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Abstract: It is shown that a competitive Hebbian learning rule forms so-called Delaunay
triangulations, which play an important role in computational geometry for efficiently solv-
ing proximity problems. Given a set of neural units 4, i = 1,..., N, the synaptic weights
of which can be interpreted as points w; in ®7, by sequentially presenting input patterns
v € RP the competitive Hebbian learning rule leads to a connectivity structure between
the units ¢ which corresponds to the Delaunay triangulation of the points w;, i = 1,..., N,
Such competitive Hebbian rule develops connections (Cij > 0) between neural units i, j with
neighboring receptive fields (Voronoi polygons) V;, V;, whereas between all other units i,
no connections evolve (Cj; = 0).

1. Introduction

Information processing tasks often require to solve repetitively so-called proximity problems.
The most prominent examples of such proximity problems are the k-nearest-neighbor search,
the construction of the Euclidean minimum spanning tree and the triangulation problem.
These proximity problems occur in applications ranging from speech- and image processing
over network design to efficient storage and transfer of data [1-5]. A powerful structure from
computational geometry which, after having been constructed in a preprocessing stage, al-
lows one to solve these proximity problems with significantly reduced computational effort!,
is the Delaunay triangulation and its dual, the Voronoi diagram [6, 7).

The Voronoi diagram Vs of a set § = {wy,...,wy} of points w; € R? is given by N
D-dimensional polyhedra, the Voronoi polyhedra V;. The Voronoi polyhedron V; of a point
w; € S is given by the set of points v € R which are closer to w; than to any other w; € S:

Vi={veR?||v-wil < llv—w, ¥j}.

The Delaunay triangulation Dg of a set S = {w,...,wn} of points w; € R is defined
by the graph whose vertices are the w; and whose adjacency mairiz A, Ay € {0,1}, 4,5 =
1,..., N carries the value one if and only if V; N V; # 0. Two vertices w;, w; are connected
by an edge if and only if their Voronoi polyhedra V;, V; are adjacent. An illustration of the
Voronoi diagram and the Delaunay triangulation of a set of points in a plane is given in
Fig. 1.

lat most linearly increasing in the number of vertices.



Figure 1: The Voronoi diagram
and the Delaunay triangulation
(dark lines) of a set of points.

In this paper we show that a competitive version of a well-known neural learning rule,
the Hebbian adaptation rule, leads to interneural connections within a network of neural
units i corresponding to the edges of the Delaunay triangulation of the synaptic weight
vectors w; € R, We show that by sequentially presenting input patterns v drawn from
a manifold M = RP the competitive version of the Hebbian adaptation rule forms the
complete Delaunay triangulation Ds.

2. Competitive Hebbian learning rule

In the following we assume a set of neural units ¢, ¢ = 1, ..., N which can develop lateral con-
nections between each other. A neural unit connects itself with another unit by developing
a synaptic link to this unit. The lateral connections are described by a connection strength
matrix C with elements C;; € R§. The larger a matrix element C;;, the stronger is the
connection from unit ¢ to unit j. Only if Cj; > 0, we regard neural unit i as being connected
with unit j. If C;; = 0, neural unit i is not connected with unit j. Negative values for C;;
do not arise.

The basic principle which governs the change of interneural connection strength has first
been formulated by Hebb [8]. According to Hebb’s postulate a presynaptic unit i increases
the strength of its synaptic link to a postsynaptic unit j if both units are concurrently
active, i.e., if both activities do correlate. A variety of quantitative formulations of this
conjunctive mechanism have been proposed, e.g., for modeling Pavlovian conditioning [9],
motor learning [10], or associative memory [11]. In its simplest mathematical formulation
Hebb’s rule is described by the equation

ACi; o yi - ¥4, (1)

in which the change of the strength C;; of the connection from unit ¢ to unit j is linearly
proportional to the presynaptic activity 3 and the postsynaptic activity y;. The quantities
yi, 1 =1,..., N denote the output activities of the neural units.



In the following we assume that to each neural unit i a weight vector w; € R is assigned.
Further, we assume that each neural unit i, i = 1,..., N receives the same external input
pattern v € RP. The weight vector w; determines the center of the receptive field of unit i
in the sense that with the reception of an input pattern v the output activity y; of unit 7 is
the larger the closer its w; is to v. In mathematical terms, we assume that y; = R(||v—w;]|)
is valid, with R(.) being a positive and continuously monotonically decreasing function, e.g.,
a Gaussian.

Employing the Hebb rule in the simple form as given in eq. (1) yields the rather trivial
result that each neural unit ¢ develops connections to all the other units 7 # 1, with lateral
connection strengths C;; each of which is simply proportional to the overlap of receptive
field R(||v — w;||) with receptive field R(||v — w;]|):

ACy(t — o0) o [ R(lv = will) - R(lv — w;))dv.
g}D

However, as in many systems governed by self-organizing processes, the connectivity pattern
which evolves on the set of neural units becomes significantly more structured if we introduce
competition. Analog to the competition among the units in a winner-take-all network we
introduce competition among the connections ¢ — j. Instead of being based on the output
activities of the neural units itself as in a winner-take-all network, the competition among
the connections i — j is determined by the correlated output activities Yi; = y; - y;. Keeping
the analogy to winner-take-all networks, with the presentation of an input pattern v only
the connection ¢ — 7 whose “activity” Y;; = y;y; is highest is modified. Instead of changing
the connection strengths according to (1), the competitive Hebbian learning rule as a winner-
take-all or competitive version of (1) changes the connection strengths according to

;. vioyi fyi-yizuwe-wm Ykl
Al { 0 otherwise. (2)

With an input pattern v only the connection between the unit with the largest and the unit
with the second largest output is modified, all the other connections remain unchanged.

3. Competitive Hebbian learning forms Delaunay tri-
angulations

We show that, instead of connecting each unit with all the other units, the competitive
Hebbian learning rule (2) forms a connectivity structure among the neural units ¢, i =
1,..., N which corresponds to the Delaunay triangulation of the weight vectors wy,...,wy.
More precisely, we show that if we present sequentially input patterns v with a distribution
P(v) which has support (is nonzero) everywhere on R®”, then the elements C;; of the
connection strength matrix C obey asymptotically

E{C,-j{t—*oo]}zA;j ‘i,j=1,...,N



with #(.) as the Heavyside step function and A;; as the elements of the adjacency matrix A
of the Delaunay triangulation of the points wy,...,wy, for which

e ifVinV;#0 (adjacent)
10 ifVinV; =0 (not adjacent)

is valid. V;, V; again denote the Voronoi polyhedra of w;, w;.

To prove that the adjacency matrix A;; = 6(C;;) defined by the connectivity structure
between the neural units becomes equivalent to the adjacency matrix of the Delaunay trian-
gulation Dg of the set of points S = (wy,...,wy), we introduce the second order Voronoi
polyhedra Vi, 1,5 = 1,..., N. The second order Voronoi polyhedron V;; is given by all the
v € RP for which w; and w; are the two closest points of S; i.e., V;; is defined by

Vi={ veRP||v-wi<|v—w
A v —wy|| < ||lv — wgl|l Yk # 1,7}

As the Voronoi polyhedron of first order V;, also V;; forms a convex polyhedron.

It is obvious that two units %, 7 can become connected by the competitive Hebbian rule if
and only if V;; # 0 is valid. Only then there is an input pattern v for which unit i (or j) has
the largest output y; = R(||v — w;||) and unit j (or i, respectively) has the second largest
output y; = R(||v —w;||) and, hence, for which the correlated output activity Y;; = ;- y; of
the units 7, j wins. We prove that V;; # 0 is valid if and only if the corresponding first order
Voronoi polyhedra V;, V; are adjacent, i.e., if and only if V; N V; # 0 is valid. Then, in case
Jv,; P(v)dv # 0 holds for each V;; # @, the connections formed by he competitive Hebbian

rule correspond to the edges of the Delaunay triangulation of the points wy,...,wy 2.

Theorem 1 For a set S = {wy,...,wn} of points w; € R the relation
VinV; #0 & V; #0

18 valid for each pair i,j. V; denotes the first order Voronoi polyhedron of point w;, and V;
denotes the second order Voronoi polyhedron of the points w;, w;.

Proof: If V;NV; # 0 is valid, thereisav € RP withve Viand v e V;. Then we obtain
v — wi|| = [lv — w;|| < |lv— wg| for all wi € S, and, therefore, v € V;, i.e., Vi; # 0, is
valid.

If V;; # 0 is valid, there is a v € R for which the points w; and w; are the two nearest
neighbors. Without loss of generality we assume that w; is the nearest neighbor. Since for
each u € Vw; the point w; is either the nearest or the second nearest neighbor of u, and
since for u = v the point w; is closest and for u = w; the point w; is closest to u, there is a
u* € vw; for which ||u* — w;|| = ||u* — w;]| is valid. Hence, we obtain u* € V; and u* € V},
and, therefore, u* € V;NV;, i.e.,, ViNV; # 0, is valid.

2The following theorem was formulated together with Philippe Dalger and Bennoit No#l [12].



4. Summary

We showed that formal neural units ¢ form connectivity structures corresponding to Delau-
nay triangulations, if the Hebb rule together with competition among the connections is
employed. Each neural unit i has to have a localized receptive field within the feature space
M. By sequentially presenting patterns v € M and each time connecting those two units
i,7 which have the highest correlated output activity y; - y;, the Delaunay triangulation
Dg of the receptive field centers w; evolves. Delaunay triangulations play an important
role in a variety of information processing tasks. These tasks range from data compression
over discrete optimization to pattern recognition and function approximation [1, 5, 13]. We
demonstrated that the Delaunay triangulation with its significant role for information pro-
cessing can be established by a self-organizing neural network: a set of formal neural units
with lateral connections formed by an input driven, Hebbian learning rule.
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