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Abstract: Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases.
Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms
and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons
using a novel microfluidic device together with a deep learning tool that we developed for the
enhanced-throughput analysis of AxD on microscopic images. The trained convolutional neural
network (CNN) sensitively and specifically segmented the features of AxD including axons, axonal
swellings, and axonal fragments. Its performance exceeded that of the human evaluators. In an
in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected a
time-dependent degeneration of axons leading to a decrease in axon area, while axonal swelling and
fragment areas increased. Axonal swellings preceded axon fragmentation, suggesting that swellings
may be reliable predictors of AxD. Using a recurrent neural network (RNN), we identified four
morphological patterns of AxD (granular, retraction, swelling, and transport degeneration). These
findings indicate a morphological heterogeneity of AxD in hemorrhagic stroke. Our EntireAxon
platform enables the systematic analysis of axons and AxD in time-lapse microscopy and unravels a
so-far unknown intricacy in which AxD can occur in a disease context.

Keywords: axon; brain hemorrhage; cortical neurons; cell culture; machine learning; microfluidic;
microscopy; stroke; time-lapse

1. Introduction

Axonal degeneration (AxD) is a process in which axons disintegrate physiologically
during nervous system development and aging, or as a pathological element of degener-
ative nervous system diseases [1–3]. Apart from axonal fragments, axon swellings (also
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called axonal beadings, bubblings or spheroids) are a hallmark of degenerating axons [2,4,5],
containing disorganized cytoskeleton and organelles resulting from an interruption of ax-
onal transport [6–8].

It is known that axons disintegrate in different ways depending on the biological
context. During development and neural circuit assembly, inappropriately grown axons
can undergo axonal retraction, axonal shedding, or local AxD [9,10]. Axonal retraction is
characterized by retraction bulb formation at the distal tip and subsequent pullback [9].
During axonal shedding, the axon retracts, leaving behind small pieces of its distal part
(axosomes) [11]. Local AxD is characterized by axon disintegration into separated axonal
fragments [10]. Acutely and chronically injured axons may degenerate retrogradely (distal-
to-proximal direction, dying-back), anterogradely (proximal-to-distal direction), or in
a Wallerian degeneration pattern (distal part of the axon from injury site), ultimately
resulting in the generation of axonal fragments [6,12,13]. However, AxD patterns have been
described primarily in extracerebral axons in models of nutrient deprivation or axotomy.

Not much is known about AxD in cortical neurons subjected to a disease-specific
cytotoxic micromilieu. A distinct pathological micromilieu has recently been observed for
hemorrhagic stroke, after which the lysis of erythrocytes from the hematoma leads to the
release of the cytotoxic product hemin [14,15]. Patients suffering from hemorrhagic stroke
often experience AxD that is associated with worse motor and functional outcome [16,17].
Importantly, AxD occurs in the subacute stages of hemorrhagic stroke. Thus, addressing
AxD may not only provide a new therapeutic target, but also a much wider time window
for intervention. Since not much is known about the mechanisms, morphological patterns,
and the temporal progression of AxD in the context of hemorrhagic stroke, we here sought
to examine the progression of AxD and its associated morphological alterations.

Several cell culture systems, such as Campenot chambers and microfluidic devices,
have been developed to spatially separate axons from their somata, allowing researchers to
study AxD at a molecular level and to dissect the axon-soma relationship in AxD [18,19].
Whereas Campenot chambers facilitate the collection of axonal material due to their open
structure [20], they are only suitable for neurons that project axons robust enough to cross
the vacuum–grease barrier needed to affix the Teflon piece that separates the somata from
their axons. This makes Campenot chambers unsuitable for most central nervous system
neurons [21]. In microfluidic devices, the spatial separation is enabled by a microflux estab-
lished by a medium volume difference between the two opposing compartments. These
opposing compartments are separated by microgrooves through which axons grow [22].
The major limiting factor of commercially available microfluidic devices to study AxD
is that they are single, individual systems. Hence, they can only be used to assess one
condition, which is time-consuming and precludes high-throughput analyses [19,23].

As the disintegration of the axons endures from minutes to hours [13,24], it is neces-
sary to continuously monitor the spatiotemporal progression of AxD and its morphological
hallmarks. On the one hand, axonal fragments have been identified by binarizing micro-
scopic images [25,26]. Structures that are continuously connected are interpreted as axons,
while isolated, non-connected elongated structures are categorized as axonal fragments.
The ratio of axonal fragments to total axons is indicated by the so-called AxD index [25,26].
On the other hand, the occurrence and motility of axonal swellings have been determined
previously by defining a region of interest, kymograph analysis, or calculating the ratio of
the number of swellings compared to the axon length [8,27–29].

However, conventional software solutions fail to automatically detect and quantify
high axon numbers as well as axonal swellings and fragments in phase-contrast micro-
scopic images. The reason may be two-fold: (1) binarization can lead to information loss
and low sensitivity, as thin axons may not be recognized; and (2) The analysis requires
subjective and time-consuming manual annotations, e.g., thresholding and defining the
region of interest [27,30,31]. So far, immunostained images have been used to investigate
the morphological changes in AxD, as the analysis of phase-contrast images is limited
by the lower target-to-background signal. Immunofluorescence images, however, entail
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certain disadvantages, such as photobleaching and the requirement for cell fixation, which
restricts observations to a single time point. Thus, a software tool for the automatized
detection and quantification of the morphological patterns of AxD in long-term live cell
imaging is required to improve both sensitivity and throughput to overcome the current
limitations in understanding AxD.

In this study, we demonstrate that cortical axons undergo AxD after the exposure to
the hemolysis product hemin, with axonal swellings preceding axon fragmentation. Deep
learning further detected the occurrence of four AxD patterns characterized as granular,
retraction, swelling, and transport degeneration. This may inform downstream AxD and
neurodegeneration research in health and disease. We also provide tools for the enhanced
throughput analysis of AxD, including a microfluidic device containing 16 independent
experimental units and the deep learning platform “EntireAxon” to analyze AxD, which
will help augment our understanding of AxD and may also support the development of
novel treatment approaches for neurodegenerative diseases.

2. Materials and Methods

Chemicals and reagents are listed in Tables S1 and S2.

2.1. Fabrication of an Enhanced Throughput Microfluidic Device Based on Soft Lithographic
Replica Molding

In total, 32 wells were milled in a polymethyl methacrylate (PMMA) plate of the size
of a conventional cell culture plate using a universal milling machine (Mikron WF21C,
Mikron Holding AG) with a 1 mm triple tooth cutter (HSS-CO8 Type N, Holex, Munich,
Germany) at a precision of 0.01 mm. During the milling procedure, we applied a half-
synthetic cooling lubricant (Opta Cool 600 HS, Fuchs Wisura GmbH, Bremen, Germany) on
a mineral base to reduce the debris. In addition, we milled screw holes in the intermediate
spaces between each microfluidic unit to later detach the PMMA from the negative casting
mold. To remove debris, we washed the PMMA plate by sonication (Sonicator Elmasonic
S, Elma Schmidbauer GmbH, Singen, Germany) at room temperature for 30 min. Next,
we lasered the microgrooves on the PMMA plate to connect both milled compartments
of each individual microfluidic unit using an Excimerlaser (Excistar XS 193 nm, Coherent,
Santa Clara, CA, USA). The PMMA plate was then washed again by sonication at room
temperature for 30 min.

Polydimethylsiloxane (PDMS) was prepared in a 1:10 ratio and mixed properly before
inducing vacuum at 0.5 Torr in a vacuum desiccator (VDC-31, Jeio Tech, Daejeon, Korea)
for 30 min. After the PDMS was poured into an empty aluminum basin to cover the
ground, we applied the vacuum at 0.5 Torr for 30 min to remove the air bubbles. The PDMS
was cured at room temperature for 48 h. We put the PMMA plate on top of the PDMS
ground with the milled and lasered structures showing upward. Half of each well of the
microfluidic units was filled with PDMS before curing at room temperature for 48 h. We
mixed epoxy solution in a 1:1 ratio and poured it over the microfluidic device to cover
its surface by at least 1 cm. Vacuum was applied at 0.5 Torr for 10 min to remove all air
bubbles located above the channel side of the microfluidic device. The epoxy was cured at
room temperature for a minimum of 2 h. We subsequently detached the epoxy from the
PMMA plate via a metallic block that consisted of screw holes in the intermediate spaces
between the individual systems. The epoxy represented a negative casting mold to produce
the microfluidic devices using PDMS.

PDMS was prepared as described above. We poured the PDMS into the negative
epoxy casting mold and applied vacuum at 0.5 Torr for 30 min. The liquid PDMS was cured
at 75 ◦C for 2 h to induce polymerization. We peeled the microfluidic devices from the
casting mold and punched the wells with an 8 mm biopsy punch (DocCheck Shop GmbH,
Cologne, Germany) to ensure a sufficient amount of medium for cell culture. We cleaned
customized 115 × 78 × 1 mm glass slides by sonication (Sonicator Elmasonic S, Elma
Schmidbauer GmbH) and subsequently cleaned them by ethanol before plasma treatment
(High Power Expanded Plasma Cleaner, Harrick Plasma, Ithaca, NY, USA). Plasma was
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applied at 45 W and 0.5 Torr for 2 min to activate the silanol groups of the glass slides and
the microfluidic devices, enabling firm attachment.

We washed the microfluidic devices with ethanol and then twice with distilled water
to remove any debris. After aspirating the distilled water, except from the inside of the
compartments, 0.1 mg/mL of poly-d-lysine solution in 0.02 M borate buffer (0.25% (w/v)
borate acid, 0.38% (w/v) sodium tetraborate in distilled water, pH 8.5) was used for coating
at 4 ◦C overnight. We aspirated the poly-d-lysine the next morning, not removing it
from the compartments, and added 50 µg/mL of laminin as a second coating surface for
incubation at 4 ◦C overnight. On the day of neuron isolation, the microfluidic devices were
washed twice with pre-warmed medium after aspirating the laminin. Immediately prior
to cell seeding, we aspirated the medium from the wells without removing it from the
compartments.

2.2. Experimental Animals

Crl:CD1 (ICR) Swiss outbred mice (Charles River) were used. The animals were
kept at 20–22 ◦C and 30–70% humidity in a 12-h/12-h light/dark cycle, and were fed a
standard chow diet (Altromin Spezialfutter GmbH, Lage, Germany) ad libitum. Animal
experiments were performed in accordance with the German Animal Welfare Act and
the corresponding regulations and were approved by the local animal ethics committee
(Ministerium für Landwirtschaft, Umwelt und ländliche Räume, Kiel, Germany, under the
prospective contingent animal license number 2017-07-06 Zille).

2.3. Isolation and Culture of Primary Cortical Neurons

We isolated the primary cortical neurons from the murine E14 embryos after decapita-
tion as previously described [15]. We seeded the neurons at a density of 10,000 cells/mm2

in 5 µL MEM + Glutamax medium into one compartment (soma compartment) of each
microfluidic unit of the device. The cells were allowed to adhere at 37 ◦C for 30 min. To
promote directional axon growth into the other compartment (axonal compartment) by
medium microflux, 150 µL of MEM + Glutamax medium were applied to the well of the
soma compartment, while 100 µL were added to the well of the axonal compartment.
Neurons were cultured at 37 ◦C in a humidified 5% CO2 atmosphere. The next day, we
changed from MEM + Glutamax medium to Neurobasal Plus Medium containing 2% B-27
Plus Supplement, 1 mM sodium pyruvate and 1% penicillin/streptomycin. The volume
differences among the wells ensured the microflux for the directional axonal growth over
the following days.

2.4. Immunofluorescence

Soma and axonal compartments in the microfluidic units were fixed at room tempera-
ture for 1 h in 4% formaldehyde solution in phosphate-buffered saline (PBS). They were
washed twice with PBS and permeabilized with blocking solution (2% BSA, 0.5% Triton-X-
100 and 1× PBS) at room temperature for 1 h. We incubated the neurons/axons on both
compartments with primary antibodies against synaptophysin (1:250) and MAP2 (1:4000)
at 4 ◦C overnight. The next day, both compartments were washed three times with PBS and
incubated with the secondary antibodies anti-mouse Alexa Fluor 546 (1:500) and anti-rabbit
Alexa Fluor 488 (1:500) at room temperature for 1 h. After washing three times with PBS,
both compartments were incubated with DAPI (1 µg/mL) for nuclear counterstaining at
room temperature for 10 min. Both compartments were washed again three times with
PBS prior to fluorescence microscopy. An Olympus IX81 time-lapse microscope (Olympus
Deutschland GmbH, Hamburg, Germany) with a 10× objective (0.3 NA Ph1) and camera
F-View soft Imaging system was used at room temperature. Images were acquired with
CellTM software (Olympus Deutschland GmbH) and further processed via ImageJ (see
Section 2.10).
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2.5. Selection of Microfluidic Units for Hemin Treatment and Time-Lapse Recording

After 6 or 7 days in culture, microfluidic devices were considered for recording if
they met the following inclusion criteria: (i) axon growth through at least 80% of all
microgrooves, and (ii) axon length of at least 150 µm from the end of the microgrooves. All
included microfluidic units were randomly assigned to the experimental conditions.

2.6. Time-Lapse Recording of Axonal Degeneration

Axons were treated with 0 (vehicle), 50, 100, and 200 µM hemin. For the treatment, the
medium was removed from the wells of the microfluidic units. Then, hemin was diluted in
the collected media and added back to the respective wells. The media volume between the
two wells was equalized during the treatment to prevent any microflux. All microfluidic
units were recorded immediately after each other. We started the recordings at 1 h after
treatment to allow for the adjustment of the well plates to the humidity of the incubation
chamber of the microscope and the setup of the recording positions. We recorded AxD in
Neurobasal Plus Medium containing 2% B-27 Plus Supplement, 1 mM sodium pyruvate,
and 1% penicillin/streptomycin with a 30-min interval for 24 h using an Olympus IX81
time-lapse microscope (see Section 2.4) at 37 ◦C, 5% CO2, and 65% humidity.

2.7. Live Cell Fluorescent Staining

To evaluate axonal vitality, we washed the axonal compartment once with PBS and
incubated the axonal compartment with calcein AM (4 µM) in PBS for 30 min at 37 ◦C at
the end of the time-lapse recording or in 4 h intervals upon hemin treatment. An Olympus
IX81 time-lapse microscope (see Section 2.4) was used to record the respective images at
37 ◦C, 5% CO2, and 65% humidity.

2.8. Training of the EntireAxon CNN for the Segmentation of Phase-Contrast Microscopic Images

We trained the EntireAxon CNN for the image-wise semantic segmentation of AxD
features in a supervised manner. To this end, we adapted a standard u-net with ResNet-50
encoder [32] to automatically determine the class probability for each pixel of an input image.
Our segmentation aimed to classify each pixel of a microscopic image of a time-lapse recording
into one of four classes: ‘background’, ‘axon’, ‘axonal swelling’, and ‘axonal fragment’.

For the training dataset, we selected 33 images and created corresponding image
labels (masks) using GIMP software (v.2.10.14, RRID:SCR_003182). For each image, a label
image with the same height and width was created, in which each pixel value denotes
a pixel class. Specifically, the classes ‘background’, ‘axon’, ‘axonal swelling’ and ‘axonal
fragment’ had the values 0, 1, 2, and 3, respectively. For each pixel of the input image, we
retained 4 values that reflect the probability distribution of the pixel over the 4 classes. We
assigned each pixel the most probable class to create a segmentation map. During training,
the CNN observed an input image, produced an output, and compared this output to the
label. The weights of the network were adapted via backpropagation so that the output
better fitted the label. The weight changes were derived from a pixelwise loss function, i.e.,
the cross-entropy loss:

Loss(P, Y) = − ∑
x,y,c

Y(x, y, c) log(P(x, y, c)) (1)

with P(x, y, c) and Y(x, y, c) being the probability of class c at pixel (x, y) for the prediction
and ground truth of the network, respectively.

We trained a mean ensemble consisting of 8 neural networks for 180 epochs using
the Adam optimizer, a batch size of 4, and a learning rate of 0.001 that decreased by a
factor of 10 after every 60 epochs. The input images were standardized by the image-net
mean and standard deviation [28]. For data augmentation, we used random cropping
(size 512 × 512), image flipping along the horizontal axis, and rotation by a random angle
between −90◦ and +90◦.
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2.9. Validation of the EntireAxon CNN Compared to Human Evaluatorts

To measure how well the EntireAxon CNN segments unknown images, we used a
second validation set comprising eight images that were labeled by three human evaluators
(A.P. (Alex Palumbo), S.K.L., L.E.H.). Importantly, the EntireAxon CNN did not update its
parameters during training to fit the validation set, but only used the training set.

For each image, the EntireAxon CNN inferred a segmentation. We generated a binary
mask from the prediction of the network, where 1 denotes the respective class and 0 all
other classes. We computed a binary label mask in the same manner. We counted the true
positive (TP), false positive (FP), and false negative (FN) pixels and computed the recall
(sensitivity) and precision [33]:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall and precision were calculated separately for each class on each validation
image. The mean recall and precision over all eight validation images were determined
subsequently.

A mean of 96.42% of pixels in the axonal images were ‘background’ pixels, while only
2.77% represented the class ‘axon’, 0.58% ‘axonal swelling’, and 0.23% ‘axonal fragment’
pixels. This reflects a challenging degree of class imbalance, where the probability of having
any positives for a class in a validation image is low. Thus, we did not use the computed
recall and precision of the individual images or the mean recall and precision to compute
the mean F1 score, i.e., the harmonic mean of recall and precision. This has been shown to
lead to bias, especially when a high degree of class imbalance is present in the dataset [33],
as it may result in undefined values for an image for recall (due to the absence of TP),
precision (in case the CNN does not recognize the few positives), and F1 score (in case
either recall or precision are undefined). To avoid bias, we computed the total TP, FP, and
FN of all validation images from which we calculated the mean F1 score [33]:

mean F1 score =
2× TPtotal

2× TPtotal + FPtotal + FNtotal
(4)

In addition, we computed a consensus label between human evaluator 1 and 2,
between 1 and 3, and between 2 and 3, and compared the EntireAxon CNN versus the
remaining evaluator (human evaluator 3, 2, and 1, respectively) to the consensus labels.
Mean F1 scores for all classes were computed as described above.

2.10. Image Preprocessing

Prior to the analysis of AxD after hemin exposure, we preprocessed the time-lapse
recordings in ImageJ (v1.52a, RRID: RRID:SCR_003070) using a custom-written macro.
Specifically, each individual recording was converted from a 16-bit into an 8-bit recording
to make it compatible with the ImageNet (8-bit) pre-trained ResNet-50. The recording
was aligned automatically with the ImageJ plug-in “Linear Stack Alignment with SIFT”
as described previously [34]. The following settings were used: initial Gaussian blur of
1.6 pixels, 3 steps per scale octave, minimum image size of 64 pixels, maximum image size
of 1024 pixels, feature descriptor size of 4, 8 feature descriptor orientation bins, closest/next
closest ratio of 0.92, maximal alignment error of 25 pixels, inlier ratio of 0.05, expected
transformation as rigid, “interpolate” and “show info” checked. Black edges that appeared
on the recording after alignment were cropped.

2.11. AxD Analysis Using the EntireAxon CNN

All recordings of AxD after hemin exposure were automatically analyzed by the
trained EntireAxon CNN, which classified each pixel as one of the 4 different classes: ‘back-
ground’, ‘axon’, ‘axonal swelling’, or ‘axonal fragment’. For each experimental condition
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(i.e., hemin concentration), the sum percentage of all pixels per class on all images of
that experimental day were added at each timepoint (Axont1.5–24h, Axonal swellingt1.5–24h,
Axonal fragmentt1.5–24h). To determine the changes for the classes ‘axon’, ‘axonal swelling’,
and ‘axonal fragment’ over time, we calculated the sum percentage of pixels for all given
time points (ti with I = 1.5 to 24 h) of the corresponding class over the sum of the pixels of
all three classes at baseline:

normalized′ class ′ area (ti) =
′Class′ ti

Axont1.5h + Axonalswellingt1.5h + Axonalfragmentst1.5h
× 100 (5)

The area under the curve was calculated as the cumulative measurement of the effect
of hemin on axonal degeneration over 24 h as follows:

AUC = ∑((′Class′ ti + ′Class′ ti+1)× (ti+1 − ti)) (6)

2.12. Classification of the Morphological Patterns of AxD Using an Attention-Based RNN

We used the segmentation videos derived from the original microscopic images, using
the RNN to identify 4 morphological patterns of AxD: granular, retraction, swelling, and
transport degeneration. We manually annotated the segmentation videos of individual,
degenerating axons to classify each AxD pattern. To reduce the dimensions of the input,
the segmentation video was converted into a series of normalized histograms (H), one
for each (time) frame. Thus, the RNN did not operate on the microscopic images directly,
but rather on more efficient representations of the data. To compute a histogram for a
frame ti, we compared the pixels of the frames ti and ti+1. Each pixel was assigned to 1 of
16 classes that consisted of pairs (c1, c2) ∈ {0, 1, 2, 3}2 of the 4 segmentation classes (i.e.,
4 times 4 possible configurations, 16 class pairs). For example, the class (background, axon)
means that in frame ti, the pixel was classified as background, while in frame ti+1, it was an
axon pixel. Therefore, for T time steps, we computed T-1 histograms. H0(ti, (c1, c2)) is the
number of pixels that belong to class c1 at time-frame ti and that belong to c2 at timeframe
ti+1. In addition, we normalized each histogram to sum up to 1 (i.e., we divided by the
sum over all pairs):

H(ti, (c1, c2)) = H0(ti, (c1, c2))/ ∑
a,b

H0(ti, (a, b)) (7)

Of note, the histograms were computed over small patches (height and width < 90 pixels)
during training and during inference on windows of size 32 × 32 pixels.

We used an encoder-decoder RNN with attention [35]. The encoder fenc consisted of
a gated recurrent unit (GRU) that obtained the histogram time sequence H as input. The
encoder computed the hidden representation of the histograms:

V = fenc(H); V ∈ RT × d, H ∈ RT × 16 (8)

For our purpose, we used an architecture that was able to base the decision for a
degeneration class on the previous class predictions. To this end, the output

→
o i was computed

iteratively in C + 1 steps as a sum of the previous output and the output of the decoder fdec :

→
o i =

→
o i−1 + fdec

((→
o i−1

)
,
→
s i−1, V

)
;
→
o ∈ RC,

→
s i−1 ∈ Rd (9)

fdec

((→
o i−1

)
,
→
s i−1, V

)
= Wout

→
z i; Wout ∈ RC × d (10)

C is the number of degeneration classes (4), d is the hidden dimension (we used 256),
and i = 1, ..., C + 1. is the sigmoid function. The decoder employed a GRU that depended
on the context vector

→
c i and the hidden state vector

→
s i−1 :

→
z i,
→
s i = GRU

(→
c i,
→
s i−1

)
;
→
z i ∈ Rd (11)
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The entries of the initial hidden vector
→
s 0 and output vector

→
o 0 were all zero. The

context vector is a weighted sum of the encoder representations. At each iteration, these
weights can change, enabling the network to focus on different time steps. We assumed
that a specific pattern of degeneration happened only in a limited number of timeframes
that was lower than the whole input video. The weights depended on the current state of
the decoder and the current output:

→
c i = VT→α i;

→
α i ∈ RT (12)

→
α i = Softmax

(
Watt

[→
s i−1, ReLU

(
Win

→
o i−1

)])
; Watt ∈ RT × 2d, Win ∈ Rd × C (13)

Here,
[
→
a ,
→
b
]

is the concatenation of two vectors. The final output y is normalized by

the sigmoid function:
y =

(→
o C+1

)
∈ (0, 1)C. (14)

Apart from the weights used by the GRUs, Win, Watt, and Wout are learnable weights.
The EntireAxon RNN was trained with 162 images for 60 epochs using the lamb op-

timizer [36] with a batch size of 128. We used a learning rate of 0.01 that was reduced by
a factor of 10 every 15 epochs and an additional weight decay of 0.0001. The two GRUs
(encoder and decoder) contained three layers, and we used dropout with a p-value of 0.9. To
increase the RNN robustness against varying axon thickness, we also added eroded versions
of the segmentation data using a cross-shape as kernel with the sizes three, five, and seven.
Accordingly, each image existed six times in the dataset, with three eroded versions and three
unchanged copies, to keep a 50% chance of having the original image for training.

2.13. RNN Cluster Analysis

The unnormalized class output
→
o C+1 was computed by the matrix-vector product

Wout
→
z C+1 where

→
z C+1 was a 256-dimensional vector representation of the input sample,

computed by the model. For the classes to be linearly separable, the vector represen-
tations of each class needed to be close to each other in the 256-dimensional space. To
visualize the relationships of the specific samples, we employed t-distributed stochas-
tic neighborhood embedding (T-SNE) to compute a 2-dimensional representation of the
high-dimensional data.

2.14. Ten-Fold Cross-Validation of the RNN

To validate the RNN, we used 10-fold cross-validation [37]. The dataset S was di-
vided into 10 subsets, ensuring that each subset included at least 1 sample of each class:
S = ∪10

i=1Si; Si ∩ Sj = ∅, i 6= j. We trained 10 models for i = 1,...,10 on Traini = S/Si and
tested them on Testi = Si. Subsequently, we combined and evaluated all test samples
Test = ∪10

i=1Testi. Mean recall, precision, and F1 score were determined as described above.

2.15. Analysis of the Morphological Pattern of AxD Using the EntireAxon RNN

After hemin exposure, all AxD segmentations were automatically analyzed with the
trained EntireAxon RNN, which predicted the occurrence of the 4 morphological patterns
of AxD in a pixel-wise manner. Of note, a pixel can be predicted to belong to 0, 1, or
multiple morphological patterns. Only pixels previously identified as degenerated over
time were considered by applying a ‘fragmentation mask’ that included all no-background
pixels that changed to either background or fragment during the recording time.
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For each experimental condition (i.e., hemin concentration), the percentage of the
occurrence of each morphological pattern was calculated as the sum of all pixels per mor-
phological pattern on all images of that experimental day divided by the ‘fragmentation
mask’ as follows:

′morphological pattern′ [%] =
∑ pixel of morphological patterni

∑ pixel no background→ background or fragment
× 100 (15)

2.16. Statistical Analysis

Six biological replicates for each concentration were employed in each experiment
to assess the hemin-induced AxD. We did not perform an a priori power analysis, as this
was an exploratory study. Normality was evaluated with the Kolmogorov–Smirnov test,
variance homogeneity using the Levené test, and sphericity by the Mauchly test. When
the data were normally distributed and variance homogeneity was met, one-way ANOVA
was performed, followed by the Bonferroni post-hoc test. In the case that the data were not
normally distributed, the Kruskal–Wallis test was performed for multiple comparisons of
independent groups, followed by the post-hoc Mann–Whitney U test with α-correction
according to Bonferroni-Holm to adjust for the inflation of type I error due to multiple
testing. For repeated testing with covariates, a repeated measures ANOVA was performed
with Greenhouse–Geisser adjustment if the sphericity was not given. Linear regressions
were performed for AxD patterns. Data are represented as mean ± 95% confidence interval
(CI) except for the nonparametric data of the AUC for axonal fragments, where medians are
given. A value of p < 0.05 was considered statistically significant. The detailed statistical
analyses can be found in Tables S1–S3. All statistical analyses were performed with IBM
SPSS version 23 (RRID:SCR_002865), except linear regressions that were performed with
GraphPad Prism version 8 (RRID:SCR_002798).

3. Results
3.1. The EntireAxon Platform for the Longitudinal Study of Axonal Degeneration

To enable the systematic analysis of AxD in vitro, we manufactured a microfluidic
device containing 16 individual microfluidic units (Figure 1 and Supplementary Figure S1)
that can be investigated in parallel and recorded simultaneously, which reduces the manu-
facturing, treatment, and recording time. We demonstrate that this novel device allows the
spatial separation of somata (microtubule-associated protein 2-positive) from their axons
(synaptophysin-positive), which is leakproof, as somata were not detected on the axonal
side (Figure 1d).

Then, we trained a CNN, the EntireAxon, to segment all relevant features of AxD,
i.e., axons, axonal swellings, and axonal fragments (Figure 2). Whereas the EntireAxon
CNN recognized the class ‘background’ better than the three axon classes ‘axon’, ‘axonal
swelling’, and ‘axonal fragment’ (mean F1 score: 0.995), axon-specific segmentation re-
vealed the highest mean F1 score for the class ‘axon’ (0.780), followed by the classes ‘axonal
swelling’ (0.567), and ‘axonal fragment’ (0.301) (Table 1).
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through the MG into the axon compartment. Directed growth is supported by culture medium microflux due to different 
medium volumes between the two wells. (d) Phase-contrast image of primary cortical axons that were spatially separated 
from their somata by the MG at day in vitro 7, which we confirmed by immunofluorescence staining of dendrites using 
microtubule-associated protein 2 (MAP2, green, 1:4000) and axons using synaptophysin (red, 1:250). DAPI (blue, 1:1000) 
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Figure 1. Microfluidic device for the enhanced throughput cultivation of axons. (a) Manufacturing process of the microfluidic
device prototype created with BioRender.com. (b) The microfluidic device incorporates 16 individual microfluidic units for
axon cultivation. One microfluidic unit consists of two wells that are connected through compartments and microgrooves
(MG). (c) Primary cortical neurons are seeded into the soma compartment from which their axons grow through the MG
into the axon compartment. Directed growth is supported by culture medium microflux due to different medium volumes
between the two wells. (d) Phase-contrast image of primary cortical axons that were spatially separated from their somata
by the MG at day in vitro 7, which we confirmed by immunofluorescence staining of dendrites using microtubule-associated
protein 2 (MAP2, green, 1:4000) and axons using synaptophysin (red, 1:250). DAPI (blue, 1:1000) was used for nuclear
counterstaining (top). Scale bar: 100 µm.
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EntireAxon CNN was validated with a separate validation dataset to assess its performance (recall, precision, and mean 
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Figure 2. EntireAxon CNN for the enhanced throughput analysis of AxD. (a) The flowchart of the EntireAxon CNN. The
AxD data was separated into training, validation, and testing data. We adapted a standard u-net with a ResNet-50 encoder
and used a CNN ensemble, which combines the predictions from multiple CNNs to generate a final output and is superior
to individual CNNs. (b) We manually labeled the training data to segment each pixel into the four classes ‘background’,
‘axon’, ‘axonal swelling’, and ‘axonal fragment’, which are displayed in the output image in black, dark grey, intermediate
grey, and light grey, respectively. We trained an ensemble comprising eight CNNs to segment the four classes. (c) The
EntireAxon CNN was validated with a separate validation dataset to assess its performance (recall, precision, and mean F1
score), which was compared to the human evaluators (ground truth was labeled by human evaluator 1). (d) The EntireAxon
CNN was applied to data on AxD induced by the exposure of hemin, which is used to model of hemorrhagic stroke in vitro.
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Table 1. Validation of the EntireAxon CNN performance for all four classes—‘background’, ‘axon’,
‘axonal swelling’, and ‘axonal fragment’—in previously unseen phase-contrast microscopic images.

Class Precision Recall Mean F1-Score

Background 0.993 0.996 0.995
Axon 0.789 0.774 0.780

Axonal swelling 0.609 0.534 0.567
Axonal fragment 0.805 0.196 0.301

Next, we compared the performance of the EntireAxon CNN on the ground truth
(human evaluator 1) with two additional human evaluators. The EntireAxon CNN reached
higher mean F1 scores for all classes, except for the class ‘axonal fragment’, where human
evaluator 2 outperformed the EntireAxon CNN (Table 2).

Table 2. Comparison of the mean F1 scores between the EntireAxon CNN and two human evaluators
on the ground truth (human evaluator 1 also labeled the training images) to recognize background,
axon, axonal swelling, and axonal fragments.

Mean F1-Score

Class Background Axon Axonal
Swelling

Axonal
Fragment

EntireAxon CNN 0.995 0.780 0.567 0.301
Human evaluator 2 0.991 0.654 0.485 0.548
Human evaluator 3 0.993 0.704 0.489 0.221

This may have been due to the fact that the EntireAxon CNN was trained on images
labeled by the same human evaluator (1) that labeled the ground truth. To assess whether
its performance is more generalizable across the different evaluators, we compared the
EntireAxon CNN to each of the human evaluators on the consensus labels of the two other
human evaluators (Figure 3 and Table 3). Visual inspection of the labels showed a wide
overlap between the different evaluators. However, there was considerable uncertainty,
especially for the classification of axonal fragments (Figure 3). When comparing the mean
F1 scores for all classes, the EntireAxon reached similar or even higher scores than the other
three evaluators (Table 3). This may be because pixels that were differentially assigned by
the human evaluator, i.e., more difficult to classify, were excluded from the comparison.

Table 3. Comparison of the mean F1 scores between the EntireAxon CNN and the human evaluator
on the consensus labeling of the other two human evaluators.

Mean F1-Score

Consensus Class Background Axon Axonal
Swelling

Axonal
Fragment

Evaluators 1
and 2

EntireAxon CNN 0.998 0.847 0.667 0.400
Evaluator 3 0.998 0.808 0.647 0.376

Evaluators 1
and 3

EntireAxon CNN 0.998 0.870 0.710 0.674
Evaluator 2 0.996 0.759 0.716 0.564

Evaluators 2
and 3

EntireAxon CNN 0.998 0.781 0.607 0.590
Evaluator 1 0.996 0.747 0.592 0.421

Collectively, this suggests that the EntireAxon CNN sensitively and specifically recog-
nizes axons and the morphological features of AxD.
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Figure 3. Performance of the EntireAxon CNN compared to human evaluators. Phase-contrast validation image, its En-
tireAxon CNN segmentation mask, and the consensus labeling masks of two human evaluators that show the segmentation
overlap (cyan) or difference (red) between the labels. Scale bar: 100 µm.

3.2. Axonal Integrity Is Lost over Time with Axonal Swellings Preceding Axon Fragmentation

Conventional in vitro models of AxD rely on nutrient deprivation or axotomy and
focus on the axons outside of the brain. However, AxD is not only an active and commonly
observed process in the brain, but it is also believed to be caused by more complex mecha-
nisms given the different microenvironments in which it may occur. A distinct pathological
micromilieu has recently been observed for hemorrhagic stroke, after which the lysis of
erythrocytes from the hematoma leads to the release of the cytotoxic product hemin [14,15].
Patients suffering from hemorrhagic stroke often experience AxD that is associated with
worse motor and functional outcome [16,17]. Importantly, AxD occurs in the subacute
stages of hemorrhagic stroke. Thus, addressing AxD may not only provide a new thera-
peutic target, but also a much wider time window for intervention. We therefore modelled
hemorrhagic stroke by exposing axons from primary cortical neurons to the hemolysis
product hemin, a commonly used agent to mimic hemorrhagic stroke in vitro [14,15,38],
and investigated the progression of AxD over 24 h.

Hemin induced time-dependent morphological changes, leading to AxD compared to
vehicle-treated axons (Figure 4 and Videos S1–S4). Area-under-the-curve (AUC) analyses over
24 h revealed a significant decrease in the axon area in all three hemin concentrations (50 µM
vs. 0 µM: P = 0.026; 100 µM vs. 0 µM: P = 0.018, 200 µM vs. 0 µM: P < 0.001). The axonal
swelling area also increased in all three concentrations (50 µM vs. 0 µM: P = 0.012, 100 µM vs.
0 µM: P = 0.005, 200 µM vs. 0 µM: P = 0.016), while the axonal fragment area was elevated only
for axons treated with 100 and 200 µM hemin (vs. 0 µM: P = 0.008, Figure 4c and Table S4).
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Figure 4. Time-dependent hemin-induced AxD. (a) Primary cortical axons treated with hemin (50, 100, 200 µM) degenerated
compared to vehicle-treated axons (0 µM) that continued to grow. Scale bar: 50 µm. For complete time-lapse videos
including segmentation, refer to Videos S1–S4. (b) Quantification of AxD over 24 h in phase-contrast images. To determine
the time course, the sum of pixels in each class and hemin concentration over time was normalized to the baseline of
that class and condition. The quantification of the phase-contrast images over 24 h revealed significantly smaller axon
areas starting at 11.5 h after 200 µM (P = 0.020), at 14 h after 100 µM (P = 0.040), and at 15 h after 50 µM (P = 0.018) hemin
treatment compared to the control (0 µM). The axonal fragment area significantly increased from 9.5 h onwards in 200 µM
hemin (P = 0.037) and from 17.5 h in 100 µM hemin (P = 0.044), while the axonal swelling area increased from 6 h onward
in 100 µM hemin (P = 0.019) and 200 µM hemin (P = 0.010), and from 8 h in 50 µM hemin (P = 0.030). N = 6 independent
cultures of primary cortical neurons. Means + 95% CI are given. One-way ANOVA with Greenhouse-Geisser correction.
+, *, # P < 0.05; + = 50 µM vs. 0 µM, * = 100 µM vs. 0 µM, # = 200 µM vs. 0 µM. For detailed statistical information, refer to
Table S3. (c) Area-under-the-curve (AUC) analysis of hemin-induced AxD. Whereas axons exposed to hemin showed a
decline in axon area, axonal swelling and axonal fragment area increased over 24 h. N = 6 independent cultures of primary
cortical neurons. Means ± 95% CI are given for axon and axonal swelling area, medians for fragment area. * P < 0.05 vs.
0 µM. For exact P values, refer to Table S4.
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Comparing the time course of AxD between hemin- and vehicle-treated axons (0 µM),
the axon area decreased starting at 11.5 h at 200 µM (P = 0.020, from 15 h P < 0.001), at
14 h at 100 µM (P = 0.040, from 18.5 h P < 0.001), and at 15 h at 50 µM (P = 0.018, from 19 h
P < 0.001). Hemin treatment also elevated the axonal fragment area starting at 9 h at 200 µM
(P = 0.037) and at 17 h at 100 µM hemin (P = 0.044). Interestingly, the axonal swelling area
increased prior to the changes in axon and axonal fragment area, i.e., starting at 6 h at
200 µM (P = 0.010) and 100 µM (P = 0.019), and at 8 h at 50 µM hemin (P = 0.030). For the
highest hemin concentration, the increase was only transient (until 18.5 h), suggesting that
axonal swellings preceded the axon fragmentation (Table S3), which can also be seen in the
time-lapse recordings (Videos S2–S4).

The results of the time course analysis were further substantiated by live cell fluorescent
staining (calcein AM), which indicated the starting point of AxD after hemin treatment was
between 8 and 12 h for 200 µM hemin, between 12 and 16 h for 100 µM hemin, and 16 and
20 h for 50 µM hemin (Supplementary Figure S2). Taken together, AxD progression depends
on the severity of the insult, and axonal swellings may be reliable predictors of AxD.

3.3. Deep Learning Deciphers Four Patterns of AxD

Axons disintegrate in different ways depending on the biological context. During
development and neural circuit assembly, inappropriately grown axons can undergo ax-
onal retraction, axonal shedding, or local AxD [9,10]. Axonal retraction is characterized by
retraction bulb formation at the distal tip and subsequent pullback [9]. During axonal shed-
ding, the axon retracts, leaving behind small pieces of its distal part (axosomes) [11]. Local
AxD is characterized by axon disintegration into separated axonal fragments [10]. Acutely
and chronically injured axons may degenerate retrogradely, anterogradely, or in a Wallerian
degeneration pattern, ultimately resulting in the generation of axonal fragments [6,12,13].
Although organelles and other cargo are constantly transported anterogradely and retro-
gradely along the axon, deficits in axonal transport leading to a halt of axonal swellings
have been described to precede AxD in experimental models of amyotrophic lateral sclero-
sis, multiple sclerosis, oxidative stress, and genetic models [39–42].

Our AxD time-lapse data revealed different morphological patterns of degeneration
that can occur in the same axons over time (Figure 5 and Videos S5–S8). We categorized
these morphological patterns as:

1. Granular degeneration: AxD instantly resulting in granular separated fragments.
2. Retraction degeneration: AxD in which the distal part of the axon retracts, ultimately

resulting in granular degeneration.
3. Swelling degeneration: AxD in which axonal swellings enlarge, followed by granular

degeneration.
4. Transport degeneration: AxD in which the transport of axonal swellings of constant

size, which do not enlarge, is halted, ultimately resulting in granular degeneration.

We trained a RNN, the EntireAxon RNN, to identify these morphological patterns
based on changes in class segregation over time using a training dataset of AxD segmenta-
tion recordings (Figure 6a). This training dataset contained 162 time series of individual,
degenerating axons and the corresponding segmentation masks generated by the En-
tireAxon CNN that were manually labeled according to the different degeneration patterns.
Given the 4 different classes (background, axon, axonal swelling, and axonal fragment),
16 different class pairs can occur between a segmentation at time step t and time step
t + 1. For example, a background pixel at t can either remain background pixel at t + 1 or
change into one of the other three classes, and the same is true for the other classes. Thus,
in total, 4 times 4 class pairs are possible. We used a window size of 32 × 32, of which
the probability of a class pair in the central pixel relative to the previous timepoint was
computed for each timepoint and across the entire image.
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During swelling degeneration (S), many axonal swellings enlarge, resulting in axonal fragments (white arrows). During 
transport degeneration (T), the transport of axonal swellings along the axon is halted prior to the degeneration of the axon 
(white arrows). Scale bar: 20 µm. For complete time-lapse videos including segmentation, refer to Videos S5–S8. 
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The RNN determined seven clusters (cluster 0–6) that were characterized by an idio-
syncratic pattern of the changes in class distribution over 24 h (Supplementary Figure S3). 
All clusters showed a decrease in the class ‘axon’ and an increase in the class ‘background’. 
Depending on the hemin concentration, the changes occurred at a different magnitude 
and at different timepoints, with concomitant increases in either the class ‘axonal swelling’ 
and/or ‘axonal fragment’. In cluster 0, there was an early decrease in the class ‘axon’, 
which then continued more linearly, as well as a later rise in the class ‘axonal fragment’. 

Figure 5. Four morphological patterns of AxD. (a) Schematic overview and (b) phase-contrast recordings of the proposed
AxD morphological patterns in primary cortical axons: Granular degeneration (G) is characterized by the fragmentation of
the axon (white arrows). During retraction degeneration (R), the axonal growth cone retracts in the proximal direction, and
the part of the axon in proximity of the growth cone disintegrates along with the axonal swellings (white arrows). During
swelling degeneration (S), many axonal swellings enlarge, resulting in axonal fragments (white arrows). During transport
degeneration (T), the transport of axonal swellings along the axon is halted prior to the degeneration of the axon (white
arrows). Scale bar: 20 µm. For complete time-lapse videos including segmentation, refer to Videos S5–S8.

The RNN determined seven clusters (cluster 0–6) that were characterized by an id-
iosyncratic pattern of the changes in class distribution over 24 h (Supplementary Figure S3).
All clusters showed a decrease in the class ‘axon’ and an increase in the class ‘background’.
Depending on the hemin concentration, the changes occurred at a different magnitude
and at different timepoints, with concomitant increases in either the class ‘axonal swelling’
and/or ‘axonal fragment’. In cluster 0, there was an early decrease in the class ‘axon’,
which then continued more linearly, as well as a later rise in the class ‘axonal fragment’. In
contrast to cluster 0, cluster 1 showed no increase in the class ‘axonal fragment’ and a linear
decrease in the class ‘axon’ from the start. In cluster 2, there was a strong increase in the
class ‘axonal swelling’. Cluster 3 demonstrated an early and lasting high level of the class
‘axonal swelling’, with a later increase in the class ‘axonal fragment’. Cluster 4 showed a
rapid decrease in the class ‘axon’ concomitant with increases in the classes ‘background’
and ‘axonal swelling’. Cluster 5 was similar to cluster 1, but with an early drop in the class
‘axon’. Cluster 6 showed an increase in the class ‘axonal swelling’ similar to but to a greater
extent than cluster 2.
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sentation of the high-dimensional data. (b) The clusters classify the four morphological patterns of AxD with yellow indi-
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swelling, and transport degeneration). For more details on the morphological changes underlying the cluster analysis, 
refer to Supplementary Figure S3. 

3.4. The Morphological Patterns of AxD Depend on the Extent of AxD 
We then applied the EntireAxon RNN to quantify the occurrence of the four mor-

phological patterns of AxD in the context of hemorrhagic stroke (Figure 7 and Video S9). 
Whereas all AxD patterns were detected (Figure 7a), hemin concentration dependently 
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Figure 6. Recognition of four morphological patterns of AxD by the EntireAxon RNN. (a) Schematic workflow of the RNN
to recognize and quantify morphological patterns of AxD based on the identification of seven clusters. The EntireAxon
CNN segmentation masks were used for the RNN training, which determined the change in class over time. Based on
the 16 different possible class pairs, the RNN determined 7 clusters (cluster 0–6). To visualize the relationships of the
specific samples, we employed t-distributed stochastic neighborhood embedding (T-SNE) to compute a two-dimensional
representation of the high-dimensional data. (b) The clusters classify the four morphological patterns of AxD with
yellow indicating included and black indicating excluded clusters: granular (G), retraction (R), swelling (S), and transport
degeneration (T). Clusters of granular degeneration overlap with recognized clusters of other morphological patterns
(retraction, swelling, and transport degeneration). For more details on the morphological changes underlying the cluster
analysis, refer to Supplementary Figure S3.
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The RNN categorized each cluster to one of the four morphological patterns (Figure 6b):
(i) Granular degeneration was defined by the clusters that described the degeneration of
axons into axonal fragments, i.e., clusters 0, 1, 3, and 5. (ii) Retraction degeneration only
included clusters 1 and 5, indicating the retraction of the axon followed by its fragmenta-
tion. (iii) Swelling degeneration was characterized by the three clusters that included the
class ‘axonal swelling, i.e., clusters 2, 3, and 6, as well as cluster 5, showing the exchange of
the class ‘axon’ for ‘background’. (iv) Transport degeneration was the only pattern that
relied on cluster 4 and was also partly characterized by clusters 0, 1, 2, and 6. Although
some clusters overlapped among morphological patterns, the unique combination of the
different clusters allowed us to distinguish all four morphological patterns.

To validate the EntireAxon RNN, a 10-fold cross-validation was performed. Therefore,
the dataset was randomly divided into 10 datasets and ten models were trained with 9
of the datasets leaving the remaining dataset for validation (not previously seen by the
RNN). Based on the combined test samples, the RNN was able to distinguish between the
four morphological patterns of AxD (Table 4). These data confirm that the combination
of the different AxD features as well as their spatiotemporal progression defines distinct
morphological AxD patterns.

Table 4. Ten-fold cross-validation of the four morphological patterns of AxD.

Class Precision Recall Mean F1-Score

Granular degeneration 0.796 0.953 0.868
Retraction degeneration 0.419 0.500 0.456
Swelling degeneration 0.681 0.681 0.681
Transport degeneration 0.442 0.824 0.575

3.4. The Morphological Patterns of AxD Depend on the Extent of AxD

We then applied the EntireAxon RNN to quantify the occurrence of the four mor-
phological patterns of AxD in the context of hemorrhagic stroke (Figure 7 and Video S9).
Whereas all AxD patterns were detected (Figure 7a), hemin concentration dependently
increased granular degeneration (P < 0.001), swelling degeneration (P < 0.001), and trans-
port degeneration (P = 0.025, Figure 7b). When comparing the slopes of the different AxD
patterns under hemin exposure, granular and swelling degeneration were significantly
different from transport and retraction degeneration (P = 0.034 for granular vs. retraction
degeneration, P = 0.026 for granular vs. transport degeneration, P = 0.030 for swelling
vs. retraction degeneration, P = 0.026 for swelling vs. transport degeneration, Table S5).
Collectively, our data suggest that hemin concentration dependently induces different
morphological patterns of AxD in cortical axons.
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Figure 7. Concentration-dependent differences in the morphological patterns of hemin-induced AxD. (a) The classification
of granular (G), retraction (R), swelling (S), and transport degeneration (T) in primary cortical axons treated with 200 µM
hemin. For the complete time-lapse video including segmentation, refer to Video S9. (b) Linear regressions of the four
morphological patterns of AxD in hemin-induced AxD. The area classified for each AxD pattern was normalized to
the total degeneration area. Dotted lines show 95% confidence bands. N = 6 independent cultures of primary cortical
neurons. Granular degeneration: F(1, 22) = 19.330, P < 0.001. Retraction degeneration: F(1, 22) = 0.066, P = 0.800. Swelling
degeneration: F(1, 22) = 16.900, P < 0.001. Transport degeneration: F(1, 22) = 5.757, P = 0.025. When comparing the slopes of
the different AxD patterns, granular and swelling degeneration were significantly different from transport and retraction
degeneration (P = 0.034 for granular vs. retraction degeneration, P = 0.026 for granular vs. transport degeneration, P = 0.030
for swelling vs. retraction degeneration, P = 0.026 for swelling vs. transport degeneration). For detailed statistical analysis,
refer to Table S5.

4. Discussion

We here describe two complementary tools, a novel microfluidic device and a deep
learning algorithm, that allow increasing the experimental yield, in-depth enhanced
throughput analysis of AxD, and longitudinal investigation of AxD in vitro. Using these
tools, we were able to demonstrate time-dependent changes of the morphological features
of AxD, with axonal swellings preceding axon fragmentation in a model of hemorrhagic
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stroke-induced AxD as well as the occurrence of four morphological patterns of AxD under
pathophysiological conditions: granular, retraction, swelling, and transport degeneration.

We here propose a novel monolithic microfluidic device consisting of 16 individual
microfluidic units that enables the parallel and separated treatment and/or manipulation
of axons and somata (Figure 1). The currently available devices do not allow enhanced
throughput experiments, as they comprise only single microfluidic units [19,23]. Although
some devices can harbor multiple experimental conditions, they employ a radial design
with a single soma compartment, in which one experimental condition may influence
another due to the potential of retrograde signaling [22,43]. Another option is the parallel
use of multiple individual devices, which allows handling up to 12 devices in a conventional
12-well plate [27]. Compared to our device, this procedure is time-consuming in both the
manufacturing and adjustment for recordings.

To date, the extent of AxD has mainly been investigated with a focus on axon frag-
mentation as the primary readout. To quantify axon fragmentation, Sasaki and colleagues
introduced the AxD index as the ratio of the fragmented axon area versus the total axonal
area [26]. However, the AxD index did not include axonal swellings, which are a character-
istic feature of degenerating axons [8,44]. Although other analyses have considered axonal
swellings as a morphological feature of AxD [7,8], the approaches were time-consuming
and required manual annotations.

We herein adapted a standard u-net with a ResNet-50 encoder [32,45] and used a
CNN ensemble, which combines predictions from multiple CNNs to generate a final
output and is superior to individual CNNs [46–48]. The EntireAxon CNN performs an
automatic segmentation and quantification of axons and morphological features relevant to
AxD, including axonal swellings and fragments, on phase-contrast time-lapse microscopy
images (Figure 2). The EntireAxon CNN recognized the four classes—‘background’, ‘axon’,
‘axonal swelling’, and ‘axonal fragment’—with the highest mean F1 score for the class
‘background’ (Table 1). The comparably lower performance of the CNN to recognize axonal
fragments may be explained by the disproportional distribution of pixels in the training
and validation data (‘background’ mean of 96.42% of pixels, ‘axon’ 2.77%, ‘axonal swelling’
0.58%, ‘axonal fragment’ 0.23%). Hence, every individual segmentation error affects the
false positive or false negative rate more strongly in these classes.

The comparison with human evaluators revealed that the EntireAxon CNN reached a
similar performance level. As expected, its performance was slightly better than the human
evaluators on the ground truth, as both the ground truth and training data were labeled by
the same human evaluator (Table 2). Interestingly, when comparing the EntireAxon CNN
with a human evaluator on the consensus label of the other two human evaluators, not only
was the EntireAxon CNN as good as or even better than the human evaluator, but the mean
F1 scores were also higher than on the ground truth labels (Figure 3 and Table 3). This
may be because pixels that were differentially assigned by the human evaluator, i.e., more
difficult to classify, were excluded from the comparison. Taken together, these findings
demonstrate that the EntireAxon CNN is suitable to automatically quantify AxD and its
accompanying morphological changes in an enhanced throughput manner.

We then applied these novel tools to a model of hemorrhagic stroke-induced AxD
by exposing axons from primary cortical neurons to the hemolysis product hemin and
investigated the progression of AxD. Similar to previous results, where 100 µM hemin were
sufficient to induce significant neuronal cell death in conventional cultures of somata and
axons [15], we observed that 100 µM hemin led to a significant decrease in the axon area
and an increase in the axonal swelling and fragment area (Figure 4).

It has been described previously that the progression of AxD undergoes a latent phase,
during which the structural integrity of the axon is maintained, followed by a catastrophic
phase with the rapid disintegration of the axon [8]. In our model, the catastrophic phase of
AxD started between 12 and 18 h after the administration of hemin (Figure 4 and Supple-
mentary Figure S2). Similar durations of the latent phases of AxD have been observed in
other models. For instance, under circumstances of growth factor withdrawal, the transition
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to the catastrophic phase occurred at 12–24 h [8,49,50]. Our findings are also in line with
results reported in a model of experimental autoimmune encephalomyelitis, indicating that
axonal swelling anticipates fragmentation [7]. Taken together, AxD progression depends
on the severity of the insult, and axonal swellings may be reliable predictors of AxD.

Whereas we applied the EntireAxon CNN on time-lapse images, it should be noted
that it is also possible to calculate the ratios between swelling or fragment area and axon
area based on random images that are not necessarily in the same position over time. The
respective areas are calculated for each image and class separately and independently of
time or any previous images. However, we recommend including baseline recordings to
allow for normalization due to differences in the neurite outgrowth in the devices.

Interestingly, axonal swellings and axonal fragments were related to different mor-
phological patterns of AxD. Specifically, we observed axons that showed signs of axonal
retraction, an enlarging of axonal swellings, and axonal transport before degeneration
(Figure 5). We therefore trained the EntireAxon RNN to quantify the occurrence of four mor-
phological patterns of AxD, i.e., granular, retraction, swelling, and transport degeneration,
based on the clusters of unique changes of classes over time (Figure 6 and Supplementary
Figure S3). The RNN generated 7 clusters from the 16 possible class pairs. Of note, all
clusters differed in the extent and timing of class changes. The RNN used a different
ensemble of clusters to classify each pattern. However, some clusters overlapped between
patterns, which can be explained by the fact that the eventual degeneration of the axon,
which leads to fragments, is the end-product of AxD. Therefore, clusters 0, 1, 3, and 5
also occur in retraction, swelling, and transport degeneration. On the other hand, axonal
swellings are a dominant feature of swelling and transport degeneration, which explains
why cluster 6 was used to define both patterns.

These different AxD patterns have not yet been described to occur simultaneously
in the same biological condition. However, granular degeneration was observed in ret-
rograde, anterograde, Wallerian, and local AxD after axotomy or trophic factor depriva-
tion [6,10,12,13]. Retraction degeneration was described in axonal retraction and shedding
in developmental AxD [9,11]. Swelling degeneration was reported in experimental autoim-
mune encephalitis and growth factor deprivation [7,8]. Transport degeneration was shown
in experimental models of amyotrophic lateral sclerosis, multiple sclerosis, oxidative stress,
and genetic models [39–42].

Our data demonstrate that all four morphological degeneration patterns can occur
along cortical axons (Figure 7). Interestingly, we also observed a concentration-dependent
effect in the context of hemorrhagic stroke. Granular, swelling, and transport degeneration
were significantly increased with increasing hemin concentrations, with granular and
swelling degeneration being more strongly correlated. The extent to which our model
of hemin-induced AxD in hemorrhagic stroke is molecularly similar to developmental
or pathophysiological AxD needs to be further investigated, along with the underlying
molecular mechanisms of the four patterns of AxD. This could be greatly facilitated by
the EntireAxon RNN, which is able to automatically detect the morphological patterns in
time-lapse recording due to its capacity to relate each output to previous images in the
stacks by its current units.

Limitations and Outlook

1. Our microfluidic device does not currently allow the investigation of AxD at more
proximal axonal parts to the soma, such as the axonal initial segment. Shortening the
length of the microgrooves or including a more proximal compartment are possible
modifications of the current design.

2. Our results are based on unmyelinated axons. Co-culture with glia cells that may play
a role in AxD is possible in the presented microfluidic device, and the time course and
morphological changes may be different under different co-culture conditions. These
studies are of high relevance to the field but are beyond the scope of the present study.
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3. The observed effects of AxD in hemorrhagic stroke within this study were based
on hemin toxicity, and we cannot exclude that other hemolysis products, such as
thrombin or bilirubin, have different effects. Additional studies should investigate
differences of hemolysis products to increase our understanding of the mechanisms
of AxD in hemorrhagic stroke.

4. The overall CNN performance may be further improved with more general inputs.
For example, the segmentation of fragment pixels cannot be accurately conducted
based on a single image at a specific timepoint. Instead, the whole process of AxD,
ultimately resulting in the disintegration of the axons (i.e., the generation of axonal
fragments), needs to be considered. In principle, CNNs using 3D convolutions could
perform a segmentation over an entire time-lapse recording and model the temporal
dependencies. However, we decided against the 3D approach, as it severely restricts
general applicability due to its greatly increased effort to label suitable time series for
training. In this context, the identification of the images that will yield the best results
is crucial to effectively reduce labeling costs, which we have described previously
using an active learning method [51].

5. Conclusions

The EntireAxon platform, the combination of an advanced microfluidic device and
a deep learning tool, expands our possibilities to track AxD by detecting axons, axonal
swellings, and axonal fragments in an enhanced throughput manner. We further identified
four morphological patterns of AxD, i.e., granular, retraction, swelling, and transport
degeneration, under pathophysiological conditions in the context of hemorrhagic stroke.
The EntireAxon platform will help to tackle the complex processes of AxD and may
significantly enhance our understanding of AxD in health and disease to develop novel
therapeutic strategies for brain diseases.

6. Patents

A.P. (Alex Palumbo), P.G., and M.Z. declare that they have filed a patent for the
microfluidic device and the EntireAxon deep learning algorithm to quantify axonal degen-
eration (European Patent Office, file number: 20152016.0).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10102539/s1, Figure S1: Manufacturing of the microfluidic device for the enhanced
throughput cultivation of axons, Figure S2: Validation of the time course of AxD by fluorescent
live cell marker calein AM, Figure S3: Cluster analysis of the four morphological patterns of AxD
based on the changes in class segregation of the pixels, Table S1: Chemicals and Reagents, Table S2:
Antibodies, Table S3: Time-dependent AxD in an in vitro model of hemorrhagic stroke, Table S4:
AUC analyses of hemin-mediated AxD, Table S5: Comparison of the slopes of the linear regression
of the four morphological patterns of AxD in an in vitro model of hemorrhagic stroke. Video S1:
Time-lapse video of axons treated with 0 µM hemin. Video S2: Time-lapse video of axons treated
with 50 µM hemin, Video S3: Time-lapse video of axons treated with 100 µM hemin, Video S4:
Time-lapse video of axons treated with 200 µM hemin, Video S5: Time-lapse video of granular
degeneration induced by hemin, Video S6: Time-lapse video of retraction degeneration induced by
hemin, Video S7: Time-lapse video of swelling degeneration induced by hemin. Video S8: Time-lapse
video of transport degeneration induced by hemin, Video S9: Time-lapse video of the segmentation
by the RNN of AxD induced by hemin.
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