
Bernd Jähne, Rudolf Mester, Erhardt Barth, and Hanno Scharr (Eds.)

Complex Motion

1st International Workshop on Complex Motion
Schloss Reisensburg, Günzburg/Germany
October, 12 - 14, 2004
Proceedings



Divide-and-Conquer Strategies for Estimating Multiple
Transparent Motions

Cicero Mota1, Ingo Stuke2, Til Aach2, and Erhardt Barth1

1 Institute for Neuro- and Bioinformatics, University of Luebeck, Germany
{mota, barth}@inb.uni-luebeck.de

2 Institute for Signal Processing, University of Luebeck, Germany
{aach, stuke}@isip.uni-luebeck.de

Abstract Transparent motions are additive or multiplicative superpositions of
moving patterns and occur due to reflections, semi-transparencies, and partial oc-
clusions. The estimation of transparent motions remained a challenging nonlinear
problem. We here first linearize the problem in a way which makes it accessible
to the known methods used for the estimation of single motions, such as structure
tensor, regularization, block matching, Fourier methods, etc. We present the re-
sults for two motion layers but there is no limit to the number of layers. Finally,
we present a way to categorize different transparent-motion patterns based on the
rank of a generalized structure tensor.

1 Introduction

Motion estimation is a core problem in computer vision - see for example [1–3] in
this volume. Most motion models used in standard applications are still rather sim-
ple and thus fail with more complex motion patterns. As a particular class of complex
motion patterns, the multiple transparent motions treated here are additive or multi-
plicative superpositions of single moving patterns and occur due to reflections, semi-
transparencies, and partial occlusions.

An algorithm for the estimation of two transparent motions was first proposed by
Shizawa and Mase [4]. A layered representation of image sequences was presented
in [5] and approaches based on nulling filters and velocity-tuned mechanisms have been
proposed in [6,7]. A phase-based solution for the estimation of two transparent overlaid
motions and the separation of the image layers was proposed by Vernon [8], and a
solution for the separation of the image layers by using the constrained least-squares
method was proposed in [9]. However, the estimation of transparent motions and the
separation of the corresponding layers remained a challenging nonlinear problem [10].
Here we show how this problem can be naturally split into a linear and a nonlinear part.
The linear part is then accessible to known methods used for the estimation of single
motions, such as methods based on the structure tensor, regularization, block matching,
Fourier analysis, etc. This becomes very useful since, in our approach, the nonlinear
part has a closed-form solution. For simplicity, we restrict ourselves to the case of only
two transparent motions at a given location in the image. This is certainly the most
likely case in applications but, theoretically, our solutions are not limited by the number



of transparent layers. In fact, our results are presented such that the generalization to
more than two layers is straightforward and the principle of how to generalize has been
presented before [11–14]. Moreover, our approach provides confidence measures that
allow for the categorization of different motion patterns and for the automatic detection
of the number of moving layers. A related problem is the estimation of multiple global
motions - see [15, 16] in this volume.

This paper is organized as follows. Section 2 introduces a differential constraint
equation for transparent motions. The problem is then split into a linear and a nonlinear
part. Two different algorithms to solve the linear part are presented and the nonlinear
part is solved analytically. Section 3 introduces a Fourier domain constraint for transpar-
ent motions. The goal is to estimate the phase shifts corresponding to the motion vec-
tors. The problem is, again, solved by splitting into linear and nonlinear parts. We show
how to use the estimated phase shifts for separation of the image layers. Finally, the
Fourier constraint is transformed back to the space domain to obtain a block matching
constraint. Experimental results are presented for synthetic and real image sequences.

2 Differential Methods

Differential methods are based on the well-known constant brightness constraint equa-
tion [17], i.e., the motion field u = (ux, uy)T of an image sequence g(x, t) is con-
strained by

uxgx + uygy + gt = 0 (1)

where gr = ∂g/∂r, r ∈ {x, y, t}. We write the above equation in short form as
α(u)g(x, t) = 0, where α(u) = ux∂/∂x + uy∂/∂y + ∂/∂t. Next, a similar constraint
will be derived for an additive model of transparent motions.

Constraint Equation for Transparent Motions. We consider an additive superposi-
tion of two image sequences (layers) f(x, t) = g1(x, t) + g2(x, t). If the motion fields
are sufficiently smooth to be considered ‘locally constant’, the layers can be modeled
as g1(x, t) = ϕ1(x− tu) and g2(x, t) = ϕ2(x− tv) with constant motion fields u and
v respectively. In this case, the operators α(u)and α(v) commute and we obtain the
following constraint equation for the motion vectors [4]:

α(u)α(v)f(x, t) = 0. (2)

Since this transparent-motion constraint is nonlinear, the estimation of the motion
vectors by the direct use of Equation (2) leads to non-convex problems. We overcome
this difficulty by splitting the solution into a linear and a nonlinear part. By expanding
Equation (2), we obtain

cxxfxx + cyyfyy + ftt + cxyfxy + cxtfxt + cytfyt = 0 (3)

where frs = ∂2f/∂r∂s, r, s ∈ {x, y, t}; and

cxx = uxvx cxt = ux + vx cxy = uxvy + uyvx

cyy = uyvy cyt = uy + vy (4)



are the so-called mixed motion parameters. In case of a multiplicative superposition
f(x, t) = g1(x, t)g2(x, t), the constraint is the same except for frs = f ∂2f

∂r∂s −
∂f
∂r

∂f
∂s [18]. The introduction of the mixed motion parameters splits, in a natural way,

the problem of transparent motion estimation in two parts: a linear part where we solve
for the parameters crs, r, s ∈ {x, y, t}; and a nonlinear part where we solve Equa-
tion (4) for the motion vectors. Since Equation (3) is linear we can use different meth-
ods for the estimation of the mixed motion parameters. We will describe some of these
methods in Section 2.1.

2.1 Linear Part: Estimation of the Mixed Motion Parameters

The Structure Tensor. Let time be parameterized such that Equation (1) reads

ũxgx + ũygy + utgt = 0 (5)

with a unity parameter vector ue = (ũx, ũy, ut)T . If the variables gx, gy, gt are inde-
pendent with equal variances and ue is constant, the best fit ûe, in a least-squares sense,
is the minimizer of the functional

E(ue) =
∫
|ue · ∇g(x, t)|2ω(x, t) dΩ, (6)

where Ω is a neighborhood of the point of interest and ω(x, t) is an weighting function.
Therefore, ûe is the minimal eigenvector of the structure tensor [19]

J1 =
∫
∇g(x, t)⊗∇g(x, t) ω(x, t) dΩ. (7)

The motion vector is then recovered from ûe/ût.
For the mixed motion parameters, we proceed in analogy and look for a unity min-

imizer ce = (cxx, cyy, ctt, cxy, cxt, cyt)T of the functional

E(ce) =
∫
|ce · f(2)(x, t)|2ω(x, t) dΩ, (8)

where f(2) = (fxx, fyy, ftt, fxy, fxt, fyt)T . Note that ctt replaces 1 as the coefficient of
ftt in Equation (3). Again, the optimal estimator ĉe is the minimal eigenvector of

J2 =
∫

f(2)(x, t)⊗ f(2)(x, t)ω(x, t) dΩ (9)

and the mixed motion parameters are recovered from ĉe/ĉtt [11].

Confidence Measures. Clearly the estimator ĉe (ûe) is reliable only if the minimal
eigenvalue of J2 (or J1) is small compared to the others (ideally, exactly one eigenvalue
should be zero). Therefore, confidence for the quality of the estimation can be derived
from the eigenvalues of JN , N = 1, 2. however, it is useful to know the confidence
before the estimation is performed. Let HN ,KN , SN represent the trace, the determi-
nant, and the sum of the central minors of JN respectively. These numbers scale as
K1/m ≤ (S/m)1/(m−1) ≤ H/m (with m = (N + 1)(N + 2)/2). In the ideal (noise
free) case of only one zero eigenvalue, we have K = 0, S 6= 0 and in practice the above
scaling relation can be used to define confidence measures [11].



Moving Pattern rank J1 rank J2

◦ 0 0
| 1 1
|+ | 2 2
• 2 3
•+ | 3 4
•+ • 3 5
others 3 6

Table 1. Different motion patterns (first column) and the ranks of the generalized structure tensors
for 1 and 2 motions respectively (columns 2 and 3). Bars indicate motions of 1D (straight) patterns
and filled circles motions of 2D patterns - see text for further details. The shown correspondences
between the different motion patterns and the ranks of the two tensors can be used to identify
the different motion patterns. In general, the rank of JN , N = 1, 2, ... induces a natural order of
complexity for patterns consisting of N additive layers [12].

Local Categorization of the Moving Patterns. Besides allowing for motion estima-
tion, the structure tensor allows for a local categorization of the moving pattern ϕ :
rank J1 = 0 corresponds to regions with constant intensity (◦) and any motion vector
is admissible in this region; rank J1 = 1 corresponds to the motion of a straight pat-
tern (|), in this case admissible motion vectors are constrained by a line; other moving
patterns (•) correspond to the rank J1 = 2; and non-coherent motion like noise, ap-
pearing and disappearing objects, etc. correspond to rank J1 = 3. Remarkably, in the
case of transparent motions, the categorization of the moving patterns is again accessi-
ble through the rank J2. Table 1 summarizes these correspondences. For further details
see [12].

Regularization. Here we show how to apply a Horn-Schunck-type regularization method
for the estimation of the mixed motion parameters. To emphasize the dependency on c,
we rewrite Equation (3) as c · f(2)r + ftt = 0, where f(2)r = (fxx, fyy, fxy, fxt, fyt)T .
At a given time, we then look for a field c = (cxx, cyy, cxy, cxt, cyt)T that minimizes
the functional ∫

1
λ2
|c · f(2)r + ftt|2 + |∇c|2 dΩ , (10)

where λ = λ(x). The Euler-Lagrange equation is

(c · f(2)r + ftt)f(2)r = λ2∆c (11)

Using the approximation h2∆c ≈ č−c, where h is a normalization constant assimilated
by λ, and solving for c, we obtain a Gauss-Seidel iteration step defined by

ck+1 = čk −
čk · f(2)r + ftt

λ2 + |f(2)r|
2 f(2)r. (12)

This iteration step defined by (12) can be implemented either directly as in [20], by
simple methods like successive over-relaxation or by more sophisticated methods like



multi-grid relaxation. Next, we show how to solve for the motion vectors u and v given
c.

2.2 Nonlinear Part: Solving for the Motion Vectors

The key to our solution is the interpretation of the motion vectors as complex num-
bers [11], i.e., u = ux + juy , and v = vx + jvy and the observation that

uv = cxx − cyy + jcxy = A0, u + v = cxt + jcyt = A1. (13)

In the above equations, the last equalities are just the definitions of A0 and A1. Hence,
the motion vectors can be recovered as the roots of the complex polynomial

Q2(z) = (z − u)(z − v) = z2 −A1z + A0 (14)

since the coefficients of Q2(z) depend only on the mixed motion parameters. However,
Equation (4) is a over-determined system of equations for the motion vectors. Conse-
quently, not all possible values for the mixed motion parameters vector c correspond
to motion vectors. To better understand this issue, we consider Equations (2) and (3) in
the Fourier domain where they become

(uxξx + uyξy + ξt)(vxξx + vyξy + ξt)F(ξx, ξy, ξt) = 0 (15)

and

(cxxξ2
x + cyyξ2

y + cttξ
2
t + cxyξxξy + cxtξxξt + cytξyξt)F(ξx, ξy, ξt) = 0 (16)

respectively. F(ξx, ξy, ξt) represents the Fourier transform of f(x, y, t). Therefore, fit-
ting the motion vectors u,v to Equation (2) is equivalent to fitting two planes to the
support of F(ξx, ξy, ξt) while fitting a parameter vector c to Equation (3) is equivalent
to fitting a quadric to the support of F(ξx, ξy, ξt). Such a quadric represents two planes
if and only if its associated matrix has exactly two nonzero eigenvalues of opposite
signs. Therefore, we conclude that a vector c of mixed motion parameters corresponds
to two motion vectors if and only if∣∣∣∣∣∣

cxx
cxy

2
cxt

2cxy

2 cyy
cyt

2
cxt

2
cyt

2 ctt

∣∣∣∣∣∣ = 0 and
∣∣∣∣cxx

cxy

2cxy

2 cyy

∣∣∣∣ +
∣∣∣∣cxx

cxt

2
cxt

2 ctt

∣∣∣∣ +
∣∣∣∣cyy

cyt

2cyt

2 ctt

∣∣∣∣ < 0. (17)

The role of the above conditions is to exclude the case when Equation (3) is valid but
the Fourier transform of the motion signal is not restricted to two planes.

2.3 Experimental Results.

Figure 1 shows results for a synthetic image sequence with transparent motions. The
algorithm first determines one motion using J1 if the confidence for one motion is high.
If the confidence test fails (H1 > ε0, K

2/3
1 > ε1S1), two motions are estimated by



(a) (b) (c)

Figure 1. Results for synthetic data: (a) the central frame of a synthetic input sequence to
which dynamic noise with an SNR of 35 dB was added; (b) the estimated motion fields; (c)
the segmentation defined by confidence for one (black) and two (white) motions. The back-
ground moved down and the foreground square to the right, the superposition of the two was
additive. The means/standard-deviations for the components of the estimated motion fields are
(0.0002/0.0029, 1.0001/0.0043) and (1.0021/0.0134, 0.0003/0.0129).

using J2. If confidence for two motions fails (K5/6
2 > ε2S2) no motion is estimated

(although this procedure could be extended for an arbitrary number of motions). The
values ε0 = 0.001, ε1 = 0.2, ε2 = 0.3 were used for the confidence parameters. We
used [1, 0,−1]T [1, 1, 1] as first order derivative filter, an integration window of 5×5×5
pixels and a weight function of ω = 1. Second-order derivatives were obtained by
applying the first order filter two times. Figure 2 shows results for more realistic image
sequences. The Gauss-Seidel iteration (Equation 12) was applied to estimate the motion
fields for both sequences. Gaussian derivatives with σ = 1 and a kernel size of 7 pixels
were used for first order derivatives. Again, second order derivatives were obtained by
applying the first-order filter twice. The parameter λ = 1 and 200 iterations were used.
Even better results could be obtained with optimized filters - see [21] in this volume.

3 Extensions

3.1 Phase-Based Approach

Frequency-domain based approaches to transparent motions are based on the observa-
tion that motion induces a phase shift [8, 14, 22]. For transparent motions, the multiple
phase shifts lead to the following equations.

The Constraint Equations

Ftk
(ω) = φk

1G1(ω) + φk
2G2(ω), k = 0, . . . (18)

To obtain the phase shifts from these constraints, we first simplify notation by setting
Φk = (φk

1 , φk
2) and G = (G1, G2). We then obtain the following expressions:

Ftk
= Φk ·G, k = 0, . . . (19)



(a) (b) (c)

(d) (e) (f)

Figure 2. Results for natural images with synthetic, additive motions (up and to the right): (a)
the central frame of the input sequence; (b) the result of applying α(û) to (a); (c) the result of
applying α(v̂) to (a). The errors/standard-deviations of the estimated motion components are
(0.9956/0.0106,−0.0032/0.0101) and (−0.0101/0.0129, 0.9868/0.0144). Results for a real
sequence: panels (d), (e) and (f) correspond to (a), (b), and (c) above. In this movie, the Mona-
Lisa painting moves to the right and a right-moving box is transparently over-imposed due to
reflections. The quality of the motion estimation is here demonstrated by showing how well the
motion layers are separated.

Our goal now is to obtain the phase-components vector Φ1 = (φ1, φ2) by cancellation
of the unknown Fourier-transforms vector G of the image layers in the system above.
First, we define the polynomial

p(z) = (z − φ1)(z − φ2) = z2 + a1z + a2 (20)

with unknown coefficients a1 = −(φ1 + φ2), a2 = φ1φ2. Now the phase terms φ1, φ2

are the roots of p(z), i.e., p(φn) = 0, for n = 1, 2. Second, we observe that

Ftm+2 + a1Ftm+1 + a2Ftm = (Φm+2 + a1Φm+1 + a2Φm) ·G (21)
= (φm

1 p(φ1), φm
2 p(φ2)) ·G = 0 (22)

and
Ftm+2 = −a2Ftm − a1Ftm+1 m = 0, . . . (23)



Solving for the Phase Shifts. To solve for the phase shifts we apply again the strategy
of splitting the problem into linear and nonlinear parts. First, we solve Equations (23)
for a1, a2 (linear part). Second, we obtain the unknown phase changes φ1, φ2 as the
roots of p(z) (nonlinear problem).

Since we have two unknowns, we need at least two equations for solving for a1, a2.
Therefore we consider the first two Equations of (23), i.e.(

Ft2

Ft3

)
= −

(
Ft0 Ft1

Ft1 Ft2

) (
a2

a1

)
. (24)

Clearly, we can obtain a1, a2 only if the matrix in the above equation is nonsingular.
Nevertheless, in case of a singular but nonzero matrix, we can still obtain the phase
shifts. To understand why, we will discuss all the cases in which A is singular. First
note that the matrix A nicely factors as

A =
(

Ft0 Ft1

Ft1 Ft2

)
= B

(
G1 0
0 G2

)
BT (25)

where

B =
(

1 1
φ1 φ2

)
. (26)

Therefore,
detA = G1G2(φ1 − φ2)2. (27)

It follows that there are only two non-exclusive situations where the matrix A can be-
come singular: (i) the Fourier transform of at least one layer vanishes at the frequency
ω, and (ii) the phase shifts are equal. Therefore, we have

1. rank A = 1: the possible cases are G1 = 0, G2 6= 0; G1 6= 0, G2 = 0 or φ1 =
φ2, G1 + G2 6= 0 and we can compute the double phase or one of the two distinct
phases from

Ft1 = Ft0φ. (28)

2. rank A = 0: in this case G1 = G2 = 0 or φ1 = φ2, G1 +G2 = 0 and all equations
in (18) degenerate to

Ftk
= 0, k = 0, . . . (29)

Finally, Equation (27) implies that rank A ≤ 1 everywhere if and only φ1 = φ2 every-
where, i.e., the image sequence does not have any transparent layers.

3.2 Layer Separation.

Once the phase shifts are known, it is possible to obtain the transparent layers as follows:(
Ft0

Ft1

)
=

(
1 1
φ1 φ2

) (
G1

G2

)
. (30)

Note, however, that the separation is not possible at all frequencies. The problematic
frequencies are those where two or more phase values are identical because the rank of



(a) (b) (c)

Figure 3. Results of layer separation. Shown are in (a) the same input as in Figure 2a, and in
(b) and (c) the separated layers. The errors due to the still incomplete interpolation of missing
frequencies are seen as oriented patterns.

the matrix B is then reduced. This is an important observation because it defines the
support where multiple phases can occur by the following equation:

φ1 = φ2 ⇐⇒ ej(u−v)·ω∆t = 1 ⇐⇒ (u− v) · ω = 2kπ, k = 0, . . . (31)

On the above defined lines, the Fourier transforms at the transparent layers cannot be
separated. A possible solution would be to interpolate the values on these lines from the
neighboring frequency values of the separated layers.

3.3 Block Matching

The Block Matching Constraint. By transforming Equation (23) back to the space
domain, we obtain the following block matching constraint equation for transparent
motions [13]

e(f,x,u,v) = f0(x− u− v)− f1(x− u)− f1(x− v) + f2(x) = 0. (32)

From this constraint a number of different algorithms for the estimation of multiple
motions can be derived. We here present a hierarchical algorithm which is based on a
combination of statistical model discrimination and hierarchical decision making. First,
a single-motion model is fitted to the sequence by exhaustive search. If the fit is poor,
the single-motion hypothesis is rejected and the algorithm tries to fit two transparent
motions. If the confidence for two motions is low, no motion is estimated.

The stochastic image sequence model. Apart from distortions and occlusions, the
block matching constraint may differ from zero due to noise. Therefore additional in-
formation about the distribution of the noise can help to determine whether or not the
difference between the best block matching fit and the true motion can be explained by
the noise model. Different motion types lead to different noise distributions of the error
signals. This can be used to select the most likely motion model.



We model the observed image intensity at each spatial location and time step as

fk(x) = f̄k(x) + εk(x) , εk(x) ∼ N (0, σ2) , k = 0, 1, . . . (33)

Therefore, from Equation (32) and the noise model, we have

e(f,x,u,v) = e(f̄ ,x,u,v) + ε(x), (34)

where ε(x) = ε0(x − u − v) − ε1(x − u) − ε1(x − v) − ε2(x). Hence, in case of
a perfect match of the transparent motion model, the motion-compensated residual can
be modeled as

e(f,x,u,v) = ε(x) ∼ N (0, 4σ2). (35)

Consequently, the sum of squared differences over the block (denoted BM2) obeys the
χ2 distribution with |Ω| degrees of freedom, i.e.,

BM2(x,u,v) =
1

4σ2

∑
y∈Ω

e(f,y,u,v)2 ∼ χ2(|Ω|), (36)

where Ω is the set of pixels in the block under consideration and |Ω| is the number
of elements in Ω. A block matching algorithm can be obtained by minimization of the
above expression.

If there is only one motion inside Ω, i.e. f1(x) = f0(x− v), the value of

BM1(v) =
1
|Ω|

∑
x∈Ω

(f1(x)− f0(x− v))2 (37)

will be small for the correct motion vector v. If Ω includes two motions, the value BM1

will be significantly different from zero for any single vector v, because one vector
cannot compensate for two motions.

Motion-Model Discrimination. There are several possibilities to find the most likely
motion model. To save computation time, we opt for a significance test which allows
for a hierarchical estimation of the motion vectors. If we allow a percentage α of mis-
classifications, we can derive a threshold TN for BMN , N = 1, 2 as follows [23]: let
the null-hypothesis H0 mean that the model of N transparent motions is correct. TN is
then determined by

prob(BMN > TN |H0) = α. (38)

H0 is rejected if BMN > TN . The threshold can be obtained from tables of the χ2

distribution.

3.4 Experimental Results

Figure 3 shows the separation of a synthetic additive overlaid image sequence. The
missing phase shifts were interpolated by averaging the neighboring values. The inter-
polation errors are visible as oriented structures. A better interpolation method could
help to reduce the errors. Figure 4 shows the results of motion estimation by block
matching with a 5 × 5 window. Full search has been performed to find the best match
according to the confidence test described by Equation (38).



(a) (b)

Figure 4. Block matching results. Shown are in (a) the central frame of the same input sequence
as in 1a, and in (b) the estimated motion fields. The area corresponding to the transparent object
has been depicted in (b) for better visualization.

4 Discussion

We have shown how to split the problem of estimating multiple transparent motions
into a linear and a nonlinear part. This strategy has allowed us to extend classical but
powerful algorithms for the estimation of motion to cases where standard single-motion
models would fail. We have thereby reduced the difficulties in estimating multiple trans-
parent motions to well-known difficulties in the standard, single-motion case: noisy
images, aperture problem, occlusion, etc. The algorithms have been presented for two
transparent motions, but are not limited to only two motions since extensions to more
motions are straightforward.

The methods presented for solving the linear part of the problem have particular
trade-offs. The structure-tensor method is fast and accurate but usually does not produce
dense flows; the phase-based method suffers from windowing and fast Fourier transform
artifacts; the regularization approach yields dense flow fields but is slow; and, finally,
the block matching algorithm is very robust to noise but rather slow and does normally
not yield sub-pixel accuracy.

The method proposed for solving the nonlinear part is the key which makes the
overall approach so useful and lets us conclude that the difficulties in the estimation of
transparent motion are, in essence, the same as for the estimation of single motions.
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