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Abstract. Features like junctions and corners are a rich source of infor-
mation for image understanding. We present a novel theoretical frame-
work for the analysis of such 2D features in scalar and multispectral
images. We model the features as occluding superpositions of two dif-
ferent orientations and derive a new constraint equation based on the
tensor product of two directional derivatives. The eigensystem analysis
of a 3 X 3-tensor then provides the so-called mixed-orientation parame-
ters (MOP) vector that encodes the two orientations uniquely, but only
implicitly. We then show how to separate the MOP vector into the two
orientations by finding the roots of a second-order polynomial. Based on
the orientations, the occluding boundary and the center of the junction
are easily determined. The results confirm the validity, robustness, and
accuracy of the approach.

1 Introduction

It is well known that corners and junctions are a rich source of information for
image understanding: T-junctions are associated to object occlusions; L- and Y-
junctions to object corners; X-junctions to the occurrence of transparencies; and
V-junctions to the presence of bending surfaces in the object [2,12]. Accordingly
different approaches for junction localization have been reported [9,11,13,14,
17,19, 22].

In addition to the above semantic importance of junctions and corners, their
significance is determined by basic properties of the image function itself. Flat
regions in images are the most frequent but also redundant, their intrinsic di-
mension [23] is zero. Intrinsically one-dimensional features like straight edges are
still redundant since intrinsically two-dimensional regions have been shown to
fully specify an image [8, 15]. Corners and junctions belong to the last category
of most significant image features.

In this paper we model an image junction as a superposition of oriented
structures and show how to estimate the multiple orientations occurring at such
positions. Our approach differs from previous attempts [10,18,19] in that we
provide a closed-form solution.



Our results are an extension of earlier results that have dealt with the prob-
lems of estimating transparent motions [16,21], occluded motions [5,4], and
multiple orientations in images based on an additive model [20, 1].

2 Theoretical Results

Let f(x) be an image that is ideally oriented in a region {2, i.e., there is a direction
(subspace) F of the plane such that f(x+v) = f(x) for all x, v such that x,x+
v € {2, v € E. This is equivalent to
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which is a system of ¢ equations for f(x) € R?. For intensity images ¢ = 1 and

for RGB images ¢ = 3. The direction E can be estimated as the set of vectors
that minimize the energy functional
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In the above equation, f,, f, are short notations for of /0x, of /0y .

The tensor J is the natural generalization of the structure tensor [6,7,9,
11] for multi-spectral images. Since J is symmetric and non-negative, Eq. (1) is
equivalent to Jv = Av,v # 0, where ideally A = 0. This implies that E is the
null-eigenspace of J and in practice estimated as the eigenspace associated to the
smallest eigenvalues of J. Confidence for the estimation can thus be derived from
the eigenvalues (or, equivalently, scalar invariants) of J (see [16]): two small
eigenvalues correspond to flat regions of the image; only one small eigenvalue
to the presence of oriented structures; and two significant eigenvalues to the
presence of junctions or other 2D structures. Below we show how to estimate
the orientations at junctions where two oriented structures predominate.

2.1 Multiple Orientations

Let {2 be a region of high confidence for a junction. We model junctions by the
following constraint on f(x) that is the occluded superposition

f(x) = x(x)g1(x) + (1 = x(%))g2(x) , (4)

where g1(x), g2(x) are ideally oriented with directions u = (uz,u,)? and v =
(vz,vy)T respectively; and x(x) is the characteristic function of some half-plane
P through the ‘center’ (to be defined later) of the junction. This model is appro-
priate for the local description of junction types T, L and ¥. X-junctions better
fit a transparent model and have been treated in [1, 20].



The Constraint Equation. To estimate two orientations in (2, we observe
that Eq. (4) is equivalent to

£(x) = {gl(x) ifxeP 5)

g2(x) otherwise.

Therefore, 9f(x)/0u = 0 if x is inside of P and 9f(x)/0v = 0 if x is outside of
P. From the above we can draw the important and, as we shall see, very useful
conclusion that the expression

ou ov 0 (6)
is valid everywhere except for the border of P where it may differ from zero.
The symbol ® denotes the tensor product of two vectors. Eq. (6) may not hold
at the border of P because there the derivatives of the characteristic function
X(x) are not defined. This is not the case if u and the border of P have the
same direction, e.g. in case of a T-junction. Given Eq. (6), the tensor product
should be symmetric in u and v. Since in practice symmetry might be violated,
we expand the symmetric part of the above tensor product to obtain

c
Confs @ F, + %(fm @f, +f, %)+ cyf,0f, =0 (7)
where
Cow = UgVp, Cyy = Uyly, Capy = UgUy + Uyly - (8)

Note that for an image with ¢ spectral components, the system in Eq. (7) has
q(q + 1)/2 equations, which makes the system over-constrained if ¢ > 2. The
vector € = (Cyz, Cay, Cyy) T is the so-called mized orientation parameters vector
and is an implicit representation of the two orientations.

Estimation of the Mixed Orientation Parameters. An estimator of the
mixed orientation parameters is obtained by a least-squares procedure that finds
the minimal points of the energy functional

2
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i.e., c is estimated as an eigenvector ¢ associated to the smallest eigenvalue of
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The actual region of integration can be kept smaller for multi-spectral images
since the system in Eq. (7) is over-constrained in this case. Note, however, that
¢ represents two orientations only if it is consistent with Eq. (8). This is the case
if and only if ciy —4cppCyy > 0.



Separation of the Orientations. To separate the orientations it suffices to
know the matrix

C— [umvm uﬂ)y] (11)
Uy Vg UyVy
because its rows represent one orientation and its columus the other, cf. [1] for the
case of transparency. Since we already know that cy, = uzv, and cyy = uyvy,
we need to only obtain z; = wu,v, and z; = wuyv, . For this, observe that
21+ 22 = Cpy and 2122 = CgaCyy - Therefore, 21, 2o are the roots of

Q2(z2) = 22— CayZ + CoaCyy - (12)

Pruning of the Orientation Fields. After the separation, each point of a
junction neighborhood has two directions assigned to it, see Fig. 1 (b,e) and Fig.
2 (b,e). Since only one of these is correct, we need to prune the other. For this,
we observe that at each position only one of the equations

of(x)/0u=0, 0Of(x)/0v=0 (13)

is valid. To prune the wrong vector at a given position p, we first compute the
local histogram of the orientations in a small neighborhood (3 x 3 pixels) of
p and separate the two orientations by the median. We then assign to p the
correct direction depending on which equation in (13) is better satisfied in the
sense that the sum of squares is lowest. This is equivalent to a procedure that
would choose the direction of smallest variation of the image f(x).

Junction Localization. Since measures of confidence only give us a region
where multiple orientations can occur, it is useful to have a method for deciding
which point in this region is actually the center of the junction. We follow the
approach in [9] for the localization of the junction. Let {2 represent a region of
high confidence for a junction. For an ideal junction located at p we have

df.(x —p) = 0 (14)

where dfy is the Jacobian matrix of f(x) . The center of the junction is therefore
defined and estimated as the minimal point of

| dfy (x — p)[> d2 (15)
2
which gives
p=J'b, where b = / dfl df,xde . (16)
2
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Fig. 1. Synthetic example: panel (a) depicts a sinusoidal pattern (b) the estimated
orientations for the marked region and (c) the orientations after pruning. Real example:
panel (d) shows a picture of a house; (e) and (f) are analogous to (b) and (c) above.

3 Results

Fig. 1 depicts the results of the estimation of single and double orientations in a
synthetic and a natural image. In panel (a) two oriented sinusoidal patterns were
combined to form T-junctions along the main diagonal of the image to which
Gaussian white noise was added (SNR of 25 dB). The estimated orientations for
the selected region in (a) are shown in panel (b). Note that in a region around
the T-junction two orientations are estimated at each pixel. Panel (c) shows
the result obtained after the pruning process. Note that the occluding boundary
and the orientations on both sides of the boundary are well estimated. Panel
(d) depicts an natural image with many oriented regions and junctions. The
estimated orientations for the selected region in (d) are shown in panel (e). The
orientations after the pruning process are depicted in panel (f).

Fig. 2 presents results for L-junctions of different angles. Panel (a) depicts
the letter ‘A’ (image with additive Gaussian noise, SNR, of 25 dB). In panel (d)
a segmentation of the ‘A’ in terms of the number of estimated orientations is
shown: white for no orientation, black for one, and gray for two orientations. Note
that, around all corners of the letter, two orientations are found. The estimated
orientations for the upper-left corner of the ‘A’ are shown in panels (b) (before
pruning) and (c) (after pruning). Panel (e) depicts the estimated orientations
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Fig. 2. Panel (a) shows the ‘A’-letter input image, estimated orientations before and
after pruning are shown in (b) and (c¢) respectively for the upper left corner of the ‘A’.
Panel (d) depicts the segmentation in terms of the number of observed orientations
(see text), (e) the estimated orientations for the corner with the smallest angle, and (f)
indicates the corner location estimated according to Eq. (16) and the two orientations
at that location.

for the corner of the ‘A’ with the smallest angle. Pixels with two orientations are
then used according Eq. (16) to locate the corner position. The result is indicated
by the cross in panel (f) which also shows the corresponding orientations at the
corner location.

In all examples, we first search for at least one single orientation. If confidence
for at least one orientation is low, we search for double orientations. Confidence
is based on the invariants of Jn according to [16]. Thus, for Jq, the confidence
criteria are H > € and VK < c1H. For J,, the confidence criterion for two
orientations is VK < ¢ov/S. The numbers H, K and S are the invariants, i.e.,
the trace, the determinant, and the sum of the diagonal minors of J; 5. For the
examples in Fig. 1, we used an integration window size of 11 x 11 pixels, ¢; = 0.5,
co = 0.6., and € = 0.001. For the example in Fig. 2, we used a integration-window
size of 7x 7 pixels, ¢; = 0.4, co = 0.6, and € = 0.01. The above parameter settings
have been found experimentally. Derivatives were taken with a [—1,0,1]7[1,1,1]
kernel in x— and analogously in y direction.



4 Conclusions

We have presented a straightforward and accurate method for the estimation
of two orientations at image features that satisfy an occlusion model. Typical
features are corners and various kinds of junctions that occur frequently in nat-
ural images. The method is straightforward because it only involves first-order
derivatives and has closed-form solutions. Iterative procedures are not involved,
unless one chooses to estimate the eigenvectors of a 3 x 3 tensor iteratively. This
can be avoided as shown in [3]. The method is accurate because junctions and
corners are well described by the occlusion model that we use and because we
have found the proper constraint that results from the occlusion model and an
analytical solution. Our results confirm this and can be further improved.

An obvious improvement is the use of optimized derivative kernels. Deriva-
tives could also be replaced by more general filters as a consequence of results
obtained in [16]. Based on a straightforward extension of our approach, one could
estimate more than two orientations.

We have formulated our results such as to include multi-spectral images in
a natural but non-trivial way. If ¢ is the number of colors, the constraint that
we use consists of g(q + 1)/2 equations. This implies that for only two colors we
already have a well conditioned system and can use even smaller neighborhoods
for the estimation of two orientations. Forthcoming results will show the benefit
of using multi-spectral images.

The benefits of using corners and junctions for image analysis, registration,
tracking etc. have often been highlighted. The estimation of the orientations
that form these features may add further robustness and new kinds of invariant
features. It might, for example, be easier to register a junction in terms of its
orientations since the orientations will change less than the appearance and other
features of the junction. The orientations seem especially useful as they can now
be well estimated with little computational effort.
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