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Abstract. In this theoretical paper we address the question of how to encode the
local signal variation of multidimensional, multispectral signals. To this end, we
first extend the concept of intrinsic dimension to the case of multispectral images
in a way which is not depending upon the chosen colour space. We then show
how additive, multiplicative, and occluded superpositions of oriented layers can
be detected and estimated in multispectral images. We expect our results to be
useful in applications that involve the processing of multispectral images, e.g.
for feature extraction, compression, and denoising. Moreover, our methods show
how the detection and estimation of features like orientations, corners, crossing
etc. can be improved by the use of multispectral images.

1 Introduction

Let a gray-scale image be modelled by a function f : R2 → R. Given an (open) region
Ω, for all (x, y) ∈ Ω, either (a) f(x, y) = constant; or (b) f(x, y) = g(ax + by),
for some g, a, b; or (c) f varies along all directions. The image f is said to locally
have intrinsic dimension 0, 1 or 2, respectively (0D, 1D, 2D for short) [1]. The intrinsic
dimension is relevant to image coding due to the predominance of 0D and 1D regions
in natural images [2] and the fact that images are fully determined by the 2D regions,
i.e. the whole image information is contained in the 2D regions [3]. The concept can be
expressed in a more mathematical form as follows [4]. For a given region Ω, we choose
a linear subspace E ⊂ R2, of highest dimension, such that

f(x + v) = f(x) for all x,v such that x,x + v ∈ Ω, v ∈ E. (1)

The intrinsic dimension of f is therefore 2 − dim(E) for images (and n − dim(E)
for n-dimensional signals). The intrinsic dimension can be estimated with differential
methods, and we will review three such methods below. More general approaches are
based on the compensation principle [1] and the Volterra-Wiener theory of nonlinear
systems [5].
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Structure Tensor. This is a straightforward method based on the equivalence in Ω of
Eq. (1) and the constraint

∂f

∂v
= 0 for all v ∈ E . (2)

The subspace E can be estimated as the subspace spanned by the set of unity vectors
that minimise the energy functional

E(v) =
∫

Ω

∣∣∣∂f

∂v

∣∣∣2 dΩ = vT Jv , (3)

where J is given by

J =
∫

Ω

∇f ⊗∇f dΩ =
∫

Ω

[
f2

x fxfy

fxfy f2
y

]
dΩ . (4)

In the above equation, the symbol ⊗ denotes the tensor product, and fx, fy are short
notations for ∂f/∂x, ∂f/∂y . Therefore, E is the eigenspace associated with the small-
est eigenvalues of J, and the intrinsic dimension of f corresponds to the rank of J and
may be obtained from the eigenvalue analysis of J or, equivalently, from its symmetric
invariants [6].

The Hessian. Since Eq. (1) is assumed to be valid in a neighbourhood, it follows that,
in Ω,

∂2f

∂w∂v
= 0 for all v ∈ E and w ∈ R2 (5)

or, equivalently,
Hv = 0 for all v ∈ E , [7] (6)

where H is the Hessian of f, i.e.,

H =
[
fxx fxy

fxy fyy

]
. (7)

Hence, as for the structure tensor method, both the subspace E and the intrinsic dimen-
sion can be estimated from the eigenvalue analysis of the Hessian of f [1].

The Energy Tensor. The structure-tensor and Hessian methods have similar draw-
backs. The first fails at singular points, e.g., extreme points, while the second fails at
inflection points of the image. Equations (2) and (5) may be combined into a phase
invariant tensor, the so called energy tensor [8]:

B = ∇f ⊗∇f − fH. (8)

Note that the energy tensor is a combination of the structure tensor and the Hessian.
The purpose of this paper is twofold: first, we show how the above methods for

the estimation of the intrinsic dimension generalise to multispectral images; second,
we extend the methods to a different class of signals with fractional intrinsic dimen-
sion, which occur, for example, with multiple overlayed orientations and occlusions,
see Figure 1.
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Fig. 1. Examples of images that result from combinations of locally 1D layers. Synthetic exam-
ples of occlusion (top left) and transparent overlay (top middle), and a real example of an X-ray
car-tire image (top right) are shown. In the bottom row the results of estimating the orientations
are shown. Results are for grey-level images and are taken from [9]. Note that in the case of mul-
tispectral images, the results will improve because the structure tensor can be built by integration
in colour space instead of image space.

2 Multispectral Images and Intrinsic Dimension

Let a multispectral image be modelled by a function f : R2 → Rq. The concept of
intrinsic dimension extends straightforwardly to such images: a 0D image has constant
colour; in 1D images, the colours are constant along some direction; otherwise, the im-
age is 2D. Note that now the colours, not the grey levels, of the image must be constant
in a subspace in order to have a reduced intrinsic dimension. Next, we show how to ex-
tend the three differential methods described above to the case of multispectral images.
Since the coordinate system Rq is mainly an artifact of the colour space definition, it
seems useful to have a generalisation that does not depend on a particular choice of
such a coordinate system. In particular, just working with the image components inde-
pendently does not seem appropriate because they depend on the chosen colour space.

Structure Tensor. Similar to the case of scalar images, we look for the subspace E of
highest dimension such that, in Ω,

∂f
∂v

= 0 for all v ∈ E . (9)

This leads to a system of q equations for each x ∈ Ω. Since Eq. (9) is a vectorial
equation, we choose a scalar product (and its corresponding norm) in Rq for y =
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(y1, . . . , yq) and z = (z1, . . . , zq) in Rq as y · z =
∑q

1 akykzk . The positive weights
ak can emphasise some components of f relative to others. We may now estimate E
and the intrinsic dimension of f by minimising the functional

E(v) =
∫

Ω

∥∥∥ ∂f
∂v

∥∥∥2

dΩ . (10)

To find the tensor J associated with E , we set v = (vx, vy). Thus,

∂f
∂v

= vxfx + vyfy, (11)

where fx, fy denote the partial derivatives of f . Therefore,∥∥∥ ∂f
∂v

∥∥∥2

= v2
x‖fx‖

2 + 2vxvyfx · fy + v2
y‖fy‖

2
. (12)

Hence, Eq. (10) can be rewritten as

E(v) = vT Jv, (13)

where J = J(f) is defined as

J =
∫

Ω

[
‖fx‖2 fx · fy
fx · fy ‖fy‖2

]
dΩ. (14)

Thus, as in the gray-scale case, E and the intrinsic dimension of f may be estimated
from the eigenvalue analysis of J. Similar results have been obtained for the the gra-
dient of colour images [10] and for motion from colour [7]. As expected, the tensor
in Eq. (14) reduces to the one in Eq. (4) for gray-scale images. We relate the structure
tensor of f and its components by the following

Proposition 1. Let f = (f1, . . . , fq)T , then J(f) =
∑q

1 akJ(fk).

Proof. We have ∂f(x)/∂v = (∇f1 · v, . . . ,∇fq · v)T , and consequently,

∥∥∥∂f(x)
∂v

∥∥∥2

=
q∑
1

ak|∇fk · v|2 = vT
( q∑

1

ak∇fk ⊗∇fk

)
v , (15)

which yields the result by use of the scalar product defined above.

The Hessian. We start by taking directional derivatives of Eq. (9) to obtain, within Ω,

∂2f
∂w∂v

= 0 for all v ∈ E and w ∈ R2 . (16)

Let Hk = H(fk) be the Hessian of the component fk , then we have

∂2f
∂w∂v

= (wT H1v, . . . ,wT Hqv)T . (17)
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By an abuse of notation, we denote by the Hessian of f the linear mapping H : R2 →
R2q = Rq × · · · × Rq defined by

Hu = (H1u, . . . ,Hqu)T . (18)

With this notation, Eq. (16) holds if and only if

Hv = 0 for all v ∈ E . (19)

Since the above equation is overconstrained for q > 1, it has to be solved in a least-
squares sense, which yields E as the subspace spanned by the unity eigenvectors asso-
ciated to the minimal eigenvalue of HT H. Thus, the intrinsic dimension of f may be
obtained as the rank of HT H. By choosing, in R2, the standard scalar product and, for
y = (y1, . . . ,yq), z = (z1, . . . , zq) in R2q, the scalar product y · z =

∑q
1 ak yk · zk ,

a straightforward computation gives

Proposition 2. HT H =
∑q

1 akH2(fk) .

The Energy Tensor. The energy tensor method for the estimation of intrinsic di-
mension can be extended straightforwardly to multispectral images in analogy to the
Hessian case. We define a linear mapping B : R2 → R2q by taking into account the
energy tensor for the coordinate functions of f , i.e.

Bu = (B1u, . . . ,Bqu)T , (20)

where Bk = B(fk) = ∇fk ⊗∇fk − fkH(fk). Therefore, the subspace E is the kernel
of B, i.e.

Bv = 0 for all v ∈ E . (21)

Thus, again, E is estimated as the eigenspace associated to the minimal eigenvalue of
BT B, and the intrinsic dimension of f is computed as the rank of BT B. As before, we
have the following

Proposition 3. BT B =
∑q

1 akB2(fk) .

3 Intrinsic Dimension of Multiple, Multispectral Layers

In this section, we investigate a special class of 2D images which occur when two 1D
layers are combined into one 2D image, e.g. by additive superposition or occlusion. We
will show that a generalised structure tensor can be used to detect such superpositions
and to estimate the parameters of the 1D layers. Because such combinations of 1D
layers have an intrinsic dimension greater than one, but are not really 2D, we say that
they have a fractional intrinsic dimension between 1 and 2 and, thus, need a more
refined description (in terms of the generalised structure tensor introduced below).
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Pattern rank J rank J2

◦ 0 0
| 1 1
|+ | 2 2
others 2 3

Table 1. The shown correspondences between the different
patterns and the ranks of the two tensors define the intrinsic
dimension of the components of additively overlayed im-
ages. The symbols denote 0D (circle) and 1D (bar) pat-
terns. In general, the rank of JN , N = 1, 2, ... induces a
natural order of complexity for patterns consisting of N ad-
ditive layers [11].

Additive Multispectral Layers. Let f be the additive superposition of two layers

f = g + h , (22)

we want to know if both layers g,h have intrinsic dimension lower than two, i.e., for a
given region Ω, we want to know if there are subspaces E1 and E2 such that

∂g
∂u

=
∂h
∂v

= 0 for all u ∈ E1, v ∈ E2 . (23)

By allowing more layers, we can deal with the important case where the components fk

of f have intrinsic dimension lower than 2. For this, it suffices to look at f =
∑q

1 fkek,
where {e1, . . . , ek} is the standard basis for Rq. Taken together, Eq.s (22) and (23) are
equivalent to [12]

∂2f
∂u∂v

= uT Hv = 0 , (24)

which expands to
cxxfxx + cxyfxy + cyyfyy = 0, (25)

where cxx = uxvx , cxy = uxvy + uyvx , cyy = uyvy . Since the above equation is
linear in the parameter vector c = (cxx, cxy, cyy)T , there will be a correspondence
between the dimension of the subspaces E1, E2 and the rank of the tensor associated to
the energy functional (see [11] and Table 1)

E2(c) =
∫

Ω

‖cxxfxx + cxyfxy + cyyfyy‖2 dΩ = cT J2c, (26)

where J2 = J2(f) is given by

J2 =
∫

Ω

 ‖fxx‖2 fxx · fxy fxx · fyy

fxx · fxy ‖fxy‖2 fxy · fyy

fxx · fyy fxy · fyy ‖fyy‖2

 dΩ . (27)

Multiplicative Multispectral Layers. We now consider the multiplicative superposi-
tion of two layers, i.e.

f = g • h, (28)

where the bullet denotes that for every component of f , we have fk = gkhk. A direct
verification shows that Eq.s (23) and (28) imply the following constraint for f :

uT Bv = 0. (29)

In analogy to the additive case, we can construct a tensor J(B, f) for the estimation of
the intrinsic dimension of the layers.
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Occluded Multispectral Layers. We model occluded superposition of two images by

f = χg + (1− χ)h , (30)

where χ(x) is the characteristic function of some half-plane P. This model is appro-
priate for the local description of junction types T, L and Ψ . X-junctions fit better to a
transparent model as in Subsection 3. In order to estimate the intrinsic dimension of the
occlusion layers, we observe that Eq. (30) is equivalent to

f(x) =

{
g1(x) if x ∈ P

g2(x) otherwise.
(31)

Therefore, ∂f(x)/∂u = 0 if x belongs to P , and ∂f(x)/∂v = 0 if x does not belong
to P. From the above, we can draw the conclusion that the expressions

∂f
∂u

⊗ ∂f
∂v

= 0 and
∂f
∂v

⊗ ∂f
∂u

= 0 (32)

are valid everywhere except for the border of P where they may differ from zero.
Eq. (32) may not hold at the border of P , because the derivatives of the characteris-
tic function χ are not defined there. This is not the case if u and the border of P have
the same direction, e.g., in case of a T -junction. In contrast to the second order deriv-
ative approach, the equations in (32) differ. Expanding the first of these equations, we
find

uxvxfx ⊗ fx + uxvyfx ⊗ fy + uyvxfy ⊗ fx + uyvyfy ⊗ fy = 0 . (33)

A direct estimation of the uivj will result in an overconstrained system of equations for
u and v. This is avoided by averaging the equations in (32), i.e., by symmetrization, to
obtain

cxxfx ⊗ fx +
cxy

2
(fx ⊗ fy + fy ⊗ fx) + cyyfy ⊗ fy = 0 . (34)

Although the focus here is not on the estimation of the parameters u and v, the sym-
metrization has the extra benefit of reducing the size of the resulting tensor. The system
in Eq. (34) has q(q+1)/2 equations, which makes the system overconstrained if q > 2.
Note that the system is underconstrained for q = 1 and that a multispectral approach can
overcome this problem. As in the case of transparent layers, a least-squares procedure
to solve Eq. (34) will lead to the minima of the energy functional

E(c) =
∫

Ω

‖cxxfx ⊗ fx +
cxy

2
(fx ⊗ fy + fy ⊗ fx) + cyyfy ⊗ fy‖

2
dΩ (35)

= cJ2c , (36)

where

J2 =
∫

Ω

 ‖fx‖4 ‖fx‖2fx · fy |fx · fy|2

‖fx‖2fx · fy 1
2

(
‖fx‖2‖fy‖2 + |fx · fy|2

)
‖fy‖2fx · fy

|fx · fy|2 ‖fy‖2fx · fy ‖fy‖4

 dΩ . (37)

As before, a correspondence between the intrinsic dimension of the occlusion layers
and the rank of J2 is given by Table 1.
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4 Discussion

We have addressed the basic question of how to encode local signal variation in the case
of multispectral images. The results remain valid for any vector-valued two-dimensional
signal and can be extended to n-dimensional signals [9]. We have shown how the con-
cept of intrinsic dimension and the estimation of multiple orientations can be applied
to multispectral images in a way which does not depend on the chosen colour space.
We expect this to be useful for those who work with multispectral images and need to
extract meaningful features, compress, or denoise such images. Moreover, we expect
that some may choose to use multispectral images to improve the results obtained with
scalar images. This is because our results show how multiple spectral components, if
they differ, can help to estimate significant image features like orientations, corners, and
junctions. The estimation of local structure always requires a certain neighbourhood
and multispectral images offer the possibility to trade spatial against spectral neigh-
bourhoods. Our methods are based on derivatives, but we have discussed elsewhere,
e.g. in [6, 4], that this is not a serious practical restriction. Nevertheless, a more general
non-differential theory remains desirable.
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