# Neural Learning Can Form Structures From Computational Geometry

## Thomas Martinetz

Abstract: It is shown that a competitive Hebbian learning rule forms so-called Delaunay triangulations, which play an important role in computational geometry for efficiently solving proximity problems. Given a set of neural units i, i = 1, ..., N, the synaptic weights of which can be interpreted as points  $\mathbf{w}_i$  in  $\Re^D$ , by sequentially presenting input patterns  $\mathbf{v} \in \Re^D$  the competitive Hebbian learning rule leads to a connectivity structure between the units i which corresponds to the Delaunay triangulation of the points  $\mathbf{w}_i, i = 1, ..., N$ . Such competitive Hebbian rule develops connections  $(C_{ij} > 0)$  between neural units i, j with neighboring receptive fields (Voronoi polygons)  $V_i, V_j$ , whereas between all other units i, j no connections evolve  $(C_{ij} = 0)$ .

## 1. Introduction

Information processing tasks often require to solve repetitively so-called proximity problems. The most prominent examples of such proximity problems are the k-nearest-neighbor search, the construction of the Euclidean minimum spanning tree and the triangulation problem. These proximity problems occur in applications ranging from speech- and image processing over network design to efficient storage and transfer of data [1-5]. A powerful structure from computational geometry which, after having been constructed in a preprocessing stage, allows one to solve these proximity problems with significantly reduced computational effort<sup>1</sup>, is the Delaunay triangulation and its dual, the Voronoi diagram [6, 7].

The Voronoi diagram  $V_S$  of a set  $S = \{\mathbf{w}_1, \dots, \mathbf{w}_N\}$  of points  $\mathbf{w}_i \in \mathbb{R}^D$  is given by N D-dimensional polyhedra, the Voronoi polyhedra  $V_i$ . The Voronoi polyhedron  $V_i$  of a point  $\mathbf{w}_i \in S$  is given by the set of points  $\mathbf{v} \in \mathbb{R}^D$  which are closer to  $\mathbf{w}_i$  than to any other  $\mathbf{w}_j \in S$ :

$$V_i = \{ \mathbf{v} \in \Re^D \mid \|\mathbf{v} - \mathbf{w}_i\| \le \|\mathbf{v} - \mathbf{w}_j\| \ \forall j \}.$$

The Delaunay triangulation  $\mathcal{D}_S$  of a set  $S = \{\mathbf{w}_1, \dots, \mathbf{w}_N\}$  of points  $\mathbf{w}_i \in \Re^D$  is defined by the graph whose vertices are the  $\mathbf{w}_i$  and whose adjacency matrix  $\mathbf{A}$ ,  $A_{ij} \in \{0, 1\}$ ,  $i, j = 1, \dots, N$  carries the value one if and only if  $V_i \cap V_j \neq \emptyset$ . Two vertices  $\mathbf{w}_i, \mathbf{w}_j$  are connected by an edge if and only if their Voronoi polyhedra  $V_i, V_j$  are adjacent. An illustration of the Voronoi diagram and the Delaunay triangulation of a set of points in a plane is given in Fig. 1.

<sup>&</sup>lt;sup>1</sup>at most linearly increasing in the number of vertices.



Figure 1: The Voronoi diagram and the Delaunay triangulation (dark lines) of a set of points.

In this paper we show that a competitive version of a well-known neural learning rule, the Hebbian adaptation rule, leads to interneural connections within a network of neural units i corresponding to the edges of the Delaunay triangulation of the synaptic weight vectors  $\mathbf{w}_i \in \mathbb{R}^D$ . We show that by sequentially presenting input patterns  $\mathbf{v}$  drawn from a manifold  $M = \mathbb{R}^D$  the competitive version of the Hebbian adaptation rule forms the complete Delaunay triangulation  $\mathcal{D}_S$ .

# 2. Competitive Hebbian learning rule

In the following we assume a set of neural units i, i = 1, ..., N which can develop *lateral connections* between each other. A neural unit connects itself with another unit by developing a synaptic link to this unit. The lateral connections are described by a connection strength matrix C with elements  $C_{ij} \in \Re_0^+$ . The larger a matrix element  $C_{ij}$ , the stronger is the connection from unit i to unit j. Only if  $C_{ij} > 0$ , we regard neural unit i as being connected with unit j. If  $C_{ij} = 0$ , neural unit i is not connected with unit j. Negative values for  $C_{ij}$  do not arise.

The basic principle which governs the change of interneural connection strength has first been formulated by Hebb [8]. According to Hebb's postulate a presynaptic unit i increases the strength of its synaptic link to a postsynaptic unit j if both units are concurrently active, i.e., if both activities do correlate. A variety of quantitative formulations of this conjunctive mechanism have been proposed, e.g., for modeling Pavlovian conditioning [9], motor learning [10], or associative memory [11]. In its simplest mathematical formulation Hebb's rule is described by the equation

$$\Delta C_{ij} \propto y_i \cdot y_j,\tag{1}$$

in which the change of the strength  $C_{ij}$  of the connection from unit i to unit j is linearly proportional to the presynaptic activity  $y_i$  and the postsynaptic activity  $y_j$ . The quantities  $y_i$ , i = 1, ..., N denote the output activities of the neural units.

In the following we assume that to each neural unit i a weight vector  $\mathbf{w}_i \in \Re^D$  is assigned. Further, we assume that each neural unit i, i = 1, ..., N receives the same external input pattern  $\mathbf{v} \in \Re^D$ . The weight vector  $\mathbf{w}_i$  determines the center of the receptive field of unit i in the sense that with the reception of an input pattern  $\mathbf{v}$  the output activity  $y_i$  of unit i is the larger the closer its  $\mathbf{w}_i$  is to  $\mathbf{v}$ . In mathematical terms, we assume that  $y_i = R(\|\mathbf{v} - \mathbf{w}_i\|)$  is valid, with R(.) being a positive and continuously monotonically decreasing function, e.g., a Gaussian.

Employing the Hebb rule in the simple form as given in eq. (1) yields the rather trivial result that each neural unit i develops connections to all the other units  $j \neq i$ , with lateral connection strengths  $C_{ij}$  each of which is simply proportional to the overlap of receptive field  $R(\|\mathbf{v} - \mathbf{w}_i\|)$  with receptive field  $R(\|\mathbf{v} - \mathbf{w}_j\|)$ :

$$\Delta C_{ij}(t \to \infty) \propto \int_{\Re D} R(\|\mathbf{v} - \mathbf{w}_i\|) \cdot R(\|\mathbf{v} - \mathbf{w}_j\|) d\mathbf{v}.$$

However, as in many systems governed by self-organizing processes, the connectivity pattern which evolves on the set of neural units becomes significantly more structured if we introduce competition. Analog to the competition among the units in a winner-take-all network we introduce competition among the connections i-j. Instead of being based on the output activities of the neural units itself as in a winner-take-all network, the competition among the connections i-j is determined by the correlated output activities  $Y_{ij} = y_i \cdot y_j$ . Keeping the analogy to winner-take-all networks, with the presentation of an input pattern  $\mathbf{v}$  only the connection i-j whose "activity"  $Y_{ij} = y_i \cdot y_j$  is highest is modified. Instead of changing the connection strengths according to (1), the competitive Hebbian learning rule as a winner-take-all or competitive version of (1) changes the connection strengths according to

$$\Delta C_{ij} \propto \begin{cases} y_i \cdot y_j & \text{if } y_i \cdot y_j \ge y_k \cdot y_l & \forall k, l \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

With an input pattern  $\mathbf{v}$  only the connection between the unit with the largest and the unit with the second largest output is modified, all the other connections remain unchanged.

# 3. Competitive Hebbian learning forms Delaunay triangulations

We show that, instead of connecting each unit with all the other units, the competitive Hebbian learning rule (2) forms a connectivity structure among the neural units i, i = 1, ..., N which corresponds to the Delaunay triangulation of the weight vectors  $\mathbf{w}_1, ..., \mathbf{w}_N$ . More precisely, we show that if we present sequentially input patterns  $\mathbf{v}$  with a distribution  $P(\mathbf{v})$  which has support (is nonzero) everywhere on  $\Re^D$ , then the elements  $C_{ij}$  of the connection strength matrix  $\mathbf{C}$  obey asymptotically

$$\theta(C_{ij}(t\to\infty))=A_{ij}$$
  $i,j=1,\ldots,N$ 

with  $\theta(.)$  as the Heavyside step function and  $A_{ij}$  as the elements of the adjacency matrix **A** of the Delaunay triangulation of the points  $\mathbf{w}_1, \ldots, \mathbf{w}_N$ , for which

$$A_{ij} = \begin{cases} 1 & \text{if } V_i \cap V_j \neq \emptyset \\ 0 & \text{if } V_i \cap V_j = \emptyset \end{cases} \text{ (adjacent)}$$

is valid.  $V_i$ ,  $V_j$  again denote the Voronoi polyhedra of  $\mathbf{w}_i$ ,  $\mathbf{w}_j$ .

To prove that the adjacency matrix  $A_{ij} = \theta(C_{ij})$  defined by the connectivity structure between the neural units becomes equivalent to the adjacency matrix of the Delaunay triangulation  $\mathcal{D}_S$  of the set of points  $S = (\mathbf{w}_1, \dots, \mathbf{w}_N)$ , we introduce the second order Voronoi polyhedra  $V_{ij}$ , i, j = 1, ..., N. The second order Voronoi polyhedron  $V_{ij}$  is given by all the  $\mathbf{v} \in \Re^D$  for which  $\mathbf{w}_i$  and  $\mathbf{w}_j$  are the two closest points of S; i.e.,  $V_{ij}$  is defined by

$$V_{ij} = \{ \mathbf{v} \in \Re^{D} \mid ||\mathbf{v} - \mathbf{w}_{i}|| \le ||\mathbf{v} - \mathbf{w}_{k}||$$

$$\wedge ||\mathbf{v} - \mathbf{w}_{i}|| \le ||\mathbf{v} - \mathbf{w}_{k}|| \ \forall k \ne i, j \}.$$

As the Voronoi polyhedron of first order  $V_i$ , also  $V_{ij}$  forms a convex polyhedron.

It is obvious that two units i, j can become connected by the competitive Hebbian rule if and only if  $V_{ij} \neq \emptyset$  is valid. Only then there is an input pattern  $\mathbf{v}$  for which unit i (or j) has the largest output  $y_i = R(\|\mathbf{v} - \mathbf{w}_i\|)$  and unit j (or i, respectively) has the second largest output  $y_j = R(\|\mathbf{v} - \mathbf{w}_j\|)$  and, hence, for which the correlated output activity  $Y_{ij} = y_i \cdot y_j$  of the units i, j wins. We prove that  $V_{ij} \neq \emptyset$  is valid if and only if the corresponding first order Voronoi polyhedra  $V_i$ ,  $V_j$  are adjacent, i.e., if and only if  $V_i \cap V_j \neq \emptyset$  is valid. Then, in case  $\int_{V_{ij}} P(\mathbf{v}) d\mathbf{v} \neq 0$  holds for each  $V_{ij} \neq \emptyset$ , the connections formed by he competitive Hebbian rule correspond to the edges of the Delaunay triangulation of the points  $\mathbf{w}_1, \ldots, \mathbf{w}_N^{-2}$ .

**Theorem 1** For a set  $S = \{\mathbf{w}_1, \dots, \mathbf{w}_N\}$  of points  $\mathbf{w}_i \in \Re^D$  the relation

$$V_i \cap V_j \neq \emptyset \iff V_{ij} \neq \emptyset$$

is valid for each pair i, j.  $V_i$  denotes the first order Voronoi polyhedron of point  $\mathbf{w}_i$ , and  $V_{ij}$  denotes the second order Voronoi polyhedron of the points  $\mathbf{w}_i$ ,  $\mathbf{w}_j$ .

**Proof:** If  $V_i \cap V_j \neq \emptyset$  is valid, there is a  $\mathbf{v} \in \Re^D$  with  $\mathbf{v} \in V_i$  and  $\mathbf{v} \in V_j$ . Then we obtain  $\|\mathbf{v} - \mathbf{w}_i\| = \|\mathbf{v} - \mathbf{w}_j\| \leq \|\mathbf{v} - \mathbf{w}_k\|$  for all  $\mathbf{w}_k \in S$ , and, therefore,  $\mathbf{v} \in V_{ij}$ , i.e.,  $V_{ij} \neq \emptyset$ , is valid.

If  $V_{ij} \neq \emptyset$  is valid, there is a  $\mathbf{v} \in \Re^D$  for which the points  $\mathbf{w}_i$  and  $\mathbf{w}_j$  are the two nearest neighbors. Without loss of generality we assume that  $\mathbf{w}_i$  is the nearest neighbor. Since for each  $\mathbf{u} \in \overline{\mathbf{v}} \overline{\mathbf{w}}_j$  the point  $\mathbf{w}_j$  is either the nearest or the second nearest neighbor of  $\mathbf{u}$ , and since for  $\mathbf{u} = \mathbf{v}$  the point  $\mathbf{w}_i$  is closest and for  $\mathbf{u} = \mathbf{w}_j$  the point  $\mathbf{w}_j$  is closest to  $\mathbf{u}$ , there is a  $\mathbf{u}^* \in \overline{\mathbf{v}} \overline{\mathbf{w}}_j$  for which  $\|\mathbf{u}^* - \mathbf{w}_i\| = \|\mathbf{u}^* - \mathbf{w}_j\|$  is valid. Hence, we obtain  $\mathbf{u}^* \in V_i$  and  $\mathbf{u}^* \in V_j$ , and, therefore,  $\mathbf{u}^* \in V_i \cap V_j$ , i.e.,  $V_i \cap V_j \neq \emptyset$ , is valid.

<sup>&</sup>lt;sup>2</sup>The following theorem was formulated together with Philippe Dalger and Bennoit Noël [12].

## 4. Summary

We showed that formal neural units i form connectivity structures corresponding to Delaunay triangulations, if the Hebb rule together with competition among the connections is employed. Each neural unit i has to have a localized receptive field within the feature space M. By sequentially presenting patterns  $\mathbf{v} \in M$  and each time connecting those two units i, j which have the highest correlated output activity  $y_i \cdot y_j$ , the Delaunay triangulation  $\mathcal{D}_S$  of the receptive field centers  $\mathbf{w}_i$  evolves. Delaunay triangulations play an important role in a variety of information processing tasks. These tasks range from data compression over discrete optimization to pattern recognition and function approximation [1, 5, 13]. We demonstrated that the Delaunay triangulation with its significant role for information processing can be established by a self-organizing neural network: a set of formal neural units with lateral connections formed by an input driven, Hebbian learning rule.

## Acknowledgement

I am indebted to Klaus Schulten for many fruitful discussions. This work has been supported by the BMFT under Grant No. 01IN102A7.

#### References

- [1] Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis. Wiley, New York.
- [2] Makhoul J, Roucos S, Gish H (1985) Vector quantization in speech coding. Proceedings of the IEEE 73:1551–1588.
- [3] Nasrabadi NM, King RA (1988) Image coding using vector quantization: A review. IEEE Trans Comm 36(8):957-971.
- [4] Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comp. C-20(1), pp 68–86.
- [5] Strang G, Fix G (1973) An analysis of the finite element Method. Prentice-Hall, Englewood Cliffs, NJ, 1973.
- [6] Preparata FP, Shamos MI (1988) Computational Geometry: An Introduction. Springer-Verlag, New York.
- [7] Delaunay B (1934) Sur la Spère Vide. Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat., pp 793–800.
- [8] Hebb D (1949) Organization of Behavior. Wiley, New York.
- [9] Grossberg S (1974) Classical and instrumental learning by neural networks. In: Prog. Theor. Biol., vol III, Rosen E., Snell F. (eds.), Academic Press, New York, pp. 51-141.
- [10] Marr D (1969) A Theory of Cerebellar Cortex. J. Physiol., 202:437–470.
- [11] Palm G (1982) Neural Assemblies: An Alternative Approach to Artificial Intelligence, Springer, New York.

- [12] Dalger P, Noël B, Martinetz T, Schulten K (1992) Delaunay triangulation and Voronoi polyhedra of second order. Beckman Institute Technical Report TB 98-01, University of Illinois at Urbana-Champaign.
- [13] Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. AMS 7, pp 48–50.

#### Author

Dr. Thomas Martinetz Siemens AG Corporate Research & Development Neural Networks Group 81730 München, Germany