been used for preparing preliminary results. The correspondence between the detailed dynamic
system described by a transsys network, and the coarse grained models obtained with Hy-
poNet is indeed not trivial, indicating that our system has captured some aspects of the reverse
engineering problem. In some initial observations, we report that improving data density does not
necessarily improve reverse engineering performance.

In a longer perspective, we intend to develop our system to be able to generically model the
statistical properties of gene expression measurement techniques. Even our initial explorations
have illustrated that unfavourable statistical properties, such as the tendency to generate repetitive
samples, can limit the amount of knowledge about the regulatory network which can be retrieved
from the expression data. Such limitations cannot be overcome by simply increasing the data
sampling density. Rather, the choice of data acquisition methods will have to be guided by the
questions about the regulatory structure which shall be answered by the data. Computer models of
regulatory systems can be expected to be a nice source for investigating the principles which can
provide such guidance.
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