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Abstract. Model-free {MRI analysis methods are either transformation—
based like princg:al comganent analysis (Pw and independent compo-
or ervi

nent analysistg A), ased on unsup clustering. Since each of
these two methods has its particular strengths, it is natural to look for
an unifying paradigm of these analysis methods. This is given by the to-
pographic inde t component analysis. While achieved by a slight

modification of the ICA model, it can be at the same time used to de-
fine a topographic order between the components, and thus has the nsual
computational advantages associated with topographic maps. In this con-
tribution, we can show that when applied to analysis it outperforms
powerful representants of both mocﬁa ~free methods,

1. Introduction

Functional magnetic resonance imaging with high temporal and spatial resolu-
tion is a potential method to map rapid and fine activation patterns of the human
brain. According to both theoretical estimations and experimental results, an
activated signal variation appears very low on a clinical scanner. Thus, analysis
methods are required to find the response waveforms and associated activated
regions. Generally, these methods can be divided into two categories depend-
ing on whether or not they require prior knowledge about activation patterns:
model-based and model-free. To eliminate the bias and limitation of model-based
analysis methods and to satisfy the demand to analyze data with complicated ex-
perimental conditions, analysis methods that do not rely on any assumed model
of functional response are necessary. There are two kinds of model-free methods.
The first method, principal component analysis (PCA) or independent COMmMpo-
nent analysis (ICAF, transforms original data into high-dimensional vector space
to separate functional response various noise sources from each other.

The second method, fuzzy clustering analysis or self-organizing map, at-
tempts to classify time signals of the brain into several patterns according to
temporal similarity among these signals.



Since each of these methods has its particular strengths, it is natural to look
for an unifying model that combines topographic mapping with ICA. This is
given by the topographic independent component analysis [HHO1]. Achieved
by a slight modification of the ICA model, it can be at the same time used
to define a topographic order between the components, and has thus the usual
computational advantages associated with topographic maps.

2. The Topographic ICA Architecture

The paradigm of topographic ICA has its roots in [HHO00] where a combination
of invariant feature subspaces [Koh96] and independent subspaces [Car98] is
proposed.

To introduce a topographic representation in the ICA model, it is NEeCcessary
to relax the assumption of the independence among neighboring components s..
This makes it necessary to adopt an idea from self-organized neural networks,
that of a lattice. It was shown in [HHO1] that a representation which mod-
els topographic correlation of energies is an adequate approach for introducing
dependencies between neighboring components.

In other words, the variances corresponding to neighboring components are
positively correlated while the other variances are in the wide sense independent.
The architecture of this new approach is shown in Figure 1.

This idea leads to the following representation of the source signals

8 = Tz (”

where z; is a random variable having the same distribution as s; and, the variance
o; is fixed to unity.
The variance g; is further modeled by a nonlinearity:
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where u; are the higher order independent components used to generate the vari-
ances, while ¢ describes some nonlinearity. T}l;e neighborhood function h(i, )
can be either a two-dimensional grid or have a ring-like structure. Further u;
and z; are all mutually independent.
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Figure 1: Topographic ICA model [HHO01]. The variance generated variables u;
are randomly generated, and mixed linearly inside their topographic neighbor-
hoods. This forms the input to nonlinearity ¢, thus giving the local variance a;.
Components s; are generated with variances o;. The observed variables are z;
are obtained as with standard ICA from the linear mixture of the components
8i.




The learning rule is based on the maximization of the likelihood. First, it is
assumed that the data is preprocessed by whitening and that the estimates of
the components are uncorrelated. The log-likelihood is given by:

T =n n
log L(wi i =1,---,n) = Y 3" G(D_(wi"x(t)?) + Tlog |detW|  (3)
=1 j=1 i=1

The update rule for the weight vector w; is derived from a gradient algorithm
based on the log-likelihood assuming log |detW| = 0:

Aw; o E{x(w]x)r;} (4)
where
ri = h(i,k)g(Y_ k(k, j)(w]x)?) (5)
k=1 i=1

The function g is the derivative of G = —ay+/u + 9;. After every iteration, the
vectors w; in equation (4) are normalized to unit variance and orthogonalized.
This equation represents a modulated learning rule, where the learning term is
modulated by the term r;.

The classic ICA results from the topographic ICA by setting h(i, j) = d;;.

3. Results and Discussion

FMRI data were recorded from six subjects (3 female, 3 male, a%e 20-37) per-
forming a visual task. In five subjects, five slices with 100 images (TR/TE=3000
/ Gﬂmaecg were acquired with five periods of rest and five photic simulation pe-
riods with rest. Simulation and rest periods comprised 10 repetitions each, i.e.
30s. In one subject eight slices with 64 images (TR/TE=4000/66msec) were
obtained starting with a period of rest lasting 10 repetitions (i.e. 40s) followed
by three periods of stimulation alternating with periods of rest comprising 9
repetitions each, i.e. 36 5. Resolution was 3 x 3 x 4 mm. The slices were oriented
patallel to the calcarine fissure. Photic stimulation was performed using an 8
Hz alternating checkerboard stimulus with a central fixation point and a dark
b ound with a central fixation point during the control periods [WLD*02].
The first scan was discarded for remaining saturation effects. Motion artifacts
were compensated by automatic image alignment (AIR, [WCM92]).

The obtained results were evaluated by (13 assessment of cluster assignment
maps, (2) task-related activation maps and (3) associated time—courses. Clus-
ter assignment maps represent cluster membership maps obtained based on a
minimal distance criterion in the pixel time course space. For the fMRI data,
a comparative quantitative evaluation among the topographic ICA and a tra-
ditional ICA, the Infomax, and a clustering method, "neural gas” network, is
going to be performed.

3.1. Topographical ICA Results

The clustering results for the topographical ICA are shown in Figure 2. Figure
2 shows the independent time courses emerging from topographical ICA. We
immediatley can see a topographical representation by looking at the fifth row
from top: five in amplitude similar artifactual time courses are grouped together.
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Figure 2: Determined IC time courses for the topographic ICA model.
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3.2, Comparison based on Correlation with the Reference Function

An interesting aspect can be observed if we compare the computed reference
functions at the maximum correlation for topographic ICA with both the "neu-
ral gas” network and the FastICA. Fi&lre 3 visualizes the computed reference
functions for all model-free methods. We see that the reference function for the
topographic ICA is quite similar to the "neural gas™ network. It's important to
point out, that the reference function corresponding to topographical ICA has
at large the shape of that corresponding to FastICA. However, it contains at
small scale the details of the "neural gas” network.

3.3. Comparison based on Activation Maps

Each ICA component map is described by a distribution of values, one per voxel.
These values describe the relative amount a given voxel is modulated by the acti-
vation of that component. A way to determine and visualize voxels belonging to
a particular component map, the map values are scaled to z-scores {the number
of standard deviations from the map mean). An active voxel for that component
is a voxel whose absolute z-scores are above a predefined threshold(e.g., |z| > 2).
The z-scores serve for visualization purposes, and have no statistical relevance
[MIM*98].

To further differentiate in terms of detecting activation clusters, we take a
look at the activation z-maps for all model-free analysis methods as illustrated
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Figure 3: Computed reference functions for the three techniques ("neural gas”
network for 36 code vectors, and the topographic ICA and the FastICA for 16
different components.

by Figure 4. Here again, it's evident that the topographic ICA unifies the
strenghts of the two other techniques.

4. Conclusion

We have adopted a new ICA algorithm for fMRI data analysis, the topographic
independent analyisis model. %t represents an unifying model that combines
topographic mapping with ICA. This new approach is experimentally compared
with an already proven ICA algorithm for {MRI, the FastICA, and with an
advanced unsupervised clustering method, the "neural gas” network. The goal of
our study was to confirm the robustness and reliability in extracting task—related
activation maps and time—courses from fMRI data sets. Based on the obtained
results, we can conclude that by introducing a topographic order between the
components, we are able to identify fine structures from a large noisy data set.
While at large (outside the defined ;rid), the algorithm separates functional
response from artifacts, within the grid it classifies time signals according to their
temporal similarity. Thus it removes the noise sensitivity of clustering methods,
and it differentiates better finer activation structures than transformation-based
methods.

The obtained results demonstrate how topographic ICA can provide addi-
tional information even in those situations where the obtained results can be
foreseen or confirmed by conventional statistical analysis methods. This aspect
is of great value for planning experiments under more complex conditions.
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Figure 4: Differences in the activation maps between topographic ICA, "neural
gas”, and FastICA. (a) FastICA versus TopoICA, and (b) %Jpo]CA versus Fas-
tICA. The darker pixels show voxels being active with the first technique, while
the lighter ones show only those active with the second technique. The number
of code vectors and of components was set equal to eight.
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