
MinOver Revisited for Incremental
Support-Vector-Classification

Thomas Martinetz

Institute for Neuro- and Bioinformatics
University of Lübeck

D-23538 Lübeck, Germany
martinetz@informatik.uni-luebeck.de

http://www.inb.uni-luebeck.de

Abstract. The well-known and very simple MinOver algorithm is reformulated
for incremental support vector classification with and without kernels. A modified
proof for itsO(t−1/2) convergence is presented, with t as the number of training
steps. Based on this modified proof it is shown that even a convergence of at
leastO(t−1) is given. This new convergence bound for MinOver is confirmed by
computer experiments on artificial data sets. The computational effort per training
step scales as O(N) with the number N of training patterns.

1 Introduction

The Support-Vector-Machine (SVM) [1], [12] is an extremely successful concept for
pattern classification and regression and has found widespread applications (see, e.g.
[6], [9], [11]). It became a standard tool like Neural Networks or classical approaches.
A major drawback, particularly for industrial applications where easy and robust im-
plementation is an issue, is its complicated training procedure. A large Quadratic-
Programming problem has to be solved, which requires numerical optimization routines
which many users do not want or cannot implement by themselves. They have to rely
on existing software packages which are hardly comprehensive and, in many cases at
least, error-free. This is in contrast to most Neural Network approaches where learning
has to be simple and incremental almost by definition.

For this reason a number of different approaches to obtain more or less simple and
incremental SVM training procedures have been introduced [2], [3], [10], [4], [7]. We
will revisit the MinOver algorithm which was introduced by Krauth and Mézard [5]
for spin-glass models of Neural Networks. As a slight modification of the perceptron
algorithm, it is well-known that MinOver can be used for maximum margin classifi-
cation. In spite of the fact that a training procedure can hardly be more simple, and in
spite of the fact that advantageous learning behaviour has been reported [8], so far it has
not become a standard training algorithm for maximum margin classification. To make
MinOver more attractive we give a simplified formulation of this algorithm and show
that, in contrast to theO(t−1/2) convergence bound given in [5], in fact one can expect
a O(t−1) convergence, with t as the number of learning steps.

2 Thomas Martinetz

1.1 The Problem

Given a linearly separable set of patterns xν ∈ RD , ν = 1, . . . , N with corresponding
class labels yν ∈ {−1, 1}. We want to find the hyperplane which separates the patterns
of these two classes with maximum margin. The hyperplane for classification is deter-
mined by its normal vector w ∈ RD and its offset b ∈ R. It achieves a separation of the
two classes, if

yν(wTxν − b) > 0 for all ν = 1, . . . , N

is valid. The margin ∆ of this separation is given by

∆ = min
ν

[yν(wTxν − b)/||w||].

For convenience we introduce zν = yν(xν ,−1) ∈ RD+1 and v = (w, b) ∈ RD+1.
We look for the v which maximizes ∆(v) = minν [vT zν/||w||]. With

d(v) = min
ν

[vT zν/||v||]

we introduce the margin of separation of the augmented patterns (xν ,−1) in the (D +
1)-space. The v which provides the maximum margin d∗ in the (D+1)-space also pro-
vides the maximum margin ∆∗ in the D-dimensional subspace of the original patterns
xν ∈ RD. This is the case since (i) the v∗ which provides ∆∗ also provides at least
a local maximum of d(v) and (ii) d(v) and ∆(v) are convex and both have only one
global maximum. Therefore,

v∗ = (w∗, b∗) = arg max
||v||=1

[min
ν

(vT zν)/||w||]

= arg max
||v||=1

[min
ν

(vT zν)]

is valid. Instead of looking for the v∗ which provides the maximum ∆, we look for the
v∗ which provides the maximum d. Both v∗ are identical. Since ||v∗||2 = ||w∗||2 +
b2∗ = 1, we obtain ∆∗ from d∗ and v∗ = (w∗, b∗) through

∆∗ =
d∗
||w∗||

=
d∗√

1− b2∗
.

2 The MinOver Algorithm Reformulated

The well-known MinOver algorithm is a simple and iterative procedure which provides
the maximum margin classification in linearly separable classification problems. It was
introduced in [5] for spin-glass models of Neural Networks. The MinOver algorithm
yields a vector vt the direction of which converges against v∗ with increasing number
of iterations t. This is valid as long as a full separation, i.e. a v∗ with ∆∗ > 0 exists.

The MinOver algorithm works like the perceptron algorithm, with the slight modi-
fication that for training always the pattern zα(t) out of the training set T = {zν |ν =

MinOver 3

1, . . . , N} with the worst, i.e. the minimum residual margin (overlap) vT zν is chosen.
Hence, the name MinOver.

Compared to [5] we present a simplified formulation of the MinOver algorithm,
with the number of desired iterations tmax prespecified:

0. Set t = 0, choose a tmax, and set vt=0 = 0.
1. Determine the zα(t) out of the training set T for which vTt z is minimal.
2. Set vt+1 = vt + zα(t).
3. Set t = t+ 1 and go to 1.) if t < tmax.

2.1 MinOver in its Dual Formulation and with Kernels

The vector vt which determines the dividing hyperplane is given by

vt =

t−1∑

τ=0

zα(τ)

=
∑

zν∈Vt
nν(t)zν

with Vt ⊆ T as the set of all patterns which have been used for training so far. The
coefficient nν(t) ∈ N denotes the number of times zν ∈ Vt has been used for training
up to time step t.

∑
Vt nν(t) = t is valid. With Vt = |Vt| ≤ t we denote the number of

training patterns which determine the normal vector vt.
In the dual representation the expression which decides the class assignment by

being smaller or larger than zero can be written as

vT z =
∑

xν∈V
nνyν(xTν x)− b (1)

with
b =

∑

yν∈V
nνyν . (2)

In the dual formulation the training of the MinOver algorithm consists of either adding
the training pattern zα to V as a further data point or, if zα is already element of V , to
increase the corresponding nα by one.

If the input patterns x ∈ RD are transformed into another (usually higher dimen-
sional) feature space Φ(x) ∈ RD′ before classification, MinOver has to work with
zν = yν(Φ(xν),−1)T . Due to Equation (1) it does not have to do it explicitly. With
K(xν ,x) = ΦT (xν)Φ(x) as the kernel which corresponds to the transformation Φ(x),
we obtain

vT z = y

(∑

xν∈V
nνyνK(xν ,x)− b

)
, (3)

with the b of Equation (2).
In its dual formulation the MinOver algorithm is simply an easy procedure of se-

lecting data points out of the training set:

4 Thomas Martinetz

0. Set t = 0, choose a tmax, and set V = ∅.
1. Determine the zα(t) out of the training set T for which vTt z according to Equa-

tion (3) is minimal.
2. If zα(t) /∈ V , add zα(t) to V and assign to it an nα = 1. If zα(t) ∈ V already,

increase its nα by one.
3. Set t = t+ 1 and go to 1.) if t < tmax.

3 Convergence Bounds for MinOver

Krauth and Mézard gave a convergence proof for MinOver [5]. Within the context of
spin-glass Neural Networks they showed that the smallest margin dt = vTt zα(t) pro-
vided by vt converges against the maximum margin d∗ at least as O(t−1/2). We give
a modified proof of this O(t−1/2) convergence. Based on this proof we show that the
margin converges even at least as O(t−1) against the maximum margin.

3.1 O(t−1/2) Bound

We look at the convergence of the angle γt between vt and v∗. We decompose the
learning vector vt into

vt = cos γt||vt||v∗ + ut utv∗ = 0. (4)

||ut|| ≤ R
√
t is valid, with R as the norm of the augmented pattern with maximum

length, i.e., R = maxν ||zν ||. This can be seen from

u2
t+1 − u2

t = (ut + zα(t)− [zα(t)v∗]v∗)
2 − u2

t (5)

= 2uTt zα(t) + zα(t)2 − [zα(t)Tv∗]
2

≤ R2.

We have used uTt zα(t) ≤ 0. Otherwise the condition

min
ν

(λv∗ + ut)
T zµ

||λv∗ + ut||
≤ ∆∗ ∀λ ∈ R

would be violated. Since also

vT∗ vt = vT∗

t−1∑

τ=0

zα(τ) ≥ d∗t

is valid, we obtain the bounds

sin γt ≤ γt ≤ tan γt =
||ut||
vT∗ vt

≤ R
√
t

d∗t
=
R/d∗√

t
. (6)

The angle γ between the hyperplane provided by MinOver and the maximum margin
hyperplane converges to zero at least as O(t−1/2).

MinOver 5

After a finite number of training steps the zα(t) selected for learning will always be
support vectors with d∗ = vT∗ zα(t). This can be seen from the following arguments:
with Equation (4) we obtain

d∗ ≥
vTt zα(t)

||vt||
= vT∗ zα(t) cos γt +

uTt zα(t)

||ut||
sin γt. (7)

If zα(t) is not a support vector, vT∗ zα(t) > d∗ is valid. Since the prefactor of the sinus
is bounded, after a finite number of training steps the right hand side would be larger
than d∗. Hence, after a finite number of learning steps the zα(t) can only be support
vectors.

Equation (7) yields the convergence of dt. We obtain

d∗ ≥ dt ≥ d∗ cos γt −R sin γt ≥ d∗(1− γ2
t /2)−Rγt .

With the term leading in γt and with our upper bound for γt, the convergence of the
margin with increasing t is bounded by

0 ≤ d∗ − dt
d∗

≤ R

d∗
γt ≤

R2/d2
∗√
t

.

3.2 O(t−1) Bound

From Equation (6) we can discern that we obtain a O(t−1) bound for the angle γt and,
hence, a O(t−1) convergence of the margin dt to the maximum margin d∗, if ||ut||
remains bounded. This is indeed the case:

We introduced ut as the projection of vt onto the maximum margin hyperplane
given by the normal vector v∗. In addition we introduce sν = zν − (vT∗ zν)v∗ as the
projection of the training patterns zν onto the maximum margin hyperplane given by
v∗. As we have seen above, after a finite t = tstart each sα(t) corresponds to one of the
NS support vectors. Then looking for the zα(t) out of the training set T for which vTt z
is minimal becomes equivalent to looking for the sα(t) out of the set S ′ of projected
support vectors for which uTt z = uTt s is minimal.

We now go one step further and introduce u′t as the projection of ut onto the
subspace spanned by the sν ∈ S ′. This subspace is at most NS-dimensional. Since
uTt sν = u′Tt sν for the sν ∈ S ′, we now look for the sα(t) ∈ S ′ for which u′Tt s is
minimal. Note that for t ≥ tstart always uTt zα(t) = uTt sα(t) = u′Tt sα(t) ≤ 0 is valid.

The following analysis of the development of u over time starts with utstart . We
have

ut = utstart +

t−1∑

τ=tstart

sα(τ).

ut remains bounded, if u′t remains bounded. We discriminate the following three cases:

i) max||u′||=1 minsν∈S′(u
′T sν) < 0

ii) max||u′||=1 minsν∈S′,||sν||>0(u′T sν) > 0

iii) max||u′||=1 minsν∈S′,||sν||>0(u′T sν) = 0

6 Thomas Martinetz

Note that the vector u′ with ||u′|| = 1 varies only within the subspace spanned by the
sν ∈ S ′. If this subspace is of dimension one, only i) or ii) can occur. For i) and ii) it
can quickly be proven that u′t remains bounded. Case iii) can be redirected to i) or ii),
which is a little bit more tedious.

i) There is an ε > 0 such that for each training step u′Tt sα(t) ≤ −ε||u′t||. Analog
to Equation (5) we obtain

∆u′
2
t = 2u′

T
t sα(t) + sα(t)2

≤ −2ε||u′t||+R2.

The negative contribution to the change of ||u′t|| with each training step increases with
||u′t|| and keeps it bounded.

ii) There is a u′ such that u′T sν > 0 for each ||sν || > 0. In this case there is a
sν ∈ S ′ with ||sν || = 0, since always u′T sα(t) ≤ 0 has to be valid. If sα(t) = 0, the
change of the vector u′t terminates, since also sα(t + 1) will be zero. Will sα(t) be
zero after a finite number of training steps? It will since there is a u′ which separates
the ||sν || > 0 from sν = 0 with a positive margin. We know from perceptron learning
that in this case also u′t will separate these ||sν || > 0 after a finite number of learning
steps. At the latest when this is the case sα(t) will be zero and ||u′t|| will stay bounded.

iii) We will redirect this case to i) or ii). With u′∗ we denote the u′, ||u′|| = 1 which
maximizes minsν∈S′,||sν ||>0(u′T sν). The set of those sν ∈ S ′ with u′T∗ sν = 0 we
denote by S ′′. The sν ∈ S ′/S ′′ are separated from the origin by a positive margin. After
a finite number of learning steps sα(t) will always be an element of S ′′. Then looking
for the sα(t) out of S ′ for which u′Tt s is minimal becomes equivalent to looking for the
sα(t) out of the set S ′′ for which u′′Tt s is minimal, with u′′t as the projection of u′t
onto the subspace spanned by the sν ∈ S ′′. Note that the dimension of this subspace is
reduced by at least one compared to the subspace spanned by the sν ∈ S ′. For sν ∈ S ′′
again uTt zα(t) = uTt sα(t) = u′Tt sα(t) = u′′Tt sα(t) ≤ 0 is valid. u′ remains bounded,
if u′′ remains bounded. We have the same problem as in the beginning, but within a
reduced subspace. Either case i), ii), or iii) applies. If again case iii) applies, it will
again lead to the same problem, but within a subspace reduced even further. After a
finite number of these iterations the dimension of the respective subspace will be one.
Then only case i) or ii) can apply and, hence, ||u|| will stay bounded.

It is possible to show that theO(t−1) convergence bound for tan γt is a tight bound.
Due to the limited space we have to present the proof in a follow-up paper.

4 Computer Experiments

To illustrate these bounds with computer experiments, we measured the convergence
of tan γt on two artificial data sets. Both data sets consisted of N = 1000 patterns
xν ∈ RD, half of them belonging to class +1 and −1, respectively. The pattern space
was two-dimensional (D = 2) for the first data set, and 100-dimensional (D = 100)
for the second one.

MinOver 7

Each data set was generated as follows: a random normal vector for the maximum
margin hyperplane was chosen. On a hypersquare on this hyperplane with a sidelength
of 2 the N = 1000 random input patterns were generated. Then half of them were
shifted to one halfspace (class +1) by a random amount uniformly chosen from the
interval [0.1, 1], and the other half was shifted to the other halfspace (class −1) by
a random amount uniformly chosen from [−0.1,−1]. To make sure that the chosen
normal vector indeed defines the maximum margin hyperplane, for 30% of the patterns
a margin of exactly 0.1 was chosen.

0 2 4
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log t

lo
g

ta
n

γ

0 2 4
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log t

lo
g

ta
n

γ

Fig. 1. Double-logarithmic plot of the angle γt between the maximum margin hyperplane and the
hyperplane provided by MinOver against the number of learning steps t. After a finite number of
learning steps the plot follows a line of slope −1, which demonstrates the O(t−1) convergence.
For comparison the oldO(t−1/2) convergence bound is shown. At the end of the learning proce-
dure tan γt is about three orders of magnitude smaller than predicted by the oldO(t−1/2)-bound.

After each training step we calculated tan γt of the angle γt between the known
maximum margin hyperplane and the hyperplane defined by vt. The result for both
data sets is shown in Fig. 1. To visualize the convergence rate we chose a double loga-
rithmic plot. As expected, in this double logarithmic plot convergence is bounded by a
line with a slope of−1, which corresponds to theO(t−1) convergence we have proven.
For comparison we also plotted the O(t−1/2)-bound given by Equation (6), which cor-

8 Thomas Martinetz

responds to a line of slope −1/2. After 100.000 training steps tan γt is about three
orders of magnitude smaller than predicted by the old O(t−1/2)-bound.

5 Conclusions

The well-known MinOver algorithm as a simple and iterative procedure for obtaining
maximum margin hyperplanes has been reformulated for the purpose of support vec-
tor classification with and without kernels. We have given an alternative proof for its
well-known O(t−1/2) convergence. Based on this proof we have shown that the Min-
Over algorithm converges even at least as O(t−1) with increasing number of learning
steps. We illustrated this result on two artificial data sets. With such a guarantee in con-
vergence speed, with its simplicity, and with a computational effort which scales like
O(N) with the number of training patterns the MinOver algorithm deserves a more
widespread consideration in applications.

Acknowledgment
The author would like to thank Kai Labusch for his help preparing the manuscript.

References

1. C. Cortes and V. Vapnik. Support-vector-networks. Machine Learning, 20(3):273–297, 1995.
2. Y. Freund and R.E. Schapire. Large margin classification using the perceptron algorithm. In

Computational Learing Theory, pages 209–217, 1998.
3. T.T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: a fast and simple

learning procedure for support vector machine. Proc. 15th International Conference on
Machine Learning, 1998.

4. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative near-
est point algorithm for support vector machine classifier design. IEEE-NN, 11(1):124–136,
January 2000.

5. W. Krauth and M. Mezard. Learning algorithms with optimal stability in neural networks.
J.Phys.A, 20:745–752, 1987.

6. Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon,
U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for
handwritten digit recognition. Int.Conf.on Artificial Neural Networks, pages 53–60, 1995.

7. Y. Li and P.M. Long. The relaxed online maximum margin algorithm. Machine Learning,
46(1-3):361–387, 2002.

8. H.D. Navone and T. Downs. Variations on a kernel-adatron theme. VII Internacional
Congress on Information Engineering, Buenos Aires, 2001.

9. E. Osuna, R. Freund, and F. Girosi. Training support vector machines:an application to face
detection. CVPR’97, pages 130–136, 1997.

10. J.C. Platt. Advances in Kernel Methods - Support Vector Learning, chapter Fast Training
of Support Vector Machines using Sequential Minimal Optimization, pages 185–208. MIT
Press, 1999.

11. B. Schölkopf. Support vector learning, 1997.
12. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

