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Abstract

Based on a new framework for the description of N trans-
parent motions we categorize different types of transparent-
motion patterns. Confidence measures for the presence of all
these classes of patterns are defined in terms of the ranks of
the generalized structure tensor. To resolve the correspon-
dence between the ranks of the tensors and the motion pat-
terns, we introduce the projective plane as a new way of
describing motion patterns. Transparent motions can occur
in video sequences and are relevant for problems in human
and computer vision. We show a few examples for how
our framework can be applied to explain the perception of
multiple-motion patterns and demonstrate a new illusion.

Keywords: Human and computer vision, multiple transpar-
ent motions, generalized structure tensor.

1. Introduction

Motion estimation has many applications in computer vi-
sion, e.g., video coding, image tracking, image enhancement,
depth recovery, etc. Accordingly, various algorithms for mo-
tion estimation are known, see [3, 11] for reviews. However,
the problem of motion estimation is always linked to the prob-
lem of motion detection and the selection of the appropriate
motion model. This is because the assumptions under which
the motion parameters can be estimated correctly are rarely
fulfilled in real dynamic scenes. In fact, motion estimation
is an ill-posed problem [6] and algorithms rely on some sort
of local or global regularization of the motion field in order
to produce meaningful results. The so-called aperture prob-
lem, noise, occlusions, appearing objects, and transparencies
in image sequences create situations where motion estimation
becomes difficult. Therefore, a correct decision on what local
or global motion model to use is as important as the estima-
tion of the motion parameters.

Motion selectivity is also a key feature of biological vi-
sual processing and has been studied by recordings of neural
responses and by psychophysical experiments. Human ob-
servers are able to see and distinguish multiple transparent
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motions. A special case is that of overlaid 1D motions, i.e.,
the case of moving straight patterns. Of particular interest is
how human observers resolve the ambiguities that are inher-
ent in this type of patterns [1, 26, 14] and how visual neurons
respond to such patterns [19].

Transparent motions are additive or multiplicative super-
positions of moving patterns and occur due to reflections,
semi-transparencies, and partial occlusions. Different ap-
proaches for the estimation of motion vectors for the case
of multiple transparent motions are known [21, 8, 9, 13, 25,
27, 18, 24, 23] and meanwhile the non-linear transparent-
motions equations introduced by Shizawa and Mase [21, 22]
have been solved for an arbitrary number of motions [18].
Nevertheless, the issue of confidence for multiple-motion
models has, to our knowledge, only briefly been addressed
in [4, 16, 17].

This paper provides a framework for the analysis of im-
age sequences with the occurrence of transparent moving pat-
terns, such that, for example, the motion of two overlaid 1D
patterns (e.g. two gratings) can be distinguished from the
motion of one 2D pattern (these patterns remain equivalent
within traditional theories of only one motion). First, we es-
tablish a correspondence between moving patterns and sub-
sets of the projective plane. This is done such that 2D moving
spatial patterns correspond to points and 1D spatial patterns
correspond to lines of the projective plane. This correspon-
dence is then used to show that different motion patterns cor-
respond to different ranks of the generalized structure tensor
JN , see Table 2.

The purpose of our paper can be understood by analogy
with the case of only one motion. Obviously, in case of no
image structure, no motion can be determined. In case of 1D
spatial structure (e.g. straight edges) the motion is still not
defined and this is either solved by not estimating motion at
1D patterns or, in most cases, by estimating only a component
of the motion vector that is orthogonal to the orientation of the
1D spatial pattern. For more than one motion, we encounter
many more situations that are similar to the aperture problem
in the sense that not all motion parameters can be estimated.
This generalized aperture problem is therefore more complex.

1.1 Single Motion Estimation Using the Structure Ten-
sor

We first review a method for model selection based on sim-
ple confidence measures for the case of only a single motion.
This will make our extensions to multiple motions more com-
prehensible.
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The structure tensor method [7, 15] is a local approach
for the estimation of motion vectors. This method relies on
the assumption that the intensity or color of a point does not
change when the point moves [12]. This assumption leads to
the well known Constant Brightness Constraint Equation

vxfx + vyfy + ft = 0, (1)

where f(x, t) represents the image sequence and v =
(vx, vy)T the motion field. Eq. (1) does not fully constrain
v at a given position x and therefore v is estimated under
the assumption of being constant in a spatio-temporal region
Ω. This assumption is equivalent to the assumption that, for
(x, t) in Ω, the gradient of f lies in a plane whose normal is
parallel to (vx, vy, 1)T . Estimation is performed by looking
for a unitary vector n = (nx, ny, nt)

T that best represents
the normal of such a plane in a least square sense, i.e., a min-
imal point of the functional

E1(n) =

∫

Ω

[∇f · n]2 dΩ. (2)

Such a vector n is given, up to a scaling factor, by an eigen-
vector associated to the smallest, and ideally zero, eigenvalue
of the so-called structure tensor:

J1 =

∫

Ω



f2
x fxfy fxft

fxfy f2
y fyft

fxft fyft f2
t


 dΩ (3)

For dΩ(x, t) = ω(x, t) dxdt, J1 can be simply computed as

J1 = ω ∗ ∇f ⊗∇f = ω ∗
(
∇f∇fT

)
(4)

Note that sinceE1 is homogeneous, bothn and−n are mini-
mal points of E1. Actually, λn minimizesE1 when the argu-
ments ofE1 are vectors with norm λ. Therefore, we can think
of n as homogeneous coordinates for v and simply write

v = [vx, vy, 1]T = [nx, ny, nt]
T (5)

It follows that the estimation of n, and therefore v, is reliable
only if rankJ1 is two. Therefore the goodness of fit for the
estimator can be assessed based on the eigenvalues of J 1.
Note however that even for the ideal case, rankJ 1 = 2, the
vector n does represent motion only if nt 6= 0.

An interesting property of the structure tensor is that, be-
sides allowing for motion estimation, it encodes a local de-
scription of the image sequence f(x, t). Under constant mo-
tion v, the sequence f can be described by

f(x, t) = g(x− tv) (6)

within Ω. Therefore, a rankJ 1 = 0 corresponds to the mo-
tion of regions with constant intensity (◦) and any motion vec-
tor is admissible in this region; rankJ 1 = 1 corresponds to
the motion of a straight pattern (|), in this case admissible
motion vectors are constrained by a line; other moving pat-
terns (•) correspond to the rankJ 1 = 2; and non-coherent
motion like noise, popping up objects, etc. correspond to
rankJ1 = 3. Table 1 summarizes these correspondences.

Moving Patterns rankJ 1

◦ 0

| 1

• 2

others 3

Table 1. Different moving patterns and the
ranks of the structure tensor: (◦) constant in-
tensity pattern; (|) 1D pattern; (•) 2D patterns.

2. The Generalized Structure Tensor

Our approach is based on the framework for estimating
multiple motions as introduced in [18] that we will briefly
summarize here. An image sequence consisting of two trans-
parent layers is modeled as

f(x, t) = g1(x− tu) + g2(x− tv), (7)

where u = (ux, uy) and v = (vx, vy) are the velocities of
the respective layers. In homogeneous coordinates, the basic
constraint equation is

cxxfxx+cxyfxy+cyyfyy+cxtfxt+cytfyt+cttftt = 0, (8)

where c = (cij)
T is given by

cij =

{
ujvj if i = j

uivj + ujvi otherwise.
(9)

with ut = vt = 1. As in the single motion case, Eq. (8)
implies that the Hessian of f lies in a hyperplane of a six-
dimensional space (the space of 3 × 3 symmetric matrices)
whose normal is the symmetric matrix C with entries cij if
i = j and cij/2 if i 6= j. Proceeding in a way similar to the
single motion case, c is estimated as the eigenvector s related
to the smallest eigenvalue of the tensor

J2 =

∫

Ω




f2
xx fxxfxy · · · fxxftt

fxxfxy f2
xy · · · fxyftt

...
...

...
fxxftt fxyftt · · · f2

tt


 dΩ. (10)

or in short notation

J2 = ω ∗ d2f ⊗ d2f = ω ∗
(
d2f d2fT

)
, (11)

where d2f = (fxx, fxy, fyy, fxt, fyt, ftt)
T . Therefore a reli-

able estimation of c is possible only if rankJ 2 = 5. Note
however that s represents the motion vectors of a transparent
image sequence only if its last coordinate is different from
zero. This condition is necessary but not sufficient. A suffi-
cient condition for s to represent transparent motion is given
in Appendix A.
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Moving Pattern Projective Representation rankJ 1 rankJ2 rankJ3

◦ the empty set 0 0 0

| a point 1 1 1

|+ | 2 points 2 2 2

|+ |+ | 3 points 3 3 3

• a line 2 3 4

•+ | a line + a point 3 4 5

•+ |+ | a line + 2 points 3 5 6

•+ • 2 lines 3 5 7

•+ •+ | 2 lines + a point 3 6 8

•+ •+ • 3 lines 3 6 9

others others 3 6 10

Table 2. Different motion patterns (first column) and the ranks of the generalized structure tensors for
1, 2, and 3 motions (table rows). This table summarizes our results by showing the correspondence
between the different motion patterns and the tensor ranks that can, in turn, be used to estimate the
confidence for a particular pattern, i.e., a proper motion model. Note that the rank of JN induces a
natural order of complexity for patterns consisting of N additive layers.

The approach described above for two motions can be ex-
tended to estimate the motion fields of an additive superposi-
tion f(x, t) ofN transparent image layers g1, . . . , gN moving
with constant but different velocities v1, . . . ,vN .

It is known [18] that f and the velocities are constrained
by

M∑

j=1

cIjfIj = 0 (12)

where fIj , j = 1, . . . ,M = 1
2 (N + 1)(N + 2) are the inde-

pendent N th-order partial derivatives of the image sequence
f, i.e., Ij = (ij1 , . . . , ijN ) is an ordered sequence with com-
ponents in {x, y, t} and fIj is theN th-order partial derivative
of f with respect to the components of Ij . The mixed motion
parameters cI are the symmetric function of the coordinates
of V n = vn + et, for n = 1, . . . , N, and et is the time axis.

The generalized structure tensor for N motions is defined
by

JN =

∫

Ω




f2
I1

fI1fI2 · · · fI1fIM
fI1fI2 f2

I2
· · · fI2fIM

...
...

...
fI1fIM fI2fIM · · · f2

IM


 dΩ (13)

and can be written in short notation as

JN = ω ∗ dNf ⊗ dNf = ω ∗
(
dNf dNfT

)
, (14)

where dNf = (fI1 , fI2 , . . . , fIM)T . In this case, the vector
cN = (cI1 , cI2 , . . . , cIM)T is a null eigenvector of JN and,
in practice, estimated as the eigenvector sN associated to the
smallest eigenvalue of JN . The velocities are recovered from
sN by the method described in [18], which is analytical for
up to four motion layers. Obviously, the mixed-motion pa-
rameters cN can be computed only if the null eigenvalue
is non-degenerated. In what follows, we will show which
transparent moving patterns correspond to other values of the
rank ofJN . As mentioned for two motions, the zero eigen-
value is not a sufficient condition for sN to actually represent
transparent motions. Cases where this does not happen will
be ignored in the following but discussed in the Appendix B.

In analogy to single motions, we will now analyze gener-
alized aperture problems as defined by the degree of degen-
eracy of the eigenvalues of JN and reflected in the ranks of
JN , see Table 2.

The problem of motion estimation has often been studied
in the Fourier domain and it is known that additive transpar-
ent moving patterns correspond to the additive superposition
of Dirac planes through the origin. In the Fourier domain,
Eq. (8, 12) correspond to homogeneous polynomials. The
study of homogeneous equations is greatly simplified by the
use of the projective plane. Therefore, we introduce a projec-
tive transform of f below.
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(a) (b) (c)

(d) (e) (f)

Figure 1. If two gratings of different orienta-
tions - as shown in (a) and (b) - are moved in
the directions shown in (c), the plaid pattern
shown in (d) is seen as moving in the direc-
tion indicated in (f) which corresponds to the
only coherent velocity that is defined by the in-
tersection of the projective lines as shown in
(e).

3. Representation of Multiple Motions in the Projective
Plane

Let F be the Fourier transform of f and ξ = (ξx, ξy, ξt)
T

the Fourier variable, we define a projective transform of f by

Pf [ξx, ξy, ξt] =
1

ρ

∫ +∞

−∞
|F (sξx, sξy, sξt)| ds, (15)

where ρ = (ξ2
x + ξ2

y + ξ2
t )

1
2 . Note that the right-hand side

of the above equation does not depend on the length of ξ.
Since planes and lines of an Euclidean space correspond to
lines and points of the projective plane (see Appendix B), this
transform allows us to think of the motion layers of f(x, t) as
points and lines of the projective plane. Besides the reduction
of dimension, the projective plane establishes a natural dual-
ity between lines and points that is not present in Euclidean
geometry. This is because a (projective) line ` is exactly de-
scribed by an equation of the form

ax+ by + cz = 0. (16)

Thus any line ` corresponds to a dual point [a, b, c] and vice-
versa.

To illustrate the usefulness of the framework, we show
how to geometrically determine the velocity of a given 2D

moving pattern: the moving pattern is mapped to a plane in
the Fourier domain, from where it is further projected to the
projective plane where it is a Dirac line. Finally, the velocity
is found by applying the duality, here denoted with D, to the
Dirac line. The process is schematically shown below:

moving 2D pattern
F
�� plane

P
�� line

D
�� velocity.

In the case of a moving 1D-pattern g(x) = g̃(a · x), e.g. a
spatial grating, the Fourier transform reduces to a line, and its
projective transform to a point. The duality operation will de-
termine the set of admissible velocities for the grating which
is a line in the projective plane:

moving 1D pattern
F
�� line

P
�� point

D
��

line of admissible
velocities.

As another example, we show how to determine the co-
herent motion of superimposed gratings (plaids) [1, 19]: the
set of admissible velocities for each layer is a line, the inter-
section of these two lines is the only admissible velocity for
both layers, that is, the coherent velocity for the plaid. Further
examples will be given in Section 4.

We summarize the main points below (for further details
see Appendix B):

• The projective transform of transparent motions is the
superposition of Dirac lines in the projective plane (in
case of moving 2D patterns).

• The dual point to each Dirac line in the projective plane
is the velocity of the respective layer.

• A moving 1D pattern corresponds to a Dirac point in the
projective plane. In this case any admissible velocity for
the grating is a point on the line that is dual to the Dirac
point in the projective plane.

• Dirac lines intersect at an ideal point if and only if the
corresponding patterns move in the same direction (with
different speeds).

• The ideal line corresponds to a static pattern.

The projective transform and its properties establish a one-
to-one correspondence between different motion patterns and
subsets of the projective plane (points and lines). Further-
more, these distinct configurations in the projective plane are
in a one-to-one correspondence to the rank of JN . Table 2
summarizes these correspondences and details of how these
correspondences have been established are given in the Ap-
pendix A. Further benefits of the projective-plane representa-
tion of motion will become evident in the next section.

4. Applications to Some Perceptual Phenomena

For the case of only one motion, the aperture problem has
a high significance for the visual perception of motion. As
argued before, the motion of a 1D pattern is ambiguous from
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(a) (b) (c)

(d) (e) (f)

Figure 2. Coherent motion of three superim-
posed gratings. To the superposition of two
gratings (a) a third grating shown in (b) is
added. The physical motions of the three grat-
ings are as shown in (c) and the lines of ad-
missible velocities for each grating in (e). The
percept is that of a coherent pattern as shown
in (d) moving in the direction indicated by the
arrow in (f). The coherent percept of one mo-
tion corresponds to the intersection of the lines
in only one point.

a theoretical point of view, and so are the percepts in the sense
that they depend on the motion of the so-called terminators,
i.e. the ends of the 1D patterns.

Similar effects appear with superimposed gratings that can
induce motion percepts that are different from the directions
orthogonal to the individual gratings. For example, two grat-
ings, one moving down and to the left, the other one mov-
ing down and to the right, are perceived as a single pattern
moving downwards under most experimental conditions - see
Fig. 2. On the other hand, three moving gratings can give rise
to three mutually exclusive percepts [1].

We are now going to explain these phenomena using our
theoretical framework presented above. We will also show
that our framework predicts an illusion for the superposition
of a grating with a random dot field and then give some ex-
perimental data for this illusion.

Finally, we will also give some data for the discrimination
of multiple motions. We will show that it is, in principle,
possible to distinguish between 2, 3, and 4 overlaid motions.
It seems that the limiting factor is not the number of motions
but rather the angular separation of motion vectors, which is,
in turn, related to the rank of Jn. Preliminary results have

(a) (b) (c)

(d) (e) (f)

Figure 3. Incoherent motion of three superim-
posed gratings. The sub-figures are according
to those in Fig. 2. However, the directions of
motions are now changed such that the lines of
motion in the projective plane do not intersect
in a single point (e). This makes the motions
undefined and causes the percept to change
dramatically such that a coherent motion is not
perceived. Observers can see either of the sin-
gle motions indicated in (f) (the other two mo-
tions are seen either individually or grouped to
a plaid motion).

been presented in [10].

4.1 Two 1D Transparent Moving Gratings

In the projective plane, two moving gratings correspond to
the {line, line} case - see Table 2. According to the theory, the
perceived motion should correspond to the intersection point
U of the two lines and indeed it does - see Fig. 1.

4.2 Three 1D Transparent Moving Gratings

In the case of three moving gratings, a percept of one co-
herent pattern only arises when all three lines intersect in the
same point. This is, for example, the case for the configura-
tion shown in Fig. 2. On the other hand, a configuration as
shown in Fig. 3 has no unique percept: human observers see
the three 1D patterns as moving individually or see combina-
tions of one 1D pattern and a 2D plaid pattern.
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(a)

(b) (c)

Figure 4. Stimulus generation for the 2D-over-
1D entrainment (a). Admissible velocities for
the grating (line) and for the 2D stimulus (point)
are perceived as single motion (c).

4.3 Entrainment Effect for 2D Patterns Over 1D Pat-
terns

A spatial field of dots superimposed on a grating (Fig. 4)
corresponds to the {line, point} case. If the point falls on the
line, the grating should seem to move in coherence with the
random dots. To test this hypothesis, we generated sinusoidal
gratings of frequency ξ = 1/8, orientation ψ = kπ/4, k =
1, .., 8, and viewing angle size 10◦ × 10◦. These were trans-
lated perpendicular to their orientation (φg = ψ ± π/2) with
a velocity of vg = 1.6◦/s. Mean brightness of the screen
was 10 cd/m2. Then, a 2D dot pattern with same brightness
distribution was overlaid to the grating and translated with
direction φr = φg ± π/4 and velocity vr = vg/

√
2, so that

one component of the motion vector always coincided in the
grating and the moving dot pattern. 15 of these stimuli were
presented to 7 human subjects for 1.6 seconds. After pre-
sentation of each stimulus, subjects had to rotate an arrow to
indicate the direction of the grating they had perceived. The
deviation of subjects’ responses from the true direction of the
grating is given in Fig. 7(a). If the dot pattern had exerted no
influence on the percept for the grating at all, a single peak
at 0◦ could be expected. Analogously, a single peak at 45◦

would indicate that subjects always perceived a single coher-
ent pattern. Note that the small peak at 135◦ actually depicts
cases of 45◦ deviation since it can be attributed to the induced
motion phenomenon (the same effect that makes us see the

Figure 5. Example of a 1/f noise stimulus

platform moving while sitting in a moving train).

4.4 Entrainment Effect and the Barberpole Illusion

The shape of an aperture through which a grating is seen
can strongly influence motion perception. This phenomenon
is called the barberpole illusion. For example, the straight
lines in Fig. 6 seem to change their direction along their path
behind the aperture [26]: the bar moves as indicated by the
arrows and the perceived motion is indicated by the dashed
line.

To show that the entrainment effect is able to override
the barberpole illusion, we designed the stimuli illustrated
in Fig. 6. We masked the moving grating by an aperture
perpendicular to the orientation of the grating. This should
strengthen the percept of motion in a direction orthogonal to
the grating. As an additional modification, only the termina-
tors of the grating were overlaid with a random dot field that
moved in one coherent direction. Because this led to the rise
of new terminators at the boundary of the coherent random
dot field, the remaining middle of the stimulus was overlaid
with a white-noise pattern, which had the same density and
brightness as the coherent noise pattern. Nevertheless, the
entrainment effect seen in Fig. 7(b) is still qualitatively simi-
lar to that in Fig. 7(a) which shows that the effect dominates
over the influence of the aperture.

4.5 Discrimination of Multiple Transparent Motions

The perception of multiple overlaid motions has also been
investigated by counting the number of layers that a person
can discriminate and it has been argued that it is impossible
to discriminate more than two transparent motions [20]. To
analyze the nature of this apparent bottleneck we performed
the following experiments.

Stimuli consisted of 253 ms long, 10◦ × 10◦ sized image
sequences made of either 2, 3, or 4 translated 1/f-noise pat-
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(a) (b)

Figure 6. Barberpole illusion (a). Stimulus with aperture orientation perpendicular to that of the 1D
grating, random noise in the center, and a random dot field moving coherently in the horizontal plane
(b).

terns that were overlaid. 1/f-noise images are characterized
by an hyperbolically-shaped spectrum, e.g. a high propor-
tion of low-frequency content and few high-frequency com-
ponents. This property has been chosen to resemble statistical
properties of natural images [2]. For an example, see Fig. 5.
Note that when several of these images are overlaid, this char-
acteristic is preserved; therefore, one cannot detect the num-
ber of overlaid motions from still images alone. These pat-
terns were translated with 12◦/s. The directional separation
of the motion vectors was 15, 30, ..., 180◦ respectively. Sub-
jects then had to indicate, in a 5 alternatives forced choice
paradigm, whether they had perceived 1, 2, 3, 4, or 5 motions.
In addition to the experiments described above, we performed
an additional set of experiments that differed only by the fact
that we used random dot patterns instead of the 1/f patterns.

Results can be seen in Fig. 8 and 9. Note that overall
the discriminability increases with the angular separation of
the motions. Also note, however, that the difficulty of the
discrimination task increases with the number of motions.
Nevertheless, three motions can be well discriminated with
sufficient angular separation. We therefore suggest that the
angular separation is the main limiting factor, which is, of
course, in turn limited by the number of motions. As shown
in Fig. 10, this effect can be predicted qualitatively in terms of
confidence measures based on the generalized structure ten-
sor. The confidence measure is obtained as the inverse slope
of the line fitted to the distribution of the logarithm of the
M − 1 largest eigenvalues of the generalized structure tensor.
The inverse slope values are shown normalized to the range
[0, 1]. Similar results would be obtained for the 1/f patterns.

5. Discussion

We have presented a method for categorizing transparent-
motion patterns in terms of the ranks of the generalized struc-
ture tensors. Based on our results, the confidence for a par-
ticular pattern can be evaluated computationally by either de-
termining the rank JN or by using the minors of the structure

tensors [18]. For example, we can discriminate the case of
two superimposed 1D patterns (moving plaid) and a 2D pat-
tern moving in the direction of the coherent motion of the
plaid pattern.

Our results can be seen as an extension of the concept of
intrinsic dimension [28, 5]. In the current framework, the in-
trinsic dimension corresponds to the rank of J 1. As shown in
Table 2, by introducing the generalized structure tensor, we
can further differentiate the signal classes of a given (integer)
intrinsic dimension. In some sense, we thereby define frac-
tional intrinsic dimensions.

Although motion estimation is a key component of many
computer-vision and image processing systems, the motion
models are often too simple and fail with realistic data. Our
results provide (i) new means for increasing the complexity of
the motion models and (ii) measures for determining the con-
fidence for a particular model. We should note that the frame-
work can be applied to make explicit the correspondence be-
tween the ranks of JN , for a value of N larger than 3, and the
different moving patterns.

The theory presented in this work provides a conceptual
understanding of the difficulties in the estimation of multiple
transparent motions, which are due to the generalized aper-
ture problem. We have used the projective transform to es-
tablish a correspondence between the rank of the generalized
structure tensor and different transparent moving patterns.
Note, however, that the generalized structure tensor is de-
rived by integration of the derivatives of the image sequence
in a local neighborhood and as such can be used for the es-
timation of transparent motion in that neighborhood, includ-
ing situations were the motion vectors may vary over space.
For the estimation of N transparent motions, N th-order par-
tial derivatives are involved. The ubiquitous presence of noise
can be compensated by prefiltering the sequences with proper
kernels, see [18]. Such prefiltering is equivalent to the use of
more general filters instead of the derivatives and can thus
break the unfavorable relationship between the order of dif-
ferentiation and the sensitivity to noise.
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Figure 7. Data illustrating the entrainment effect of a 2D pattern over a 1D grating. No aperture (a).
Aperture orientation perpendicular to that of the 1D grating (b).

Finally, we have also shown how our results can be used to
explain some phenomena in biological vision. In particular,
the concept of the projective plane proved useful for describ-
ing and visualizing different visual percepts. Furthermore, we
demonstrated new illusionary percepts that are in accordance
with the ambiguities that one would expect from the theory.
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A. The Null-Eigenvector of JN and the Motion Vectors

The null-eigenvector of JN represents N transparent-
motion velocities if it is possible to solve the vectorial equa-
tion

c(v1, . . . ,vN ) = sN (17)

for v1, . . . ,vN . In the case of two motions, this equation can
be written in matrix form as

S2 =
stt
2

[
(ux, uy, 1)T (vx, vy, 1)

+ (vx, vy, 1)T (ux, uy, 1)
]
, (18)

where S is the matrix with entries sij if i = j and sij/2 if
i 6= j. Therefore, s2 represents two transparent motions if
and only if

detS2 = 0

detS11
2 + detS22

2 + detS22
2 < 0,

stt 6= 0

(19)
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where detSjj are the diagonal minors of S, e.g., detS33 =
sxxsyy−s2

xy/4. Eq. (18) can be easily extended to more than
two motions but we could not find any expressions for the
resulting SN analogous to those in Eq. (19). Nevertheless,
it has been shown in [18] that the solutions of Eq. (17) can
be expressed as the roots of a complex polynomial whose co-
efficients are explicitly given in terms of sn. If vc

1, . . . ,v
c
N

are the roots of this polynomial, a necessary and sufficient
condition for sN to represent transparent-motion vectors is
therefore

sN = c(vc
1, . . . ,v

c
N ). (20)

B. The Projective Plane

The projective plane is the set of all directions in the
three-dimensional Euclidean space. These directions (the
points of the projective plane) can be represented by homo-
geneous coordinates [x, y, z]. A pair of homogeneous coor-
dinates [x, y, z], [x′, y′, z′] represents the same point if and
only if (x, y, z) = λ(x′, y′, z′) for some non-zero factor λ. A
point with coordinates [x, y, 0] is called an ideal point and the
set of ideal points is called the ideal line.

A point (x, y) in a Euclidean plane corresponds naturally
to a projective point by the identification (x, y) = [x, y, 1].
Therefore, we can think of the projective plane as the union
of the plane z = 1 and the ideal line.

Relevant Properties of the Projective Plane

Below we summarize the properties of the projective plane
that are useful for our analysis of moving patterns:

• Dimension reduction: lines and points of the projective
plane correspond to planes and lines through the origin
of the three-dimensional space respectively;

• Duality: each line ` of the projective plane is associated
to a dual point V by the corresponding orthogonality
of planes and lines in the three-dimensional Euclidean
space and vice-versa;

• No parallelism: any two lines of the projective plane do
intersect;

• Two projective lines intersect at an ideal point if and only
if their dual points and et are aligned.

C. The Rank of JN

From the discussion in Section 3, we have seen that the set
of admissible velocities of a moving layer g is the dual space
to the support of PG. This dual set is called the phase space
for the velocities of g. In what follows, we will suppose that
no pair of layers forming f moves with collinear velocities
and none of the layers is static. This means that the lines
supporting two non-degenerated Dirac lines always intercept
at a finite (non-ideal) point.

U

V

W

(a)

U

W V

W
~

(b)

Figure 11. Admissible velocities of overlaid-
motions patterns in the projective plane: (a)
two overlaid 1D patterns, U is the coherent
velocity, c(u,u), c(u,v), c(u,w), c(v,w) are in-
dependent null-eigenvectors of J2; (b) same
for one 1D pattern and two 2D patterns,
c(u,v,w) and c(u,v, w̃) are independent null-
eigenvectors of J3.

The mixed-motion parameters vectors cN = c(v1, . . . ,
vN ) can be interpreted as elements of the space of sym-
metric N -tensors (here denoted by SN ). Therefore, if
β = {U ,V ,W } is a basis for the three-dimensional
Euclidean space, the set {c(v1, . . . ,vN ) : V n ∈ β,
for n = 1, . . . , N} is a basis for SN . For example,
{c(u,u), c(u,v), c(u,w), c(v,v), c(v,w), c(w,w)} is a
basis for S2. We will use this relationship between basis of
R3 and SN to construct a maximal number of elements in the
kernel of J2 and J3. By ‘kernel of JN ’ we denote the set of
vectors that correspond to the zero eigenvalues of JN .

The Rank of J2

For two moving layers, the non-trivial possibilities for the
phase space of the velocities are a {line,line}, {point, line},
{point, point}.

line, line: Choose a basis β = {U ,V ,W} of R3 such that
U is the intersection of the two lines, and V and W belong
to each of these lines, see Fig. 11(a). Now it is clear that
c(u,u), c(u,v), c(u,w) and c(v,w) are elements in the
kernel of J2. Since these vectors are linearly independent,
we can conclude that rank(J 2) ≤ 2.

line, point: Choose U as the point and V ,W in the line.
The vectors c(u,v), c(u,w) are null-eigenvectors of J 2 and
therefore rank(J2) ≤ 4.

point, point: ChooseU ,V as the two points andW freely.
The only element in the kernel of J 2 is c(u,v), therefore
rank(J2) ≤ 5.

We found the above bounds to the rank(J 2) given two
moving patterns. Since it is possible to reach these bounds,
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they are actually tight. Note that two moving patterns do not
produce rank 1 or 3. These ranks are actually produced by a
single moving object. The phase space for the two velocities,
in this case, is {line, plane} or {point, plane}. We analyze the
first case below, the other is similar.

line, plane: Choose U ,V as points in the line and W out
of it. The only element that does not belong to the kernel of
J2 is c(w,w) and therefore rank(J 2) = 1.

The Rank of J3

For three moving patterns, the non-trivial possibilities for
the phase spaces of the velocities are a {line, line, line},
{point, line, line}, {point, point, line}, and {point, point,
point} which correspond to the values 3, 6, 8, and 9 of the
rank of J3. Since the analyses of these cases are very similar,
we consider only the two last cases.

point, point, line: Choose U ,V as the points and W in
the line, see Fig. 11(b). In principle it appears that only the
element c(u,v,w) belongs to the kernel of J 3. Also note
that any two lines intersect in the projective plane. Let W̃
be the intersection of the given line with the line determined
by U and V . Now, if we assure that W does not coincide
with W̃ , we find the second independent symmetric tensor
in the kernel of J3, that is, c(u,v, w̃). We conclude that
rank(J3) ≤ 8. Since these are all the possibilities, except
maybe for degenerate cases, the bound 8 is tight.

point, point, point: Choose U ,V ,W as these points.
Only c(u,v,w) belongs to the kernel of J3. Hence,
rank(J3) = 9 except for degenerate cases.

Similar to the case J2, three moving patterns do not fill
all the possibilities for the rank of J 3. The gaps are filled by
single or two moving patterns. These correspond to ranks 1,4
and 2,5,7 respectively. Table 2 summarizes the possibilities
for the ranks of JN for N = 1, 2, 3.
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