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Abstract: The problem of forming perfectly topology preserving maps of feature manifolds is
studied. First, through introducing “masked Voronoi polyhedra” as a geometrical construct for
determining neighborhood on manifolds, a rigorous definition of the term “topology preserving fea-
ture map” is given. Starting from this definition, it is shown that a network & of neural units 1,
i — 1,..., N has to have a lateral connectivity structure A, A;; € {0,1}, 7,5 — 1,..., N which corre-
sponds to the “induced Delaunay triangulation” of the synaptic weight vectors w; € R in order
to form a perfectly topology preserving map of a given manifold M € R? of features v € M. The
lateral connections determine the neighborhood relations between the units in the network, which
have to match the neighborhood relations of the features on the manifold. If all the weight vectors
w; are distributed over the given feature manifold M, and if this distribution resolves the shape
of M, it can be shown that Hebbian learning with competition leads to lateral connections i — j
(Ai; = 1) that correspond to the edges of the “induced Delaunay triangulation” and, hence, leads
to a network structure that forms a perfectly topology preserving map of M, independent of M’s
topology. This yields a means for constructing perfectly topology preserving maps of arbitrarily
structured feature manifolds.

1. Introduction

Topology preserving feature maps play an important role in a variety of natural as well as artificial
neural information processing systems [1-3]. By projecting input patterns onto a network of neural
units such that similar patterns are projected onto adjacent units and, vice versa, such that adjacent
units code similar patterns, a representation of the input patterns is achieved which in postprocessing
stages allows one to exploit the similarity relations of the input patterns. Examples of topology
preserving feature maps in the nervous system are the retinotopic map in the visual cortex [4],
the mapping from the body surface onto the somatosensory cortex [5], or the tonotopic maps in
the auditory cortex [6]. As components of artificial neural information processing systems topology
preserving feature maps have been applied successfully in speech processing [7, 8], image processing
[9], and robotics [10].

A number of neural network models for adaptively forming topology preserving feature maps
have been proposed [11-14]. A model which provides a very compact procedure and, therefore, has
found widespread application in artificial neural information processing systems is Kohonen’s self-
organizing feature map (2, 13]. This algorithm requires that one first chooses a graph (network) G,
usually a one-, two-, or three-dimensional lattice; in a subsequent adaptation step, pointers (synaptic
weight vectors) w; which are assigned to the vertices (neural units) i of G are distributed over a given
feature manifold M € R in such a way, that (i) pointers lie on M, and (ii) pointers of vertices
which are adjacent in G are assigned to locations which are close on M. To obtain a topology
preserving map, it is necessary to choose a graph G, the topological structure of which matches the
topological structure of the given feature manifold M.




In many applications, however, the feature manifold M is a submanifold of a high-dimensional
space and may neither be known a prieri nor topologically simple enough for prespecifying a cor-
respondingly structured graph (. For these applications it would be highly desirable to have a
procedure which adapts the topology of the graph G to the topology of the given manifold M. An
approach to this problem has been introduced by Kohonen and coworkers [15]. They take the mini-
mum spanning tree between the pointers w; as the graph . Another approach has been proposed by
Fritzke [16]. His approach distributes two-dimensional, triangular cell structures over the manifold
M for forming an appropriate graph . In this paper we will describe an approach which is based
on the so-called Delaunay triangulation [17] of the pointers w; and employs a competitive version
of the Hebb rule for forming the graph . A preliminary version was presented in [18]. Starting
from a rigorous definition of topology preservation, which is given in the next section, we show that
the approach presented forms network structures (¢ which preserve the topology of given feature
manifolds completely.

2. A rigorous definition of topology preservation

Given a feature manifold M. Which graphical structure forms a perfectly topology preserving map
of M7 To answer this question, we first have to define exactly when topology preservation is given.
The problem is that adjacency of vertices i in a graph G is clearly defined; however, a definition for
adjacency of pointers w; on M which is in agreement with our intuitive understanding of topology
preservation is not obvious. This is why in previous contributions on topology preserving feature
maps the interpretation of “topology preservation” has usually been left to the reader’s intuition.

An exception is the trivial one-dimensional case. Obviously, two points w;, w; € I are neighboring
il there is no point wy in between. Expressed in terms of Voronoi polyhedra an equivalent definition
is: two points w;, w; € R are neighboring if their Voronoi polyhedra V;, V; are adjacent, i.e., if
VinV; # 0 with

Vi={veR?||lv-wi| < lv=wll j=1,....,N} i=1,.,N. (1)

In these terms a generalization to higher dimensional embedding spaces R? is straightforward.
However, since we need a definition of neighborhood of points on ¢ manifold M, we first introduce
the masked Voronoi polyhedron. The masked Voronoi polyhedron Vi(M} is the part of V; which is
also part of M, i.e., Vi(M) = Vi M. The superseript indicates the dependence of the masked
Voronoi polyhedron on the given manifold M. By using the neighborhood of the masked Voronoi
polyhedra Vi(M), V}{M) instead of the neighborhood of the Voronoi polyhedra V;, V; for determining
the neighborhood of the points w;, w; on M, we ensure that two points w;, w; are called adjacent

on M only if they do not belong to disconnected regions of M. This leads to the following definition:

Definition 1 Let M € R be a given manifold and S = {wi,....,wn} be a set of points w; €
M. The Voronoi polyhedra of S are denoted by Vi, i = 1,...,N. Two points wi,w; € M C RL
are adjacent on M if their masked Voronoi polyhedra V::(M) =VinM, Vj(""” =V;iNM are
e o O M - Ty s e AMY (M)
adjacent, i.e., if V, and V;™ " share an element v € M or, equivalently, if Vi NV £ 0
18 valid.

Each masked Voronoi polyhedron is part of the manifold M, and the set of all masked Voronoi

N
polyhedra forms a complete partitioning of the manifold M; ie., M = |J Vi(M} is valid.
i=1
With this definition the term “topology preserving feature map” can be formulated rigorously:

Definition 2 Let G be a graph (network) with vertices (neural units) 1, i — 1,...,N and

edges (lateral connections) defined by the adjacency matriz A, Ay; € {0,1}, 4,5 =1,...,N. Let




M C RP be a given manifold of features v € M and S = {w1,...,wn} be a set of pointers
(synaptic weight vectors) w; € M, each of which is attached to a vertex i of the graph G. Let
each feature v of the manifold M be mapped onto that vertex i whose pointer w; is closest to v.
The graph G with its vertices i assigned to the locations w; € M forms a topology preserving
map of M, if pointers w;, w; which are adjacent on M belong to vertices i, j which are adjacent
in G, and, vice versa, if vertices i, j which are adjacent in G are assigned to locations wi, w;

which are neighboring on M.

3. Induced Delaunay triangulations as perfectly topology preserving maps

Assuming the pointers wy, ..., wy which are attached to the vertices i, i = 1,..., N of a graph G
are distributed over the given manifold M. The graph G forms a topology preserving map of M, if
vertices 4, j and only vertices i, j whose corresponding masked Voronoi polyhedra Vi{ M V}(M}
are adjacent are connected by an edge i —j (A;; = 1). The graphical structure which connects those

and

and only those vertices i, j whose corresponding Voronoi polyhedra V; and V; are adjacent is the
so-called Delaunay triangulation' [17]. Analog to the definition of the Delaunay triangulation Dg of
a set of points S = {wy,...,wy}, which is based on the Voronoi polyhedra Vi, ..., Vy of S, we define

the induced Delaunay triangulation ngMJ based on the masked Voronoi polyhedra Vl{M}, ‘(,M}:

Definition 3 Let M C R” be a given manifold and S = {wy,...,wn} be a set of points
w; € M. The induced Delaunay triangulation Dg.M) of S, given M, is defined by the graph
which connects two points wi, w; if and only if their masked Voronoi polyhedra Vi(M), Vj{M}
are adjacent, i.e., by the graph whose adjacency matriz A, Aj; € {0,1}, 4,7 =1,..., N has the
properties

Ai=1 & vyt oy (2)

We obtain the result that a graph & forms a perfectly topology preserving map of a feature
manifold M, if and only if it is the induced Delaunay triangulation of the set S of pointers w; € M.
This is illustrated in Fig. 1. In (a), (b), {¢), and (d} the given manifold M, which is disconnected
and is the same in all four examples, is depicted by the two shaded areas. Only in (d), where the
graph G is the induced Delaunay triangulation of the points w;, two vertices are connected by an
edge if and only if their masked Voronoi polygons are adjacent. Only in (d)} the graph G forms a
perfectly topology preserving map of the given manifold M.

4. Competitive Hebbian rule

In the following we assume a set of neural units i, ¢ = 1,..., N which develop lateral connections
between each other, starting from being unconnected initially. A neural unit connects itself with
another unit by developing a synaptic link to this unit. The lateral connections are described by a
connection strength matrix C with elements Cj; € ?R('J‘L, i,j = 1,..,N. The larger a matrix element
C'i;, the stronger is the synaptic link from unit ¢ to unit j. Only if Ci; > 0, we regard neural unit
i as being connected with unit j. If C;; = 0, neural unit i is not connected with unit j. Negative
values for Cj; do not arise.

The basic principle which governs the change of interneural connection strength has first been
formulated by Hebb [19]. According to Hebb’s postulate a presynaptic unit 7 increases the strength
of its synaptic link to a postsynaptic unit j if both units are concurrently active, i.e., if both activities
do correlate. In its simplest mathematical formulation Hebb'’s rule is described by the equation

AC{j o iUy, (d)

'The Delaunay triangulation is an important structure in computational geometry, particularly for solving proximity
problems.




Figure 1: Illustration of our definition of topology preserving maps. In the four examples the given manifold
M is disconnected and depicted by the two shaded areas. In (a) the graph G is the Delaunay triangulation
of the pointers w; (the location of each pointer is marked by a dot). The resulting map of M we do not
consider as being topology preserving since some vertices which are connected in G belong to masked Voronoi
polygons which are not adjacent on M. In (b) the opposite case is shown. The graph G does not define a
topology preserving map of M since some vertices which belong to adjacent masked Voronoi polygons are not
connected in . In (¢) the graph ¢ is the minimum spanning tree of the points w;, as it would be suggested
by the approach of Kangas et al. [15]. In (d) the graph G is the induced Delaunay triangulation. Pointers and
only pointers the Voronoi polygons of which are adjacent on M, i.e., pointers the masked Voronoi polygons of
which are adjacent, are connected. Only in this case the graph G forms a perfectly topology preserving map
of the given manifold M.

in which the change of the strength Cj; of the synaptic link from unit 7 to unit j is linearly pro-
portional to the presynaptic activity y; and to the postsynaptic activity y;. The quantities y;,
i —1,...,N denote the output activities of the neural units 1.

We will employ the Hebb rule in a form which incorporates the novel aspect of competition among
the synaptic links. Again to each neural unit i a weight vector w; € RY is assigned. Further, we
assume that each neural unit 7, i = 1,..., N receives the same afferent input patterns v.e R”. The
weight vector w; determines the center of the receptive field of unit ¢ in the sense that with the
reception of an input pattern v the output activity y; of unit ¢ is the larger the closer its w; is to v.
In mathematical terms, we assume that y; = R(||[v — wy||) is valid, with R(.) being a positive and
continuously monotonically decreasing function, e.g., a Gaussian.

Applying the Hebb rule in the simple form as given in eq. (3) yields the rather trivial result
that each neural unit ¢ develops connections to all the other units § # ¢ with lateral connection
strengths C;; which are simply proportional to the overlaps of the receptive fields R(||v — w;]|) and
R(|lv — w;
and continuously decreasing with the distance between w; and w;. However, as in many systems
governed by self-organizing processes, also the connectivity pattern which evolves on the set of

|). The strength of the synaptic link between two units ¢ and j is simply monotonically




neural units becomes significantly more structured if we introduce competition. In a winner-take-all
network, for example, the units compete with each other based on their output activities, which
finally leads to an adaptation only of the weights of the unit with the highest output activity.
Without competition, all the units would behave alike and no specialization of the units, as it is
characteristic for winner-take-all networks, would evolve.

Analog to the competition among the units in a winner-take-all network we introduce competition
among the synaptic links. Instead of being based on the output activities of the neural units itself as
in a winner-take-all network, in our model the competition among the synaptic links is determined
by the correlated output activities Y;;, the correlations of the output activities of all pairs of pre- and
postsynaptic units. In the quantitative formulation given below, the correlated output activities are
determined by Y;; = y; - y;. according to the Hebb rule (3). Keeping the analogy to winner-take-all
networks, with the presentation of an input pattern v only the synaptic link 1 — j whose “activity”
Yi; = y:i - y; is highest is modified. Instead of changing the connection strengths C; according to
the Hebb rule (3), in the following we will employ a winner-take-all or competitive version of (3),
determined by

- Yi Yy if?i'yjzyk‘y{ Vk,t’zl,,.,f\f
Bt { 0 otherwise. (4)

Instead of connecting each unit with all the other units, we will show that the competitive Hebb
rule (4) forms a connectivity structure among the neural units ¢, t = 1, ..., N which corresponds to
the Delaunay triangulation of the weight vectors wy, ... wy. More precisely, we will show that if
we present sequentially input patterns v with a distribution P(v) which has support (is nonzero)
everywhere on R, then the elements Cy; of the connection strength matrix C obey asymptotically

HCi(t —00)) = Ay Gf =1y (N (5)

with ¢(.} as the Heavyside step function and A;; as the elements of the adjacency matrix A of the
Delaunay triangulation of the points wy, ... wy, for which

A — 1 fV;nV; #0  (V;,V; are adjacent) (6)
e 0 ifV,nV; =0 (V;,V; are not adjacent)

is valid. V;, V; again denote the Voronoi polyhedra of w;, w;.

For the proof we introduce the second order Voronoi polyhedra Vi;, i,j = 1,...,N. The second
order Voronoi polyhedron V;; is given by all the v € R? for which w; and w; are the two closest
points of S, i.e., Vj; is defined by

Vij = {veRr® ‘ v —will < [lv—wl| A v —wll <[lv—wi| Yk £, 5} (7)

As V4, also V;; forms a convex polyhedron. We see from (7) that the competitive Hebb rule connects
two units 7, j only if Vi; # @ is valid. Only if w;, w; are the two points which are closest to the
presented input pattern v, Y;; = y; - y¥; is the highest correlated output activity. We will prove that
Vij # 0 is valid if and only if the corresponding first order Voronoi polyhedra V;, V; are adjacent,
i.e., if and only if V;NV; # 0. Then, in case fV‘-j P(v)dv # 0 holds for each V;; # 0, the connections

generated by the competitive Hebb rule form the Delaunay triangulation of the set wy, ..., wx .
Theorem 1 For a set S = {wy,...,wx} of points w; € R the relation

is valid. V; denotes the first order Voronoi polyhedron of point w;, and V;; denotes the second
order Voronoi polyhedron of the points w;, wj.

*The following theorem and its proof has been formulated together with Philippe Dalger and Bennoit No#l [20].




Proof: If Vin'V; # 0 is valid, there is a v € R withve V;and v € V;. Then we obtain
[v —wi] = ||v —w;|| £ ||v—wg| for all wy € S and, therefore, v € Vi, i.e., Vi; # 0, is valid.

The reverse implication follows by contradiction if we assume Vj; # @ and V; NV; — 0 being
valid. For each v € V}; the points w; and w; are the two nearest neighbors. Without loss of
generality we can assume that for all v € Vj; the point w; is the nearest neighbor. Otherwise,
against our assumption, there would be a v € V;; for which ||v — w;||=||v —w;|| and, therefore,
also v € V;NV; were valid. Then, V;; C V; follows. V;; is given by all the v € V; which are closer
to w; than to all the other wy € S/{w;, w;}. Hence, V;; is bounded by hyperplanes, each of
which is perpendicular to the connecting line between w; and the respective wy € S/{w;, w;}.
Tor each hyperplane, w; belongs to the half space which contains V;;. Hence, w; € V;; and,
therefore, w; € V; is valid. However, since also w; € V;, we obtain w; € V; N V; which is a
contradiction to our assumption.

In the following we will consider pattern distributions P(v) which have support not on the entire
embedding space RY, but only on a submanifold M. In these cases for some V;; # () the integral
fv,j P’(v)dv might vanish, with the result that the edge i—j will not be established by the competitive
Hebb rule. In these cases the competitive Hebb rule does not form the entire Delaunay triangulation,
but only a subgraph of it.

5. Competitive Hebbian rule forms induced Delaunay triangulations

The competitive Hebb rule (4) constructs the full Delaunay triangulation of a set of points
wi....,wy only if each Voronoi polyhedron of second order V;; is, at least partially, covered by
the density distribution P(v). If we define a given feature manifold M as being the manifold of ®”
on which P(v) is non-zero, two units i, j become connected if and only if Vi; N M # @. Hence, if the
manifold M forms a submanifold which does not cover each Voronoi polyhedron of second order, the
Delaunay triangulation will evolve only partly. If the distribution of the points w; is dense on M
in a sense we will define below, the subgraph of the Delaunay triangulation which is formed by the
competitive Hebb rule will be the induced Delaunay triangulation which was introduced in Section 3.

Definition 4 Let S = {w),...,wy} be a set of points w; which are distributed over a given
manifold M € RP. The distribution of the points w; € M, i = 1,..., N, is dense on M, if for
each v € M the triangle (v, wig, wi, ) formed by the point wy, which is closest to v, the point
wi, which is second closest to v, and v itself lies completely on M, i.e., if A(v,wi,,wi,) C M
s valid.

A distribution of points w; is dense on M according to the above definition, if the distribution is
dense, in the common sense, compared to the topological structure of M. The distribution of the
points w; has to have a density which resolves the details of the shape of the submanifold M. If
for each sample point v € M there is a closest point w;, and a second closest point w;, such, that
the triangle A(v, w;,, w;, ) lies completely on M, the distribution of the w; is dense on M. If the
distribution is homogeneous, the distribution becomes dense simply by increasing the number N of
points w;.

With Definition 4 we obtain the main theorem:

1,...,N be a set of vertices (neural units). Let M C R be a gven
manifold of features v.€ RY and S = {wi,...,wn} be a sel of pointers (synaptic weight
vectors) w; € M, each of which is attached to the corresponding vertexr (neural unit) i and
defines the center of the receptive field R(||v — w;||) of i. If the distribution of the pointers
w; € M is dense on M, then the edges (lateral connections) i — j which are formed by the
competitive Hebb rule define a graph (network) G which corresponds to the induced Delaunay
triangulation ’Dg"f) of S and, hence, forms a perfectly topology preserving map of M.

Theorem 2 Let i, i =




Figure 2: A topology preserving map of a torus, formed by the competitive Hebb rule. The pointers, the
locations of which are marked by the large dots, were distributed over the given manifold M| i.e., the torus,
by the “neural gas” algorithm [18, 21] in a preprocessing stage. Then the pointers stay fix and the edges are
formed by the competitive Hebb rule. The small dots depict already presented patterns v € M. The few
edges of the induced Delaunay triangulation which are still missing have small masked Voronoi polyhedra of
second order and would emerge if further input patterns were presented.

Proof: Analog to Theorem 1 we prove the above theorem by showing that
(M) (M) (M)
B Al B V2T (9)

is valid, with L{ig‘m = Vi N M as the masked Voronoi polyhedron of second order.

If VI-(M} N V;'{M) # B is valid, there is a v € M with v € V; and v € V;. Then we obtain

v —wi|| = |lv —wj|| < |lv —wg| for all wi €.5 and, therefore, v € lf;g"‘"”,

If VI-E,;M) # B is valid, there is a v* € Vig-M} with A(v*, w;, w;) € M, since the distribution
of the pointers wq,...,wy is dense on M. For cach v € Vf-E_-M} the points w; and w; are the
two nearest neighbors. Without loss of generality we assume that for v* the point w; is the
nearest neighbor. Since for each u € v*w; the point w; is either the nearest or the second
nearest neighbor of u, and since for u = v* the point w; is closest and for u = w; the point
w; is closest to u, there is a u* € v*w; for which ||u* — w;|| = |Ju* — w;| is valid. Hence,
we obtain u* € V;, u* € V;, and u* € A(v*, w;, w;) C M, which yields M n(V;nV;) £ 0 or,

equivalently, Vi{M} A VJ'(M) 40,

With the theorem above we have shown that the competitive Hebb rule forms perfectly topology
preserving maps, supposed the distribution of the points w; is dense on the given feature manifold
M. In Fig. 2 we show a simulation example. The manifold M is a torus. To obtain w; € M for
each i, 1 = 1,..., N, the pointers w; are distributed over M in a preprocessing stage, e.g., by a
pattern driven vector quantization procedure like the “neural gas” algorithm [18, 21], which leads
to a homogeneous distribution of the pointers w; on M. After having distributed the pointers, the
connectivity structure is formed by the competitive Hebb rule. Simply by sequentially presenting
patterns v € M and each time connecting those two units i,j which have the highest correlated




output activity Y;; = y; - y;, a connectivity structure evolves which defines a perfectly topology
preserving map and reflects the dimensionality and topological structure of the manifold M, i.e., of
the torus.

5. Discussion

We showed how the term “topology preserving map” can be defined rigorously based on masked
Voronoi polyhedra and induced Delaunay triangulations. Both the masked Voronoi polyhedra as well
as the induced Delaunay triangulation of a set of points depend on the shape of the given feature
manifold M. We showed that the induced Delaunay triangulation ’DgMJ as a particular subgraph of
the full Delaunay triangulation Dg forms a perfectly topology preserving map of the manifold M. We
proved rigorously and demonstrated through a computer simulation that a competitive version of the
Hebb rule forms induced Delaunay triangulations and, hence, yields perfectly topology preserving
maps of feature manifolds. Necessary is a distribution of the receptive field centers w; of the neural
units i which is dense enough to resolve the shape of the manifold M. If the manifold M C RP
fills the embedding space R completely, then the competitive Hebb rule forms the full Delaunay
triangulation Dg as a perfectly topology preserving map of M. If M is only a submanifold of R P,
then the competitive Hebb rule forms a subgraph of Dg, i.e., the induced Delaunay triangulation
D_E;M). as a perfectly topology preserving map of M.
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