
MaxMinOver: A Simple Incremental Learning
Procedure for Support Vector Classification

Thomas Martinetz
Institute for Neuro- and Bioinformatics

University of Lübeck
D-23538 Lübeck

E-mail: martinetz@informatik.uni-luebeck.de

Abstract— The well-known MinOver algorithm is a simple
modification of the perceptron algorithm and provides the
maximum margin classifier in a linearly separable two class
classification problem. In its dual formulation selected training
patterns which determine the separating hyperplane have to be
stored. A drawback of MinOver is that this set of patterns
does not consist only of support vectors. With MaxMinOver
an extension of MinOver by a simple forgetting procedure is
introduced. It is shown that this forgetting not only reduces the
number of patterns which have to be stored, but also improves
convergence bounds. After a finite number of training steps,
the set of stored training patterns will consist only of support
vectors. It is shown how this simple and iterative procedure
can also be extended to classification with soft margins. The
SoftMaxMinOver algorithm exhibits close connections to the ν-
Support-Vector-Machine.

I. INTRODUCTION

The Support-Vector-Machine (SVM) [2], [15] has been
applied very successfully in many classification and regression
tasks (e.g. [7], [11], [13]). Like Neural Networks is has become
a standard tool which has to be considered in addition to
classical approaches like Bayesian or polynomial classifiers.
A major drawback in applications, however, is its complex
training procedure. A large Quadratic Programming problem
has to be solved, which requires optimization routines from
numerical libraries. And if the training set exceeds a certain
size, one has to rely on partitioning and on heuristics. Most
users do not want or cannot implement these non-trivial
training procedures by themselves but have to rely on existing
software libraries. These libraries are, in many cases at least,
hardly comprehensive or error-free.

This is in contrast to most neural network approaches.
Learning in Neural Networks has to be iterative and incre-
mental almost by definition. One does not expect the nervous
system to store a whole set of training data first, and then
start learning. Learning takes place on-line, pattern-by-pattern.
The iterative and incremental nature of learning in Neural
Networks usually leads to simple training procedures which
can easily be implemented. It is desirable to have similar
training procedures also for the SVM.

A number of different approaches to obtain more or less
simple incremental training procedures for the SVM have been
introduced so far [3], [12], [4], [8]. We want to mention in par-
ticular the Kernel-Adatron algorithm by Friess, Christianini,

and Campbell [3]. Like the MinOver algorithm by Krauth and
Mézard [6] which we will revisit, the Adatron was introduced
for constructing synaptic weight matrices of optimal stability
in spin-glass models of Neural Networks [1], [5]. Friess et
al. adapted the Adatron to the problem of maximum margin
classification with kernels. The Adatron and the MinOver algo-
rithm are very similar and can both be derived from constraint
gradient descent. The Adatron converges faster, however, the
MinOver algorithm is even more simple and applicable to
on-line learning. Navone and Downs [10] give a comparison
of both algorithms on common benchmark problems. They
report that for reasons which require further investigations
the MinOver algorithm shows a learning behaviour which is
advantageous in a number of aspects.

In this paper we will give a reformulation of the MinOver
algorithm and an alternative convergence proof. The MinOver
algorithm is a slight modification of the perceptron learning
rule and can hardly be more simple. It converges against the
maximum margin hyperplane in a linearly separable classi-
fication task, however, the solution is not based on support
vectors only. We will introduce the MaxMinOver algorithm
as an extension of MinOver. MaxMinOver is as simple as
MinOver, however, it provides the maximum margin hyper-
plane based only on support vectors. We will adapt it not
only to classification with kernels, which is trivial, but also
to classification with soft margins. The paper presents the
basic concepts and analytical results on different aspects of
MaxMinOver and SoftMaxMinOver. Experimental studies will
be provided in future work.

A. The problem

Given a linearly separable set of patterns xν ∈ R
D, ν =

1, . . . , N with corresponding class labels yν ∈ {−1, 1}. We
want to find the hyperplane which separates the patterns of
these two classes with maximum margin. The hyperplane for
classification is determined by its normal vector w ∈ R

D and
its offset b ∈ R. It achieves a separation of the two classes, if

yν(wT
xν − b) > 0 for all ν = 1, . . . , N

is valid. The margin ∆ of this separation is given by

∆ = min
ν

[yν(wT
xν − b)/||w||].

For convenience we introduce zν = yν(xν ,−1) ∈
R

D+1 and v = (w, b) ∈ R
D+1. We obtain ∆(v) =

minν [vT
zν/||w||]. With

d(v) = min
ν

[vT
zν/||v||]

we introduce the margin of separation of the augmented
patterns (xν ,−1) in the (D + 1)-space. Since the v which
provides the maximum margin d∗ in the (D + 1)-space also
provides the maximum margin ∆∗ in the D-dimensional
subspace of the original patterns xν ∈ R

D,

v∗ = (w∗, b∗) = arg max
||v||=1

[min
ν

(vT
zν)/||w||]

= arg max
||v||=1

[min
ν

(vT
zν)]

is valid. Instead of looking for the normalized v which
provides the maximum ∆, we look for the normalized v

which provides the maximum d. Both v∗ are identical. This
is illustrated in Fig. 1. Since ||v∗||2 = ||w∗||2 + b2

∗ = 1, we
obtain ∆∗ from d∗ and v∗ = (w∗, b∗) through

∆∗ =
d∗

||w∗||
=

d∗
√

1 − b2
∗

.

d*

d*

-1

v
*

)*

b*

+1

d*

Fig. 1. In this illustration the patterns xν of the two classes are points in a
one-dimensional space. The augmented patterns lie in the plane, shifted along
the y-axes to −1. vt is a line through the origin. v∗ yields the separation with
maximum margin d∗. This separation is equivalent to the maximum margin
separation in the original 1D-space with a margin of ∆∗. The white dots on
the +1-line are the black dots multiplied by their class label yν = −1. The
white dots altogether are the zν . Obviously, we have to look for the v which
maximizes the minimum v

T
zν .

II. THE MINOVER ALGORITHM REVISITED

A simple and iterative algorithm which provides the max-
imum margin classification in a linearly separable case is
the well-known MinOver algorithm introduced by [6] in the
context of constructing synaptic weight matrices of optimal
stability in spin-glass models of Neural Networks. The Min-
Over algorithm yields a vector vt the direction of which

converges against v∗ with increasing number of iterations t.
This is valid as long as a full separation, i.e. a v∗ with ∆∗ > 0
exists.

The MinOver algorithm works like the perceptron algo-
rithm, with the slight modification that for training always the
pattern zα(t) out of the training set T = {zν |ν = 1, . . . , M}
with the worst, i.e. the minimum residual margin (overlap)
v

T
zν is chosen. Hence, the name MinOver.

Compared to [6] we present a modified formulation of the
MinOver algorithm, with the number of desired iterations tmax

prespecified:
0. Set t = 0, choose a tmax, and set vt=0 = 0.
1. Determine the zα(t) out of the training set T for which

the margin v
T
t z is minimal.

2. Set vt+1 = vt + zα(t).
3. Set t = t + 1 and go to 1.) if t < tmax.
The algorithm can be motivated from gradient ascent. Gradi-

ent ascent on the target function E(v) = minν(vT
zν) leads to

the adaptation step vt+1 = vt+zα(t). Note, however, that this
view is just a motivation and, e.g., neglects the normalization
of v.

A. Convergence bounds for MinOver

Krauth and Mézard gave a convergence proof for MinOver
[6]. We give a modified proof adapted to our modified version
of MinOver. To obtain a convergence bound we look at the
angle γt between vt and v∗. The cosine of this angle is given
by

cos γt =
v

T
∗ vt

||vt||
.

In the Appendix we show that the norm of the vector vt is
bounded by

d∗t ≤ ||vt|| ≤ d∗t + R
√

t, (1)

with R as the norm of the augmented pattern with maximum
length, i.e., R = maxν ||zν ||. Since also

v
T
∗ vt = v

T
∗

t−1
∑

τ=0

zα(τ)

≥ d∗t

is valid, for the angle γt we obtain the bounds

cos γt ≥ d∗t

||vt||
(2)

≥ d∗t

d∗t + R
√

t

≥ 1 − R/d∗√
t

.

The angle between the hyperplane provided by this algorithm
and the maximum margin hyperplane converges to zero with
increasing number of training steps.

B. MinOver in its dual formulation

The vector vt which determines the dividing hyperplane is
given by

vt =

t−1
∑

τ=0

zα(τ)

=
∑

zν∈V

nν(t)zν

with V as the set of all patterns which have been used for
learning so far. The coefficient nν(t) ∈ N denotes the number
of times zν ∈ V has been used for training up to step t.
∑

V nν(t) = t and V = |V| ≤ t is valid.
In the dual representation the expression which decides the

class assignment by being smaller or larger than zero can be
written as

v
T

(

x

−1

)

=
∑

xν∈V

nνyν(xT
ν x) − b (3)

with
b =

∑

yν∈V

nνyν . (4)

In the dual formulation the training of the MinOver algo-
rithm consists of either adding the training pattern zα(t) as a
further data point to the learning set V or, if zα(t) is already
element of V , to increase the corresponding nα by one.

C. MinOver with kernels

If the input patterns x ∈ R
D are transformed into another

(usually higher dimensional) feature space Φ(x) before clas-
sification, MinOver has to work with zν = yν(Φ(xν),−1)T .
Due to Equation (3) we do not have to do it explicitly. With
K(xν ,x) = Φ

T (xν)Φ(x) as the kernel which corresponds to
the transformation Φ(x), we obtain

v
T
z = y

(

∑

xν∈V

nνyνK(xν ,x) − b

)

, (5)

with the b of Equation (4).
In its dual formulation the MinOver algorithm is simply an

easy procedure of selecting data points out of the training set:
0. Set t = 0, choose a tmax, and set V = ∅.
1. Determine the xα(t) out of the training data set for which

the margin v
T
t z according to Equation (5) is minimal.

2. If xα(t) /∈ V , add xα(t) to V and assign to it an nα = 1.
If xα(t) ∈ V already, increase its nα by one.

3. Set t = t + 1 and go to 1.) if t < tmax.

III. THE MAXMINOVER ALGORITHM

A major drawback of the MinOver algorithm is that the set
V at the end of the training procedure does not only consist
of support vectors. Support vectors are training patterns with
minimum margin ∆∗ with respect to the maximum margin
hyperplane given by v∗. This hyperplane is determined solely
by the set S ⊆ T of these support vectors. Hence, it would be

desirable to have an algorithm as simple as MinOver which
yields a solution based only on S.

We introduce an extension of the MinOver algorithm which
leads to a learning set V which consists only of support
vectors. We call the extended algorithm MaxMinOver. The
MaxMinOver algorithm not only learns by adding training
patterns but also by selectively forgetting what has been
learned before. With each training step t, in addition to adding
a new training pattern zα(t) to the normal vector vt, we also
look for an old training pattern zν ∈ V which can be subtracted
from vt. In the dual representation we not only add training
patterns to V or increase their coefficients nν , but also remove
patterns from V or decrease their nν .

We show that this forgetting is advantageous in three
aspects: (i) it reduces the number of patterns in the set V which
have to be memorized in the dual representation, (ii) after a
finite number of learning steps the learning set V consists of
support vectors only, and (iii) it improves the convergence
bound we obtained for MinOver.

As in the MinOver algorithm, we first look for the training
pattern zα(t) with minimum margin. However, at the same
time we also look for the pattern zω(t) ∈ V with maxi-
mum margin (overlap). Hence, the name MaxMinOver. If the
difference between this maximum margin and the minimum
margin exceeds a certain threshold, the pattern zω(t) which
was selected for learning in at least one of the preceding
learning steps is now selected for ”dememorization”.

A. The idea
The MinOver algorithm selects training data points for

learning which finally turn out not to be support vectors of
the maximum margin hyperplane. The MaxMinOver algorithm
is based on the idea that these data points are superfluous,
need not to be stored, and might even be detrimental for
convergence.

But when should an old training data point be subtracted
from vt (removed from V)? As we can see from Equation (2),
the denominator of the convergence bound for cos γt is deter-
mined by the number of data points which have been added
to vt and increases linearly with t. The numerator is given
by the norm of vt. The smaller ||vt|| can be kept while the
denominator is increasing with t, the faster convergence. To
keep the denominator increasing linearly with t, we add zα(t)
twice if a zω(t) is subtracted. And zω(t) is subtracted if the
norm of vt stays at least as small as without forgetting. This
is the case, if

(vt + 2zα(t) − zω(t))2 ≤ (vt + zα(t))2 (6)

or, condition (6) rearranged, if

v
T
t zω(t) − v

T
t zα(t) ≥ z

T
α (t)(zα(t) − zω(t))

+
1

2
(zα(t) − zω(t))2

is valid. The right hand side of this inequality is always smaller
than 4R2. Hence, if

v
T
t zω(t) − v

T
t zα(t) ≥ 4R2,

then condition (6) is fulfilled. Each time the difference between
the maximum margin v

T
t zω(t) and the minimum margin

v
T
t zα(t) reaches the threshold 4R2, it is advantageous to

perform a learning step with forgetting:

vt+1 = vt + 2zα(t) − zω(t).

In the Appendix we show that such a forgetting step improves
the convergence bounds for cos γt.

B. The algorithm

The MaxMinOver algorithm is determined by the following
steps:

0. Set t = 0, choose a tmax, and set vt=0 = 0.
1. Determine the zα(t) out of the training set for which the

margin v
T
t z is minimal.

2. Determine the zω(t) out of the learning set V for which
the margin v

T
t z is maximal.

3. If v
T
t zω(t)−v

T
t zα(t) ≥ 4R2, set vt+1 = vt + 2zα(t)−

zω(t). Otherwise set vt+1 = vt + zα(t).
4. Set t = t + 1 and go to 1.) if t ≤ tmax.
In the dual representation, e.g. for realizing classification

with kernels, MaxMinOver again is a simple procedure of
selecting data points:

0. Set t = 0, choose a tmax, and set V = ∅.
1. Determine the zα(t) out of the training data set for which

the margin v
T
t z according to Equation (5) is minimal.

2. Determine the zω(t) out of the learning set V for which
the margin v

T
t z according to Equation (5) is maximal.

3. v
T
t zω(t)−v

T
t zα(t) < 4R2: if zα(t) /∈ V , add zα(t) to V

and assign to it an nα = 1. If zα(t) ∈ V already, increase
its nα by one.
v

T
t zω(t)−v

T
t zα(t) ≥ 4R2: if zα(t) /∈ V , add zα(t) to V

and assign to it an nα = 2. If zα(t) ∈ V already, increase
its nα by two. Decrease nω by one. If nω = 0, remove
zω from V .

4. Set t = t + 1 and go to 1.) if t < tmax.

C. The forgetting of all non-support vectors

After a finite number of learning steps t the learning set V
will only consist of support vectors. This can be seen from the
following arguments: As soon as vt is close enough to v∗, the
zα(t) will always be support vectors with margin d(v∗) = d∗.
A similar result was obtained for decomposition methods for
SVMs [9]. For each zν ∈ V which is not a support vector
v

T
∗ (zν − zα(t)) > 0 and, since vt is close enough to v∗, also

v
T
t (zν − zα(t)) > 0 will be valid. Since the length of vt is

steadily increasing, according to Equation (1) at least with d∗t,
after a finite number of steps v

T
t (zν − zα(t)) will reach the

threshold 4R2 and zν will be forgotten.
The formal proof looks like follows: We decompose vt into

vt = cos γt||vt||v∗ + ut with u
T
t v∗ = 0

and obtain

d∗ ≥ v
T
t zα(t)

||vt||
= v

T
∗ zα(t) cos γt +

u
T
t zα(t)

||ut||
sin γt .

If zα(t) is not a support vector, v
T
∗ zα(t) > d∗ is valid. Since

the prefactor of the sinus is bounded and γt converges to zero,
after a finite number of training steps the right hand side will
be larger than d∗. Hence, after a finite number of learning
steps the zα(t) can only be support vectors.

But then for each zν which is not a support vector, we
obtain

v
T
t

||vt||
(zν − zα(t)) = v

T
∗ (zν − zα(t)) cos γt

+
u

T
t

||ut||
(zν − zα(t)) sin γt .

Since v
T
∗ (zν − zα(t)) > 0 and the prefactor of the sinus

is bounded again, after a finite t the expression v
T
t (zν −

zα(t))/||vt|| will always be larger than an a > 0. Since ||vt||
is increasing at least with d∗t, after a finite number of learning
steps v

T
t (zν −zα(t)) ≥ 4R2 will be valid. But this means that

each zν ∈ V which is not a support vector will be forgotten
after a finite number of learning steps.

IV. SOFTMAXMINOVER

So far we have studied the problem of separating two classes
perfectly with a hyperplane and with maximum margin. This
required linear separability of the patterns. However, this is
not always the case. For this purpose the concept of a ”soft
margin” was introduced [2], [15]. With a soft margin training
patterns are allowed to be misclassified for a certain cost. With
MaxMinOver we can easily realize a soft margin.

Instead of searching for the hyperplane which maximizes
the margin of the closest training pattern, we now search for
the hyperplane which maximizes the average margin of the
K = νM closest training patterns (do not mix this ν with
the ν we have used as pattern index). Instead of maximizing
E(v) = minν(vT

zν), we now want to maximize

E(v) =
1

K

K−1
∑

i=0

v
T
zαi

= v
T
z̄α

with zα0
as the training pattern with the smallest margin, zα1

as the training pattern with the second smallest margin, etc.
and zαK−1

as the training pattern with the Kth smallest margin
to the hyperplane given by v.

Maximizing the average minimum margin of a set of
training patterns corresponds to minimizing the so-called slack
variables ξν of these patterns with respect to a certain overall
margin. The slack variables were introduced for the soft mar-
gin of the Support-Vector-Machine [2], [15]. This is illustrated
in Fig. 2. The overall margin, which is given by 1/||w|| in the
primal formulation of the SVM [15], corresponds to the Kth
smallest margin v

T
t zαK−1

. Within the corridor defined by this
margin we find K = νM training patterns. Maximizing their
average distance from the dividing hyperplane is equivalent to
minimizing the sum

∑K

i=1
ξαi

of their slack variables.
The algorithm works like the one for the hard margin, but

instead of adding zα(t) we now add z̄α(t) to vt. In the dual

formulation all those patterns of the K closest ones which are
not yet member of V are added to this set and their n-values
are set to n = 1. Those patterns which are already member of
V increase their n by 1.

In an analog way the forgetting is organized. Now, for
the forgetting not the pattern with the maximum margin
but the K patterns zω0

, zω1
, . . . , zωK−1

within V with the
maximum average margin z̄ω(t) are determined. zω0

denotes
the pattern with the largest margin, zω1

the pattern with
second largest margin, etc. and zωK−1

the pattern within
V with the Kth largest margin. A forgetting takes place if
v

T
t z̄ω(t) − v

T
t z̄α(t) ≥ 4R2

K , with RK as the average norm
of the K largest patterns. Clearly, RK ≤ R = maxν ||zν ||
is valid. Now, with a forgetting step z̄ω(t) is subtracted from
vt. In the dual formulation the corresponding n-values are
reduced by 1 and, eventually, patterns are removed from V , if
their n-values reach zero.

>

>

d

d

v
t

z
a

k-1

Fig. 2. The margin v
T

t
zαK−1

/||vt|| of the data point which is Kth-closest to
the hyperplane vt determines the corridor within which all data points which
are considered for the averaging of SoftMaxMinOver are lying. Minimizing
the average slack 〈ξ〉 is equivalent to maximizing the average margin 〈d〉.

A. On the convergence of SoftMaxMinOver

SoftMaxMinOver is equivalent to MaxMinOver on a train-
ing data set given by all K over M possible patterns z̄ν which
result from taking the average of K original patterns zν . The
pattern with minimum and maximum margin in this set is
obtained by taking the average of the K original patterns with
minimum and maximum margin, respectively, as described
above. Hence, convergence is guaranteed given a positive
maximum margin d∗

K on this set. Since d∗
1 ≤ d∗2 ≤ . . . d∗M

is valid, and, since for K = M the training data set consists
of one z̄ν only with d∗

M = ||z̄ν=1|| > 0, there exists a smallest
K for which SoftMaxMinOver converges. As a lower bound
for cos γt we obtain

cos γt ≥ 1 − RK/d∗K√
t

.

Convergence speed increases with increasing K, since d∗
K is

increasing and RK is decreasing.

B. Some remarks on SoftMaxMinOver
Usually one does not know which K one has to choose to

obtain convergence. However, if appropriate kernels are used,
e.g. Gaussians, convergence is given even for K = 1. This is
true for all kernels which correspond to transformations Φ(x)
into infinite dimensional feature spaces. In these feature spaces
all pattern sets are linearly separable.

With ν we denoted the fraction K/M of the training
patterns which are considered for averaging. There is a close
connection to the ν-Support-Vector-Machine. As for the ν-
SVM [14], obviously also for SoftMaxMinOver
(i) ν is an upper bound on the fraction of margin errors

(and hence also on the fraction of training errors). A
margin error is given if a training data point lies within
the margin corridor, i.e. in case of SoftMaxMinOver if
v

T
t zν < v

T
t zαK−1

is valid.
(ii) ν is a lower bound on the fraction of support vectors, i.e.

K = νM ≤ |V| is valid.
As for the ν-SVM, also for SoftMaxMinOver there is a
νmax = 2 min(M+, M−)/M up to which ν-values make sense
only. M+ and M− denote the number of patterns with class
labels yν = +1 and yν = −1, respectively. In contrast to
the ν-SVM, SoftMaxMinOver guarantees convergence even
for ν = 1. However, the solutions might not be reasonable
anymore. This requires further analysis in future work.

V. CONCLUSIONS

The well-known MinOver algorithm as a simple and incre-
mental procedure for obtaining maximum margin hyperplanes
can be extended to the so-called MaxMinOver algorithm
which, in contrast to MinOver, yields the maximum margin
hyperplane based only on its support vectors. This is achieved
by an additional forgetting procedure. In its dual formulation
MaxMinOver learns by simply iteratively selecting patterns
from the training set and, eventually, removing some of them
again later on. The computational effort increases linearly with
the number of training patterns.

We have given an alternative proof and bounds for the
convergence of MinOver. Within this framework we have
shown that the additional forgetting procedure improves these
convergence bounds. We have given a proof that after a finite
number of learning steps MaxMinOver provides a separating
hyperplane which is determined only by support vectors of the
maximum margin hyperplane.

We have shown a way of extending MaxMinOver to soft
margins. Instead of taking the patterns of minimum and
maximum margin for learning and forgetting, the average of
the K = νM patterns with minimum and maximum margin is
taken. We have analyzed the convergence of this SoftMaxMin-
Over algorithm, and we have shown that convergence speed
increases with increasing ν. However, also the computational
effort for each learning step increases with ν. For a fixed ν
the SoftMaxMinOver algorithm scales like O(N 2) with the
number N of training patterns.

Perhaps most interestingly, the simple and incremental
SoftMaxMinOver algorithm exhibits close connections to the

ν-Support Vector Machine. A deeper analysis of these connec-
tions will be the subject of future work. In future work also
experimental results and comparisons with existing approaches
have to be presented, in particular with decomposition methods
like SMO [12].

APPENDIX

In this Appendix we give upper and lower bounds for the
norm of vt, for MinOver as well as for MaxMinOver. We show
that for MaxMinOver one can expect a faster convergence.

A. Bounds for MinOver

Starting the MINOVER algorithm with vt=0 = 0, we obtain
as a lower bound for the norm of the normal vector

||vt|| ≥ v
T
∗ vt = v

T
∗

t−1
∑

τ=0

zα(τ) ≥ d∗t.

An upper bound is given by

||vt|| ≤ d∗ t + R
√

t.

This can easily be shown by induction: The case t = 0 is
trivial. For t → t + 1 we obtain

v
2
t+1 = v

2
t + 2vT

t zα(t) + z
2
α(t)

≤ v
2
t + 2d∗||vt|| + z

2
α(t)

≤ (d∗t + R
√

t)2 + 2d∗(d∗t + R
√

t) + R2

≤ (t2 + 2t)(d∗)2 + 2d∗R
√

t(t + 1) + R2(t + 1)

≤ (d∗)2(t + 1)2 + 2d∗R
√

t + 1(t + 1) + R2(t + 1)

≤
(

d∗(t + 1) + R
√

t + 1
)2

.

We have used v
T
t zα(t) ≤ d∗||vt||.

B. Bounds for MaxMinOver

Starting the MaxMinOver algorithm with vt=0 = 0, we
obtain the same lower bound for the norm of the normal vector
as for MinOver.

For a finite number of learning steps tmax, we can assume
that there is a ε > 0 such that for each learning step with
forgetting v

T
t zω(t) − v

T
t zα(t) ≥ 4R2(1 + ε) is valid. Then

one obtains as an upper bound

v
2
t ≤ (d∗ t + R

√
t)2 − 8ε tf R2,

with tf as the number of learning steps which included a
forgetting.

Again proof by induction: The case t = 0 is trivial. For
t → t + 1 and tf → tf (learning without forgetting), we
can follow the line of the proof for the upper bound with
MINOVER and obtain

v
2
t+1 = (vt + zα(t))2

≤ (d∗t + R
√

t)2 − 8εtfR2

+2d∗
√

(d∗t + R
√

t)2 − 8εtfR2 + R2

≤ (t2 + 2t)(d∗)2 + 2d∗R
√

t(t + 1)

+R2(t + 1) − 8εtfR2

≤
(

d∗(t + 1) + R
√

t + 1
)2 − 8εtfR2.

For t → t + 1 and tf → tf + 1 (learning with forgetting) we
obtain

v
2
t+1 = (vt + zα(t) + zα(t) − zω(t))2

≤ (vt + zα(t))2 + 2vT
t (zα(t) − zω(t)) + 8R2.

For the first term we can use the upper bound we have obtained
above. The second term is not larger than −8R2(1 + ε) by
construction, which finally leads to

v
2
t+1 ≤

(

d∗(t + 1) + R
√

t + 1
)2 − 8ε(tf + 1)R2.

Compared with MinOver we obtain a reduction of the upper
bound with each forgetting. Through Equation (2) this im-
proves the bound for the convergence of γt.

ACKNOWLEDGMENT

The author would like to thank Kai Labusch and Amir
Madany for their help preparing the manuscript.

REFERENCES

[1] J. K. Anlauf and M. Biehl. The adatron: an adaptive perceptron
algorithm. Europhys. Lett., 10:687–692, 1989.

[2] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[3] T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron
algorithm: a fast and simple learning procedure for support vector
machine. Proc. 15th International Conference on Machine Learning,
1998.

[4] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A
fast iterative nearest point algorithm for support vector machine classifier
design. IEEE-NN, 11(1):124–136, January 2000.

[5] W. Kinzel. Statistical mechanics of the perceptron with maximal
stability. Lecture Notes in Physics, 368:175–188, 1990.

[6] W. Krauth and M. Mezard. Learning algorithms with optimal stability
in neural networks. J.Phys.A, 20:745–752, 1987.

[7] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger, P. Simard, and V. Vapnik.
Comparison of learning algorithms for handwritten digit recognition.
Int.Conf.on Artificial Neural Networks, pages 53–60, 1995.

[8] Y. Li and P.M. Long. The relaxed online maximum margin algorithm.
Machine Learning, 46(1-3):361–387, 2002.

[9] Ch.-J. Lin. A formal analysis of stopping criteria of decomposition
methods for support vector machines. IEEE Transactions on Neural
Networks, 13(5):1045–1052, 2002.

[10] H.D. Navone and T. Downs. Variations on a kernel-adatron theme.
VII Internacional Congress on Information Engineering, Buenos Aires,
2001.

[11] E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an
application to face detection. CVPR’97, pages 130–136, 1997.

[12] J.C. Platt. Advances in Kernel Methods - Support Vector Learning,
chapter Fast Training of Support Vector Machines using Sequential
Minimal Optimization, pages 185–208. MIT Press, 1999.

[13] B. Schölkopf. Support vector learning, 1997.
[14] B. Schölkopf, A. J. Smola, R. Williamson, and P. Bartlett. New support

vector algorithms. Neural Computation, 12:1083–1121, 2000.
[15] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,

New York, 1995.

