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A neural network approach to the problem of estimating physical properties of a
material based on the material’s chemical composition is presented. The network
consists of sigmoidal hidden units and a linear output unit arranged in a feed-
forward architecture. As a component of a process optimization system which
is applied in production processes with a priori unknown and eventually drift-
ing characteristics, robust and fast on-line adaptation of the network is required.
Therefore, a permanently updated, stack-like organized training data set and a
line-search procedure for adjusting the network weights is employed. A first ap-
plication has been the estimation of the “relative yield stress” of different steel
qualities, which is necessary for optimizing the rolling process at a hot line rolling
mill. Compared to the current state-of-the-art method a reduction of the average
estimation error of about 35% has been achieved.

1. Introduction

Process optimization requires knowledge about the relevant properties of the processed ma-
terial. Depending on the material transformation process to be controlled, physical properties
of the material like its heat capacity, its viscosity, its heat conductivity, or its hardness (just
to mention a few) determine the optimal choice for the control parameter values. In most
cases, however, the respective material property cannot be measured directly but must be
estimated based on the thermodynamic state of the material, i.e., its chemical composition,
its temperature, the given pressure, and eventually geometric quantities. The quality of the
estimation result determines to a great extent the cost effectiveness and the product quality
of the production process.

To be able to estimate material properties based on the thermodynamic state variables, the
respective physical relationship has to be known. A common approach is to try to describe
this relationship through physical models. However, in most cases the underlying physics is
too intricate and/or not understood sufficiently to allow the design of feasible physical models
which yield satisfying estimation results. In addition, the development of physical models is
time consurming, requires precise knowledge about the usually very complex physical processes,
and each model is specific for each material and each material transformation process.

To increase cost effectiveness and product quality also of intricate material transformation
processes, an approach is necessary which learns the underlying physical relationship instead of
modeling it based on specific prior knowledge. In addition, it would be highly desirable to have
an approach which is generic and can be applied to a variety of materials and transformation
processes. In the following we demonstrate that neural networks as adaptive modeling schemes




Figure 1: The architecture of
the neural network.

have the desired capabilities. We describe the application of a neural network to the problem
of estimating the relative yield stress (plasticity) of steel plates based on the steel plates’s
chemical composition, temperature, and shape. Knowledge about the relative yield stress is
necessary for optimizing rolling processes, in our case the rolling of steel at a hot line rolling
mill.

2. The Neural Network Architecture

The neural network has to model the relation
a=F(C,Si,Mn,P,S5,Al,N,Cu,Cr,N2,5n,V, Mo, Ti,Nb, B,d, b,T;, T})

between the relative yield stress a of the steel plate and the concentration of the steel plates’s
sixteen chemical constituents C', 57, ..., B, its thickness d and its width b. 7; and 7’ denote the
temperature of the steel plate before and after the rolling, respectively. These two tempera-
tures serve as a measure for the actual rolling temperature 7', which cannot be determined
explicitely. The concentration of the steel plates’s sixteen chemical constituents C, Si, ..., B
is obtained from a material analysis during the steel cooking.

Figure 1 shows the neural network architecture, a three-layer feedforward network consisting
of ten sigmoidal hidden units and one linear output unit. Each hidden unit receives the same
twenty-dimensional input vector x = (C, St,..., Nb, B,d, b,T;,T}). The weights of the hidden
units 2, ¢ = 1,..., 10, are denoted by w; = (w1, ..., wiz0), and the weights of the linear output
unit are denoted by w = (wy,...,wy9). The threshholds of the hidden units and the output
unit are denoted by ¢; and 0, respectively. Hence, when the network receives the input x
which carries the information about the steel plate to be rolled, the network genecrates the
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as an estimation for the relative yield stress of the steel plate, with o(.) = 1/(exp(—.) + 1)
determining the output of the sigmoidal hidden units. The index W denotes the depen-
dence of the network output Ayy(x) on the set W = (w;,0;, w, ) of all network weights and
threshholds.

3. The Adaptation of the Network Weights

The estimation error of the network has to be minimized by selecting the right set of network
weights W = (w;,0;,w,0). This is achieved through gradient descent on the mean square
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of the last P estimation trials. x, denotes the chemical composition, thickness, width, and
temperature of the pu-th steel plate, the actual relative yield stress of which was a*.

The training data (x*,a*), g = 1,..., P are accumulated on-line in a FIFO stack (first in
first out). With each steel plate which is rolled a new data pair (x*, @*) is available and put
at top of the stack. The data pair at the bottom of the stack, i.e., the data pair which was
generated P rolling processes ago, leaves the stack. The stack size P, i.e., the size of the
window on the incoming data stream, is determined by the available memeory size and the
computation time requirements.

With each update of the FIFO stack by a new data pair the network weights are adjusted
through gradient descent on the cost function E(W), which yields, by calculating
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the backpropagation learning rules [1, 2]. The step size 54y, is determined dynamically
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through a line-search procedure.

The need for fast on-line learning was the reason for choosing the stack-like organized train-
ing data set together with a line-search procedure for adjusting the weights. Accumulating
all available data pairs (x*, ") would lead to a training data set which is much too large.
About 500 steel plates are rolled per day. Besides the huge memory and computation time
requirement, this is also not desirable since the characteristics of the material transformation
process might be drifting, and, therefore, very old data pairs might not be representative
anymore. On the other hand, to avoid storage of training data completely by performing
pattern by pattern learning makes sense only with a very small adaptation step size ngy,.
The corresponding slow-down of the adaptation procedure and the increased probability to
get stuck in local minima, however, is not acceptable in the described application.

The line-search procedure for determining the optimal value of 74,, looks for the minimum
of /(W) along the gradient of E(W) at the current weight set Wy, i.e., it looks for that
Ndyn = Tope Which minimizes
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Determining 7., based on a quadratic approximation of (2) is sufficient in our case. For
that purpose we calculate two support points (Wy, EF(W;)), (Wa, E(W,)) along the gradient
in addition to (Wy, ££(Ws)). These three support points define a parabola which forms a
quadratic approximation of (2) along the gradient. As the size of adaptation step (1) we

choose that gy, = 1., which minimizes the parabola.

4. The Performance

For testing the performance of the neural network approach and comparing it with the
current state-of-the art method, 12000 data pairs (x*,a*) from the rolling mill were made
available by the steel manufacturer. 9000 data pairs formed the training set which was used
for adapting the network, and the other 3000 data pairs formed the independent test set.
The stack size P was chosen to be 500. The on-line training of the network was simulated
by sequentially and randomly picking data pairs (x*,a*) from the training set, putting the




<E_net> <E_cur> A Worst_net Worst_cur A
34.9% 53.4% 35% 31.7% 36.5% 13.2%

Table 1: The RMS and the worst case estimation error of the neural network and the current
state-of-the-art method.

respective data pair at the top of the FIFO stack, and performing an adaptation step (1).
Already after having presented about 5000 samples, the network has converged from its
randomly chosen initial to its final state. The achieved estimation performance is shown in
Table 1. (E,.:) denotes the root mean square (RMS) estimation error of the neural network
on the data of the test set, relative to the standard deviation of the test data. (F..,) denotes
the RMS estimation error of the current state-of-the-art method on the test set, and A is the
achieved improvement. Table 1 also shows the worst-case, i.e., the largest deviation of the
estimation from the real value of the relative yield stress, for the neural network approach as
well as for the state-of-the-art method. For the average estimation error the neural network
approach yields an improvement of 35%, and for the worst-case the neural network approach
yields an improvement of 13.2% over the current state-of-the-art method.

5. Discussion

The results obtained with the neural network approach are very promising. In the appli-
cation described, the estimation of the relative yield stress of steel, the improvement of the
estimation quality is so significant that the neural network approach will replace the currently
employed method and soon be a component of a commercially available process optimization
system for rolling mills.

There are a couple of reasons for the favorable results with the neural network approach. The
main reason is the on-line adaptation of the network. The network weights are permanently
adjusted to the changing characteristics of the rolling mill and the drifts of the measuring
devices for the chemical composition, thickness, width and temperature of the steel plate.
Particularly the calibration of the measuring devices is not very reliable because of the very

hazardous environment of a hot line rolling mill.

Another reason for the favorable results seems to be the superiority of feedforward neural
networks with sigmoidal hidden units in modeling moderately complex, multivariate functions.
To achieve a mean square error of €, a feedforward neural network with O(e™!) hidden units
is sufficient, whereas approximation through series expansion, e.g., polynomial regression,
requires at least O(¢=P/2) terms [3]. D denotes the dimension of the input vector x, i.e., the
number of input variables, and was 20 for estimating the relative yield stress. D is large in
the application domain described, since properties of a material depend on many variables.
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