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Zusammenfassung

Die Funktion höherer Gehirnareale im Rahmen der Geruchswahrnehmung ist noch weit-

gehend unbekannt. Wissenschaftler sind bei der Wahl ihrer Stimuli noch immer in erster

Linie auf ihre persönliche Erfahrung angewiesen. Es gibt kaum Kontrolle darüber, ob

diese Substanzen tatsächlich den gesamten ,,Geruchswahrnehmungsraum“ ausreichend

abdecken.

Unter Verwendung bekannter numerischer Verfahren wird eine robuste Infrastruktur vor-

gestellt, mit der es möglich ist, sowohl existierende als auch zukünftige Datensätze aus

psychophysikalischen und neurophysiologischen Experimenten in Bezug auf Geruchs-

wahrnehmung zu analysieren sowie ihre Bedeutung zu interpretieren.

Mit einem Multidimensional-Scaling-Verfahren wurde eine Datenbank zur Geruchswahr-

nehmung durch einen euklidischen Raum approximiert. Diese Daten ermöglichen eine

eigenständige Interpretation der Geruchswahrnehmung, auch ohne das Wissen, ob der

,,Geruchswahrnehmungsraum“ nun metrisch ist oder nicht. Unter Verwendung von selbst-

organisierenden Karten wurden zweidimensionale Karten dieser euklidischen Interpreta-

tion des ,,Geruchswahrnehmungsraumes“ erstellt.

Diese Arbeit erweitert und stützt die zentralen Ergebnisse der Doktorarbeit von Christine

Chee-Ruiter, erstellt im Jahr 2000 am California Institute of Technology [12].



Abstract

The role of higher cortical regions in olfactory perception is not very well understood.

Scientists must choose their stimuli based largely on their personal experience. There is

no guarantee that the chosen stimuli span the whole “olfactory perception space”.

Using well-known numerical methods we present a robust infrastructure for analyzing

and interpreting current and future psychophysical and neurophysiological experiments

in terms of “olfactory perception space”.

An olfactory perception database was projected onto the nearest high-dimensional Eu-

clidean space using a Multidimensional Scaling approach. This yields an independent

Euclidean interpretation of odor perception, no matter whether this space is metric or not.

Self-organizing maps were applied to produce two-dimensional maps of this Euclidean

approximation of the olfactory perception space.

This thesis extends and supports the central results of a recent PhD thesis by Christine

Chee-Ruiter at the California Institute of Technology [12].
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C H A P T E R 1

Introduction

This thesis introduces a new approach to mapping the so-called “olfactory perception

space”, which is the structure that organizes olfactory perceptions according to a certain

(so far unknown) system. The main goal of mapping this space is to improve the under-

standing of the sense of smell.

1.1 The Sense of Smell

Human beings have five main senses: hearing, sight, touch, taste and smell. For several

thousand years, not only philosophers and scientists have been trying to understand the

human senses and how the world is perceived using them. The chemical senses, espe-

cially the sense of smell, are still not very well understood. This is in spite of the fact that

smell is one of our oldest senses.

Nowadays our highly developed sensibilities seem to be offended by olfactory percep-

tions, which means that our sanitized environment does not contain many odorants that

could serve as a information-carrying stimuli. Hence, people are not aware that the sense

of smell might have been a main sense for our ancestors. Consequently, most people have

problems finding “words” to describe their smell sensations. It seems to be much easier

to recognize a known odorant or to discriminate two odorants than it is to find a suitable

label (a so-called odor) characterizing an odorous chemical.
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However, chemicals that have a smell — so-called odorants — can influence our

mood, they can trigger discomfort, sympathy as well as refusal. Reactions like this are

hard to suppress since neurons of the nose are connected directly to a part of the brain, the

so-called olfactory bulb. Furthermore, our nose is capable of distinguishing a tremendous

number of odors and of detecting chemical molecules even in a very low concentration.

Therefore, not only the perfume industry has a high interest in a deeper understanding of

the sense of smell.

In the last few decades, more and more of the fundamental processes in the olfactory

bulb have been understood [4]. Even though research on the molecular level has made

such rapid progress, the signal processing on the way from the bulb to the olfactory cortex

and the odorant perception in these higher cortical regions is far from being understood.

1.2 In Search of the Odor Space

From antique times, philosophers like Aristotle have sought for insights about the sense

of smell. But even though research started this early, there is still a tremendous need for

results concerning the categorization of odor qualities. Because there is no physical con-

tinuum as sound frequency in hearing, scientists must choose their stimuli based largely

on their personal experience. Consequently there is no guarantee that the chosen stim-

uli span the whole “olfactory perception space”, which can be compared to the wheel of

colors for vision. There is not even a test to assess how well participants in the experi-

ments can smell. Besides, most psychophysical experiments are using chemically similar

compounds. Such experiments assume that the olfactory system classifies molecules into

distinct chemical categories that are based on structural differences [12].

Due to the fact that it is still not possible to predict the odor quality of a stimulus based

solely on its molecular structure [46], this assumption seems to be more of a research tra-

dition than a solid theory.
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Gender or cultural differences might influence the perception of certain stimuli, but

we have no knowledge about these factors. Similarly, there is no general method to test

the overall capability to smell of subjects — in contrast to the sense of vision, for exam-

ple. There are indications of cultural differences in odor perception.

Ayabe-Kanamura et al. [5], for example, tested groups of Japanese and German sub-

jects for their odor perceptions of typical Japanese and German dishes that are not well-

known in the other culture (e.g. sushi and beer). They found indications that the cultural

background leads to differences in odor quality perception. So even the choice of subjects

for a psychophysical experiment can be problematic without a good understanding of odor

space. Whereas we do not think that the existing results are fundamentally wrong, they

might be less accurate than they could be with a better understanding of the organization

of the odor space.

1.3 Quantifying Olfactory Perception

Especially the lack of an obvious “order” of odors makes a map of odor perception very

interesting for research. A map of odor quality could help to define “neighborhoods” for

different odors and to define a general spectrum of odors. So far, we cannot tell if apple is

located somewhere between cherry and banana or not. Conversely, a better understand-

ing of odor categorization might help to understand the perception of different odorants

and the way they are processed in the neural odor perception network.

But what can be expected? Can we find a physical measure for odor quality? There

is skepticism. We do not expect to find a metric to predict the odor quality that will be

evoked by a certain odorant. However, we will try to find a measure that is as close as

possible to our intuitive understanding of odor similarity, to achieve a projection of odor

perception that preserves known relationships as well as possible.

If we had a reliable model for differences between odors, we could try to project
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this information onto a Euclidean space. This data could then be analyzed with already

existing data mining methods for high-dimensional Euclidean sets. In the end, it might

become possible to derive new ideas about chemical relationships and the interaction

between the olfactory bulb and the olfactory (pyriform) cortex based on odor perception

maps. It would become possible to search through a map of odorants and to select stimuli

according to the odor perception profile they will evoke. It could enable the neurosciences

to spot new structures in the signal processing of odorant information and could find use

in medical applications, e.g. to test significant defects of the sense of smell in Alzheimer’s

or Parkinson’s disease.

1.4 Thesis Outline

Interdisciplinary research can be challenging as well as frustrating. Usually, an audience

is made up of specialists from different areas. While one part of the audience is bored

because they already know most of the methods presented, the other part is overwhelmed

by the dense presentation of ideas that, for them, are completely new. Each person might

experience both of these situations several times in the different stages of a typical inter-

disciplinary work.

I personally experienced this problem. When I first heard a talk about neuroscientific

spikes, I got swamped by the huge amount of information and used terms, I never heard

of. The other way around, I was more than bored about the following discussion that

concerned of the absolute value of a complex number. To solve at least the first problem,

I decided to give a comprehensive view on the neuroscience of the nose as well as a com-

prehensive introduction into all theoretical fields that I used in this thesis. The second

problem, which is feeling bored, can be easily solved by turning over these pages.

In other words, as a specialist in a certain field, you are encouraged to skip the intro-

duction of the chapters belonging to your field of expertise, since they are probably not

very informative for you. For everyone else, each new topic begins with a short illustra-

tion of the main ideas of the underlying theories. The second structure that can be found
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in this thesis addresses the successive development of an odor map. We will start with a

short excursion into neuroscience, describing fundamental knowledge about the sense of

smell and the mapping of odor space. Afterwards, we will trace the successive steps we

had to take to reach a meaningful odor map.

In Chapter 2, the physiology of the nose is summarized briefly. Furthermore, first ap-

proaches to odor mapping are described at the end of this chapter. This chapter presents

the most current understanding of smell perception. Of course, this introduction is re-

stricted to essential knowledge, as this thesis does not actually focus on neuroscientific

data.

However, it is important to gain a basic knowledge of the sense of smell to understand

what kind of essential questions have to be answered. The brief introduction in Chapter 2

is dedicated especially to all non-neuroscientists — like me — who are reading this thesis.

This thesis mainly extends basic ideas proposed by Chee-Ruiter [12]. This approach

is introduced in Section 2.4. We will use in the following chapters the same data as she

did. This is a dataset based on the Aldrich Flavor and Fragrances Catalog [2], which

includes descriptions of almost 900 chemicals using about 300 odor descriptors.

The next three chapters (Chapter 3, 4 and 5) discuss assumptions, measures and meth-

ods used to solve the problem of mapping the odor space. In these chapters, a short

introduction is given into the models used and the new ideas that are developed. This

introduction is followed by the application of these methods to an experimental odor

database. Consequently, the interim results of our work are found at the end of these

chapters.

Chapter 3 describes the development of a metric that expresses similarities or dissim-

ilarities between elements of an experimental database adequately. For odor similarity

data a special semi-metric, called Subdimensional Distance, is proposed. This metric is
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Subdimensional
Distance

Multidimensional
Scaling

Self−Organizing
Maps
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n p−dimensional
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Euclidean points

2−dimensional
topology map

(p>q>>2)

Figure 1.1: Data flow through mapping infrastructure.

found to be the most satisfying intuitively. Also, the independence of our approach of the

quality of psychophysical data is emphasized. Using this specially designed metric, we

obtain a dissimilarity estimate of the odor data, namely a ��������� dissimilarity matrix (see

Figure 1.1).

In Figure 1.1, the data flow from the raw data to the odor map is shown. � experi-

mental observation vectors are given that have 	 features each. We will derive a ���
�
���
dissimilarity matrix out of these feature vectors using the subdimensional distance. There

is a well-known numerical method to reconstruct metric points from a dissimilarity (dis-

tance) matrix. This method is called Multidimensional Scaling (MDS).

In Chapter 4, MDS is presented. The main idea is just to ignore whatever structure

might underlie the odor space data and instead to find the closest � -dimensional Euclidean

representation of the given dissimilarity matrix.

The odor space was found to be too complex to derive a map out of the MDS points

directly. This is because � , the dimension of the best Euclidean representation, is much

bigger than 2. If � had been 2 this thesis would have ended at this point. As it stands, how-

ever, we need a visualization technique for high-dimensional spaces, and so in Chapter

5, we apply a well-known method for topology-conserving data display, so-called Self-

organizing maps (SOMs).

In Chapter 6, we give a comprehensive summary of these results as well as a motiva-

tion of how the resulting maps can be used to test existing hypotheses. We will answer the

question of how the odors apple, banana and cherry are ordered in odor space. Further-

more, we will compare our map with existing approaches. Connections to Chee-Ruiter’s
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directed graph will be shown.

We found evidence to support the so-called ecoproximity hypothesis. This is a hypoth-

esis about the role of key atoms in the environment for odor perception. This hypothesis

and the evidence that we found will be presented at the end of this chapter.

In the last chapter of this thesis, the infrastructure used to generate the map and the

results will be discussed. Finally, we will end the discussion with an outlook on potential

projects and future work.
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Smell (Olfaction)

Anything that has a smell constantly evaporates tiny quantities of molecules that cause the

smell perception, so-called odorants, into the surrounding air. Therefore, the air is filled

with a mixture of different odorants, whether they were evaporated by a beautiful rose or

a rotting fish. These molecules are tiny, mostly invisible and chemically highly reactive.

A sensor that is capable of detecting such molecules is called a “chemical sensor”. Thus

the nose is a chemical sensor and the sense of smell is a chemical sense.

Even though most human beings are not actively conscious of their sense of smell, it

is the main sense for most mammals. They identify essential things like food, enemies or

even sexual partners using their nose. Odorants are able to influence our mood and can

trigger discomfort, sympathy as well as refusal. They might even influence our sexual

feelings, since each individual has an unique, genetically biased smell. So for humans, it

seems to be very likely that from an evolutionary point of view the nose played an impor-

tant role and probably still does so. Wells and Hepper [53] have drawn attention to the

often overlooked presence of our sense of smell. They tested dog owners for their ability

to identify individual dogs by their smell. Interestingly, ������� of the participants were

able to recognize the odor of their own dog.

Mammals can distinguish a tremendous number of odorants, e.g. humans are able

to differentiate (depending upon training) around 10,000 of these odorous chemicals [4].

A smell sensation, a so-called odor (e.g. floral), can be perceived even in a very low



Smell (Olfaction) 9

Figure 2.1: Schematic view on the human nose. Inhaled odorants bind to neurons located in the
olfactory epithelium. This epithelium is located in the upper area of the nasal cavity. Picture taken
from [4].

concentration of the corresponding molecules (odorant mixtures, e.g. lavender oil). Some

odorants can be detected even if the concentration in the air is only one part per trillion. A

“better nose” in other mammals does not necessarily detect more odorants than a human

nose, however, well trained sniffers like dogs have the ability to perceive odorants already

in substantially smaller concentrations.

About 1000 different types of molecular receptors have been identified in the human

nose [8]. This is a remarkably large number, because at least the same number of genes is

necessary to express these receptors. In other words, ������� of all the 50,000 to 100,000

human genes code for the sense of smell [8], [4]. Thus these receptors represent one of the
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Figure 2.2: Image of an Olfactory Receptor Neuron. The images are shown magnified 17,500
times. Left: Olfactory receptor neurons (ORNs) are located in the olfactory epithelium. Right:
So-called cilia protrude from the tip of an individual ORN. Odor receptor proteins (ORPs) located
on the cilia bind to odorants. Image taken from [4].

largest gene families that has been found so far in the human genome. This fact may count

as evidence for the extraordinary relevance of this sense in the evolution of mammals.

2.1 Stimulus Detection in the Olfactory Epithelium

Odorants behave like ligands and bind to specific Odor Receptor Proteins (ORPs). Olfac-

tory Receptor Neurons (ORNs) in the olfactory epithelium express such ORPs on their tip

on the surface of hairlike structures, so-called cilia. The olfactory epithelium is located in

the upper area of the nasal cavity and has a size of about ������������� [45]. Odorants bind to

the ORPs and stimulate the neurons to fire. There are up to 50 million ORNs located in

the epithelium [40]. Figure 2.2 shows a highly magnified image of an ORN in the epithe-

lium (left) and a close-up of the cilia on an ORN (right).
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Figure 2.3: Olfactory Epithelium. Cilia rise into mucus layer, the top layer of the olfactory
epithelium. ORNs are surrounded by support cells. A layer of basal cells (or stem cells) sits under
the layer of ORNs. Picture taken from [36].

Besides the �! million ORNs, there are so-called basal or stem cells, which are able to

generate ORNs throughout the lifetime of an organism (see Figure 2.3). The neurons in

the olfactory epithelium are regenerated continuously approximately every 50 to 60 days.

In this respect they differ from common neurons, which are generally believed to grow

once and are never replaced again.

Each ORN expresses only one type of ORP on its surface [37]. The different types of

ORN are segregated into 4 main zones. Within the zones, the ORN types are randomly

distributed [9]. In situ hybridization experiments by Axel et al. [4] visualized the path-

ways of ORNs carrying the same ORP. The expression of a special ORP gene caused a

blue coloring of the ORN cell at the same time.

2.2 Signal Processing in the Olfactory Bulb

Olfactory receptor neurons are bipolar neurons. Their axons end in the mucous membrane

as well as in the olfactory bulb, an appendix of the brain. The olfactory bulb is divided

into two interconnected wings. See Figure 2.4 for a schematic view of the bulb.
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Figure 2.4: Olfactory Bulb. ORNs send their input through the cranium to the olfactory bulb,
where the ORNs converge at sites called glomeruli. From there, signals are projected to other
regions of the brain, including the olfactory cortex. Picture taken from [4].

There are certain spatial regions, so called glomeruli, where the ends of several ORNs

gather. While ORNs are randomly distributed within the Olfactory Epithelium, all ORNs

of the same type converge to receptor-specific glomeruli in the olfactory bulb. The

glomeruli are able to stimulate the neuron of the next level (so-called mitral cells) to

fire signals into higher brain areas.

However, the question arises how humans are able to distinguish more than 10,000

odorants with just 1,000 different receptor types. It has been shown that mammals express

each of the 1,000 coding receptor genes in approximately  �"#�$� of all ORNs [4]. Thus

probably each neuron expresses only a specific gene. Furthermore polymerase chain reac-

tion (PCR) experiments indicate that only identical receptor genes are activated in ORNs



2.3 Signal Processing in the Olfactory Cortex 13

of the same type. These two discoveries by Malnic et al. [37] lead to the assumption

that each ORN seems to carry one and only one characteristic ORP. So the sense of smell

seems to be coded by a pattern system using an alphabet of about 1000 glomeruli. It

should be mentioned that a single odorant can activate several different types of ORN

and thus creates a specific pattern, but the same, single ORNs can respond to different

odorants [9].

This kind of coding enables the sense of smell to detect more odorants than there

are ORPs, because odorants can be identified by a pattern of activated, ORP-specific

glomeruli. Even if extensive parts of the Olfactory Epithelium become damaged, the re-

maining neurons will still be able to activate their corresponding glomeruli. Similarly it is

possible to amplify even smallest amounts of inhaled molecules at the glomerulus level.

This means that the sense of smell is as sensitive as it is robust.

Signals from the olfactory bulb are transmitted both into the neocortex, in which con-

scious processes take place, and into the limbic system, which initiates emotions. This

might be one reason why smells not only supply actual information, but also lead to emo-

tional and rather subconscious reactions [4].

2.3 Signal Processing in the Olfactory Cortex

It might be assumed that higher cortical areas easily decode incoming activation patterns

from the glomeruli to decide which neurons have fired. However, the mechanism within

the glomeruli is not clear [9]. It is neither known how many different types of ORN lead

into the same glomerulus and what the ORP-specific coding looks like exactly, nor is it

known how glomeruli project the processed input into higher cortical areas.

Not only external sensory input (evoked by odorants) reaches the bulb, there are neu-

rons connecting the bulb with higher levels of the brain. It is unknown what the interaction
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Figure 2.5: Henning’s odor prism Triangular prism proposed by Henning as an olfactory model.
The primary odors are located at the corners. Other odors can be mixtures of the primaries and
thus have coordinates inside the prism or on its surface.

between higher cortical signals and the sensory input looks like, neither how the input is

influenced by cortical areas nor how the incoming signals influence the cortical percep-

tion of the smell [1].

In fact, smells can be a strong reminder of childhood memories, evoke emotions (pos-

itive as well as negative) and help us avoid spoiled food. Most people even connect

olfactory perception with pictures or situations, therefore all judgements of a smell might

be influenced by subjective factors like personal experience and cultural background. The

sense of smell seems to be based on a highly time dependent complex feedback system.

2.4 Approaches for Mapping the Odor Space

From antique times, philosophers have searched for a physical continuum to measure and

label sensations of smell. Aristotle (384 BC - 322 BC) tried to describe and classify ol-

factory sensation using the same scheme he used for taste, except for an olfactory quality

he called fetid. But Aristotle felt taste was to put in order much better than smell seems

to be [10], [36].
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Later, in the �%�&(' and �%)�&(' century, scientists tried to group odors into different classes,

just as animal and plant species are classified. Linnaeus (1752) grouped odors into seven

classes: aromatic, fragrant, ambrosial, alliaceous, hircine, repulsive and nauseous. A re-

fined version of this classification by Zwaardemaker (1895) remained accepted until well

into the �! &(' century. These early models were based on personal experience rather than

on experimental data [10].

Henning [21] tried to define primary odors experimentally. He proposed a prism with

six corners, labeled as putrid, fragrant, spicy, resinous and ethereal (see Figure 2.5). So

each odor would occupy a certain position in the prism, corresponding to its resemblance

to the primary odors. For example the odor thyme would probably be located between

fragrant and spicy. However, experimental subjects produced great variations in where

on the prism different odors are placed, so Henning’s theory eventually fell out of favor

[36].

In 1968 Woskow [56] applied an early multidimensional scaling (MDS) method to

psychophysical data, assuming that his data were metric. He directly derived similarities

from a matrix of ���+*,�!� odorants. The method yielded a three-dimensional space, but this

surprisingly small dimension could be caused by his small set of odorants.

Schiffman [46] reanalyzed Woskows data using a nonmetric MDS, since there is no a pri-

ori reason to assume that the data are metric. She found that no single physicochemical

parameter could be used individually to predict odor quality.

In Addition to these physicochemical maps, several empirical approaches have been

widely used by the perfume industry. In all cases, two- or three-dimensional spaces are

proposed. However, the scientific basis leading to these representations remains unclear.

It might be supposed that in most cases these models are empirical categorizations rather

than scientifically validated olfactory maps.

But even today scientists must choose their stimuli based largely on their personal

experience. There is no guarantee that the chosen stimuli are able to span the “olfactory
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Figure 2.6: Part of Chee-Ruiter’s odor graph. The directed graph consists of connections be-
tween one odor A and its nearest neighbor B given by I(A,B). The complete odor graph can be
seen in Figure B.1.

perception space” appropriately. For these purposes, an adequate model is needed that

would for example allow one to determine whether or not an odor C is between two other

odors A and B.

2.4.1 A new Approach by Chee-Ruiter

In the last decades the understanding of the first level signal processing in the nose made

such a rapid progress, that it looked like neurophysiological and molecular biological re-

sults will lead to a complete understanding of the sense of smell. But still, there are a lot

of things we still do not know. Unfortunately, almost all existing approaches focused on

the understanding of relationships between odorant characteristics and odor quality.

In 2000 Christine Chee-Ruiter then came up with a completely new idea. She pro-

posed a method to extract information about odors from a huge psychophysical database

about odor quality of almost 900 chemicals. So for the first time a model could be de-

rived that tries to express the sense of smell at the perceptual level, not at the sensory level.
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Chee-Ruiter [12] has proposed an odor map constructed using a directed graph of

odors, where each odor A is connected to its nearest neighbor B with respect to the fol-

lowing similarity measure: - .0/ �214365��87 / ��59361:�
I is said to be an approximation to the cross-entropy information measure. A small part

of this graph can be seen in Figure 2.6, in the Appendix, Figure B.1, the complete graph

is shown.

The construction of a graph like this allowed Chee-Ruiter to visualize first-level struc-

tures in odor quality space. Furthermore, some contiguous regions are indicated on the

map, suggesting that there is a relationship between atomic elements and odor quality.

This hypothesis will be discussed in Chapter 6 in comparison to the results of our ap-

proach.

In any case, one problem of interpreting odor space as a graph is the subjective spatial

orientation of the resulting map. That is, structural decisions in laying out the graph may

be based on subjective expectations. We can illustrate this using Figure 2.6. The odors

cognac, melon and rum are located in the top-center region. Assuming one might decide

cognac and rum should be closer together, without melon between them, melon could be

moved close to fruity, without changing the graph as a whole. Now it should be clear that

a graph has too many degrees of freedom to serve as a reliable map.



C H A P T E R 3

Quality and Comparison of Experimental Data

In this chapter, we want to discuss how to extract odor perception information from ex-

perimental data. The topic of this chapter is thus twofold. First, we have to talk about

psychophysical experiments; then, we will address the comparison of experimental re-

sults.

Modern psychophysics is devoted to quantifying the relationship between a given

stimulus and the triggered sensation, usually for the purpose of describing the processes

underlying perception [36].

These relationships are documented using so-called observation vectors (or feature

vectors). Think of an experiment testing the odor quality values of odorants. Let * be one

of the stimuli, say ; -Toluenethiol. This odorant is often used to give canned soups the

typical aroma of meat. Even in low concentrations, it smells very intense and unpleasant,

with a slightly sulfurous nuance. The subjects now have to smell this substance among

other substances several times and have to judge the odor quality. This is done by fill-

ing out a data sheet for each stimulus. The sheet consists of a set of odor descriptors,

e.g. fruity; the descriptors matching the subject’s perception are marked. The classical

psychophysical approach averages the results and extracts feature vectors using a certain

threshold. If unpleasant is descriptor < for example, then the < -th entry of observation

vector =?> would presumably be set to one (if ; -Toluenethiol is being profiled).
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3.1 Distances and Similarities

An observation vector =@> that is gained in such an experiment quantifies the perceptive

reactions to a stimulus * , often in binary quantization. We are usually trying to put two

given observation vectors =@> and =?A with=?> . ��; > B "#�#�#��"C; >D �FEG" =?A . �2; A B "H�#�#�H"I; AD �JE (1.1)

in one context. This means that we are comparing two observations with each one another

to obtain information about how they relate, how similar or dissimilar they are. The main

problem in measuring similarity is to devise an appropriate distance function KL�2=M>�"I=?A��
that yields intuitively satisfying results for the dissimilarities (the distances) of =M> and=?A . That is, the dissimilarity measure should yield a high number when the two obser-

vations differ in a high number of features (parameters) and a lower number otherwise.

Conversely, we would expect a similarity measure to produce a low value for a high num-

ber of equal features.

The term distance is often used to describe precisely the differences of actual mea-

surements, while “dissimilarity” might be an estimation of a distance we are not able to

measure physically. But distance can be interpreted as a dissimilarity as well. Basically

distance and similarity are reciprocal concepts.

To interpret dissimilarities in a geometrical sense, e.g. to derive a map out of an

existing dissimilarity matrix, it is reasonable to interpret dissimilarities as distances in a

metric space. This enables us to measure distances between two observations like on a

city map. On the other hand, especially when dealing with highly complex objects, it

is not always possible to express similarities with a mathematically stringent metric. To

clarify this practical problem, we will now give a definition of a mathematical metric.

Definition 3.1.1 Metric. Let KL�2=N>�"C=?AH� be a distance function that defines the dis-

tance of an observation =@> and an observation =@A . If this distance function fulfills the
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following conditions, it is called a metric.��KL�2=?>�"I=?A#�POQ R� S �2KL��=?>�"C=?AH� .  UT * .WV � (positive definiteness) (1.2)KL�2=?>�"I=?A#� . K,��=?A$"C=?>$� (symmetry) (1.3)KL�2=?>R"I=NXY�[ZQKL�2=?>�"I=?A#��\]KL�2=?A+"C=NXY� (triangle inequality) (1.4)

Definition 3.1.2 Semi-Metric and Asymmetric Metric

A semi-metric does not fulfill the triangle inequality, but is positive definite and symmet-

ric, i.e. it fulfills the conditions (1.2) and (1.3) of a metric.

An asymmetric metric is positive definite and fulfills the triangle inequality but is not

symmetric, i.e. it fulfills only the conditions (1.2) and (1.4) of a metric.

It should be mentioned, that semi-metrics as well as asymmetric metrics are not suit-

able for interpretation as describing a geometrical space. Under a semi-metric the direct

connection between two points does not have to be the shortest path, and under an asym-

metric metric, the route from one point to another might be shorter or longer than the

route back. Nevertheless, semi- and asymmetric metrics might be more suitable than pure

metrics for describing dissimilarities because they are less restricted and, a priori, an ex-

perimental feature space does not necessarily have to satisfy the conditions for a metric.

On the contrary, similarity has been shown in several experiments to be very asymmetric.

For example, subjects said that the number 99 was very similar to the number 100, but

balked at describing 100 as very similar to 99 [39].

An important quantifier for an observation vector in the context of different metrics is

its stuffing, so let us define this term in the following.

The stuffing of an observation vector =@> is the number of components that differ from

zero. For binary vectors, this can be expressed as a sum over all components:
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Definition 3.1.3 Stuffing of observation vectors.^`_Iacbed�f ��=?>$�Pg .0h =?>ig .kjLl ; >l (1.5)

3.2 Typical Dissimilarity Measures

There are many different metrics for expressing the distance between two objects. There-

fore, the importance of choosing a suitable metric should be emphasized again. This is

essential for a meaningful description of a data space. It should be clear that a wrong

description of facts leads to wrong results and cannot be compensated in later steps. We

have to admit though that it is not very easy to prove “correctness” in this context.

A reasonable approach is to test the most commonly used metrics and evaluate them

for specific data. Based on these results, one can develop one’s own (specially adapted)

measure, to obtain a measure that is as intuitively satisfying as possible. Consequently,

we will start by describing some common metrics, and afterwards a short derivation of

our new dissimilarity measure will be given.

The first metric to be defined is the so-called Minkowski Metric. It is the general case

of a set of typical and familiar metrics. The basic structure of these metrics is defined as

follows:

Definition 3.2.1 Minkowski Metric.

KRm?��=?>�"C=?AH�[g .on�j,l 36; >l ��; Al 3 p%q B2r p "Cs9Ot��"Ysvu9w (2.1)

As a special case of the Minkowski Metric with s . � , the city-block (or Manhattan)

distance Kyx between two observations =@> and =?A is defined as follows:
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Definition 3.2.2 City-Block Distance.KRxz�2=?>!"C=?AH�[g .0j,l 36; >l ��; Al 3 B (2.2)

The Manhattan metric is called Hamming Distance if the observation vectors are binary.

In fact, this distance counts the number of differences between two binary strings. This

means that the Hamming Distance K ' �2=?>�"C=?A�� is defined as follows:K ' ��=?>�"C=?AH�[g . *L;+{��2=?>!"C=?AH� .0j,l 36; >l ��; Al 3 =?>R"C=?A?u4|+ �"#�!} D (2.3)

The Minkowski Metric with s . � , called the Euclidean distance Kc~ between two

observations =N> and =?A , is defined as follows:

Definition 3.2.3 Euclidean Distance.KR~#��=?>�"C=?AH�Pg . j,l �2; >l ��; Al � � (2.4)

Distances of a whole matrix can be efficiently calculated using an expanded formulaj�l �2; >l ��; Al � � . j,l ; >l � �]� jLl ; >l ; Al \ j,l ; Al � (2.5)

The Tanimoto coefficient is an intuitive similarity measure, as it is “normalized” to

account for the number of bits that might agree relative to the number that do in fact

agree.

Definition 3.2.4 Tanimoto Similarity Measure.K & ��=?>�"C=?AH� . � =?>�"I=?A#�� =?> � � \ � =?A � � � � =?>�"C=?AH� . � l ; >l ; Al� l ; >l ��\ � l ; Al � � � l ; >l ; Al (2.6)

Definition 3.2.5 Cross-entropy Information Measure.- �2=?>!"C=?A�� .W/ �2=?>�3 =?AH��7 / ��=?AR36=?>$� . � � l ; Al 7%; >l ���� l ; Al � l ; >l (2.7)
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I is an approximation to the cross-entropy information measure [12] and was used in

Chee-Ruiter’s mapping approach as an estimation of odor dissimilarities. Equation (2.7)

is defined here for discrete feature vectors. This measure is a similarity measure on the

interval �� ��#��� . The corresponding dissimilarity measure ��� -
is a semi-metric according

to Definitions 3.1.1 and 3.1.2.

We have already discussed the importance of a mathematical metric for the geometri-

cal interpretation of a set of points. If one cannot use a metric because it does not capture

the relevant characteristics (or a usable metric is still unknown), one will try to formulate

a dissimilarity measure that is as similar to a metric as possible.

3.3 Quality of Odor Dissimilarity Data

Now that we know so many metrics, we should take a closer look at the data we actually

want to analyze. In avoidance of misconceptions using the essential terms used in odor

perception, an exact definition first has to be given for them.

Definition 3.3.1 Odorant and Odor

An Odorant is a chemical substance that evokes the perception of a smell. Smell sensation

is usually described using certain words that classify the perception. These words are

called Odor Descriptors (or just Odors).

In other words, an odorant is a chemical that smells, e.g. rose oil. Rose oil is an ethe-

real oil that it evokes a characteristic smell. Odors are used to describe this smell. Thus,

the odors evoked by rose oil may be, for example, floral, pleasant, intense and rose.

Assuming we know a distance between all disjoint pairs of odors, these odors would

span a certain space. This space is defined as follows:

Definition 3.3.2 Odor Space

The Odor Space consists of all Odor Descriptors that are used to describe Odorants. The



24 Quality and Comparison of Experimental Data

position of Odor Descriptors in this space is determined by their relationships to each

other.

The dimensionality and the metric of this space or anything else about the structure of

this space is unknown.

To illustrate what a typical dataset looks like, let us examine a tiny database consisting

of only three odorants: hexyl butyrate, methyl-2-methylbutyrate and 6-amyl- � -pyrone.

And furthermore let us assume, these chemicals are characterized (e.g. by an objective

psychophysical experiment) by the following profiles:

hexyl butyrate g sweet – fruity – pineapple

methyl-2-methylbutyrate g fruity – sweet – apple

6-amyl- � -pyrone g coconut – nutty – sweet

These profiles are usually collected in a database where every ”X” marks the evocation

of an odor by the corresponding odorant. For example, chemical ��� smells sweet but not

fruity.

odorant fruity pineapple sweet apple coconut nutty� B g hexyl butyrate � � �� � g methyl-2-methylbutyrate � � ��P��g 6-amyl- � -pyrone � � �
The same can be expressed more mathematically, resulting in a matrix � defined as fol-

lows:

� . ����� � B� ��P�
�H���� . odor descriptors �L�F�6�6�6� � �c�� �H�  ¡¢¢¢£ � � �    �  � �     �  � �

¤¦¥¥¥§
containing in each row < the odor profile (or the feature vector) of odorant � l . Each

column ¨ stores information on whether an odorant � l evokes odor =ª© or not. Based on
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C, a new matrix O can be generated by simply transposing matrix C:

�ME .t«¬. ��������������
= B= �=N�=?=N®=N¯

�H�������������
.

¡¢¢¢¢¢¢¢¢¢¢¢¢£
� �    �� � � �  �   �   

¤¦¥¥¥¥¥¥¥¥¥¥¥¥§
Now each row < carries information about odor descriptor = l . Chee-Ruiter [12] proposed

this idea to extract information about odors. It should be mentioned that this data is rela-

tively independent of the chemicals. Of course here the data results from several odorants,

but matrix O could be enhanced by new – but not only chemical – characteristics.

There are several databases containing data on odorant perception. Most of them con-

sist of chemical profiles similar to our small example. Usually, the profile of a chemical

is derived by an expert or a group of subjects, who categorize their perception of this

odorant using a given set of odors. These odors can be interpreted as perceptive labels.

Some variations on our example are possible, e.g. scaled values can be used to describe

the intensity of an odor = l on a certain interval (e.g. �� ��#�H� ):
Odorant =N° =?± =?² =?> =?A =NX� l  c��  ���  ��³  ��³  ����  ��´��µ©  c�´�  ���¶  ��³  ��³  ��³  ��� 

Other databases use only binary information (“An odorant � l led to the perception of

odors =N> and =?A .”):

Odorant =N° =?± =?² =?> =?A =NX� l    � �  �µ©   �    
Of course, a non-discrete database can be converted into a discrete one by the use of a

simple threshold. In the given example, applying a threshold of ·¸u��2 c��¶��I ��´�$� to the upper
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matrix would result the lower matrix.

We used a dataset based on the Aldrich Flavor and Fragrances Catalog [2], which

includes descriptions of 851 chemicals using 278 odor descriptors, mainly collected from

the primary sources [3] and [19]. This dataset has already been used for a first mapping

approach by Chee-Ruiter [12], as described already in Section 2.4. Although there are

other databases containing comparable data, e.g. Dravnieks [17], we will use the Aldrich

database in the following as the source of information for our mapping of the odor space.

The comparative evaluation of maps derived from different sources will not be discussed

in this thesis. Instead, we will focus on the introduction of an infrastructure for analyzing

olfactory perception databases in general.

3.3.1 Are these databases trustworthy?

First of all it should be clear that it is impossible to set up an objective psychophysical

experiment as long as we are not able to measure results physically. Thus, we can only

estimate the quality of these sets because we do not even know the correct similarity value

for a single pair of odors. And we have to expect a high vagueness in the correctness and

in the completeness of these profiles as well as a high variance, because every subject ex-

periences odorants differently. Finally, we cannot be even sure that odors that are chosen

are suitable. They are just words used to describe sensations evoked by odorants.

On the other hand, it can be expected that a chemical that is commonly characterized

as “nutty”, for example, will not be described as smelling like “apple”, neither by a

layperson nor by an expert. And only because a layperson is not as well educated for

describing his smell sensation, it does not mean that his/her nose is not able to detect fine

nuances in a discrimination experiment.

Dravnieks [16] was able to show that the information conveyed by odor descriptors

is stable. However, there might be a certain distortion, making the odors more dense in

familiar areas, like for example the description of fruity odorants. Especially these odors –
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including hedonic values like “pleasant” and “unpleasant” – are often said to be cultural

or subjective in a certain way, for example, “green” is a typical odor that people might

interpret ambiguously.

The question arises how a potential map is influenced by these problems. Certainly a

map cannot become better than the data it relies on. But we want to introduce a depend-

able infrastructure to extract as much information as possible out of the databases. This

would mean that, given good data, we will be able to produce a good map.

Actually, it is not possible to gain access to human association without the use of

language. Wise et al.[54] tried to avoid the use of language, but experiments like this

cannot help in finding a unique set of odors, they are just helpful in measuring similarities

between odorants (chemicals) directly. This thesis will assume that the set of odors (here

Chee-Ruiter’s database [12]) is complete in terms of the knowledge acquired so far. The

question of how to define correctness for a set of odors has to be part of future work.

3.4 Estimating dissimilarities in the Odor Space

It would be intuitive to interpret the odor space as an n-Hypercube (see A.2) and to com-

pare the vectors using their distance in the Hypercube, using the already mentioned Ham-

ming Distance K ' (see Definition 3.2):K ' �2=?>!"C=?AH� . Dj l(¹ B 36; >l ��; Al 3
But especially when comparing odors, the fluctuation of the observation vectors stuff-

ing (the number of ones set) is very high. This is because some odor descriptors are very

striking or common like “fruity” or “sweet”, while other odor descriptors describe more

special characteristics of an odor like “apple”. Therefore, these odors have very sparse

observation vectors.
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Figure 3.1: Stuffing of the observation vectors. The Stuffing describes the number of ones in a
single 851-dimensional vector. Each observation vector º l corresponds to a odor descriptor. The
more ones are set, the more odorants are evoking the corresponding odor. Significant differences
between some odors can be seen.
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In Figure 3.1, the significant differences between common and special odors can be

seen. The average odor can be evoked by about eight odorants, but some are evoked

by several hundreds. This problem will be discussed in slightly more detail using the

following example: Four observations =U²G"#�H�#�H"C=NX are given, i.e. feature vectors for each

odor »�"¼*8" V "C½ . They are based on chemicals � B "#�H�#�H"C� �J� with

= l �¾¨¿� . ÀÁ�Â � if odorant �µ© evokes odor < , else
(4.1)

Let us assume the following observation vectors have been obtained:=?² .  � ! ��������!���������!�����% � ! � � � � =?> . ���!���������!���������!�����% � ! � � � � =?A .  � ! � � � � c���������!���������!���������=NX .  � c�% ��% � ! � � � � ! � � � � ! � � � � (4.2)

According to equation (4.1) the vectors are defined like this: =MX , for example, is the

observation or feature vector for the odor ½ (e.g. ”apple”). According to =�X , ½ can be

evoked by odorants ��� and �P® , because =@X+��¶R� . =NX$�2��� . � . This leads to the following

set of Hamming distances K ' �2=?²G"C=?>$� . ¶K ' �2=?²G"C=?A�� . �!�K ' �2=?²G"C=NXY� . �%�K ' �2=?>R"C=?A�� . �HÃK ' ��=?>�"C=NXY� . �#¶K ' �2=?A+"C=NXY� . �%Ä
If we use the Hamming distance, observations =@> and =@X are defined as relatively distant

– a difference of �%¶ bits out of a maximal distance � . ��� of all bits. In fact, they differ

in over half of all variables (bits), so they are almost not comparable. However, there is

still an important relationship between the two observations. If we compare =M> and =NX ,
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we notice that each chemical that evoked odor ½ evoked odor * as well, in other words:/ �2=?>c36=NXY� . �
The probability of =N> given =@X has the highest possible value. And we would expect

this property to be reflected in a small distance value, for example, though not everything

smells like “apple” just because it smells “fruity”, everyone would expect “apple” to lie

close to “fruity”.

Now let us have a look at the cross-entropy information measure I (see Definition

3.2.5), which has already been applied in odor mapping and is defined as follows:- �2=?>�"I=?A#� .Å/ ��=?>�36=?AH��7 / �2=?AR3 =?>$�
Referring back to the example in equation (4.2) we can calculate the following cross-

entropy distances: - ��=?²G"C=?>$� .  ��³� N7R���³ � .  ��³� - �2=?²G"C=?AH� .  ����!¶N7$ ��³�RÄ .  ��³¶��- �2=?²G"C=NXY� .  ����! N7$ ��³ � .  ��³ !Ã- ��=?>�"C=?AH� .  ����!¶N7$ ����!¶ .  ����!- �2=?>!"C=NXY� . ���³ � N7$ ��¾�%¶ .  ��¾�%¶- �2=?A+"C=NXY� .  
Note that I is a similarity measure, not a distance measure like the Hamming distance.

This means that here, =N> and =?A are more similar than, for example, =@> and =NX . But

again, this does not reflect our expectations very well. =�X has such a huge distance to=?> just because it is very sparse compared to =@> . In contrast, =N> and =?A have the same

number of ones, so the common bits are dominating the dissimilarity.

Intuitively, we would expect =@² and =?> to be rated as the most similar pair in this

example. On the other hand, =UX should be close to =N> too. At least, =@X should be more
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similar to =N> than =?A . But the main problem is the the huge number of chemicals that

evoke =?> and have nothing to do with the very rare odor =MX . The measure should compare

mainly those areas, where the less stuffed vector is set. In other words, if an observation=?> has a very high stuffing and another one ( =MX ) is very sparse, we are interested in the

subset that =@X spans. In the following table, this subset of =UX is marked and compared

against the other observation vectors.=NX .  � ÇÆy ÇÆy � � ! � � � � ! � � � � ! � � � =?² .  � �È��RÆÉ�����!���������!���% � � ! � � � =?> . ���RÆÉ�RÆÉ�����!���������!���% � � ! � � � =?A .  � �È� �È� � ��!���������!���������!�������
This subset leads to the intuitive dissimilarity orderKL��=NX#"C=?>$�[ZÅKL�2=NXH"C=?²,�PZQK,��=NX#"C=?AH�z�
For binary observation vectors this relationship can be expressed easily with an asym-

metric dissimilarity function Ê%Ë¼ÌÍA`mN�2=?>!"C=?AH� . This function will be used to define a new

similarity distance for this kind of data.

3.4.1 Subdimensional Distance

In this section we want to design a distance, that is optimal in terms of the criteria dis-

cussed in the previous section. To start with we can express the differences between a

discrete observation vector =@A and a given observation vector =@> using a function Ê%Ë¼ÌÍA`m
defined as Ê%Ë`Ì�A�mN�2=?>�"I=?A#� . Dj l(¹ B �Y3 ; >l ��; Al 3$7$; >l � (4.3)

Referring back to definition (1.5), it should be mentioned that Ê�Ë`Ì�A�m@��=?>�"C=?AH� .0/ �2=?AR3 =?>$�Y7h =?> . This asymmetric dissimilarity can be used to derive a symmetric subdimensional

dissimilarity function Ê$Î�Ì��2=?>R"I=?A��Ê%Î�Ì��2=?>!"C=?AH� . �eÏ d �2Ê#Ë¼ÌÍA`mN�2=?>R"I=?A��z"YÊ#Ë`Ì�A�m@��=?A�"I=?>$�¼� (4.4)
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and the corresponding symmetric high-dimensional dissimilarity function Ê ' Î�Ìz�2=?>�"C=?A��Ê ' Î�Ì��2=?>�"I=?A#� . �ÑÐ+Ò��2Ê%Ë`Ì�A�mN�2=?>�"I=?A#�Y"YÊ#Ë¼ÌÍA`m?��=?A�"I=?>$�¼� (4.5)

These functions basically express the same information as Ê�Ë`Ì�A�m does, but Ê#Î`Ì describes

the relationship between two observations from the point of view of lower-dimensional

vector, i.e. the observation having the lower bit stuffing, while Ê ' Î�Ì describes the differ-

ence relative to the higher-dimensional vector.

Finally, we recombine the low- and high-dimensional dissimilarity to obtain a semi-metric

distance estimate K¿Ì���=?>R"C=?A�� defined as

KyÌH��=?>�"C=?AH� . Ê#Î�Ì��2=?>�"I=?A#��\ ÌÔÓFÕ2Ö�× ��Ø�� ��Ù`ÚÛ8ÜÔÝ`Þ6ß�à¼áFâäã�eÏ dÇåäæ�dÇf!_Iç \Å� (4.6)

where maxlength and minlength describe the maximal and minimal “stuffing”, respec-

tively:

�ÑÐ+Ò åèæHdÇf!_¼ç . �ÑÐ$Òé� h =?>R" h =?AH� . �eÐ+Ò n Dj l(¹ B ; >l " Dj l(¹ B ; Al q�eÏ dÇåäæ�dÇf!_¼ç . �eÏ d � h =?>R" h =?AH� . �eÏ d n Dj l(¹ B ; >l " Dj l(¹ B ; Al q
Because of the strong weight we give to the low-dimensional information, we call this

distance estimate Subdimensional Distance.

Assuming h =?>iZ h =?A , the semi-metric K¿Ì can be expressed explicitly as follows:

KyÌ��2=?>�"I=?A#� . � Dl(¹ B �Y3 ; >l ��; Al 3$7%; >l ��\ëêNìí³î � ×äï ð Øí�ñ ð Ùí ï ò ð Ùí Úê ìí�î � ð Ùí� Dl¦¹ B ; >l \Å� (4.7)

With a close look at the explicit formula in equation (4.7) it can be seen how KÇÌ is related to

Chee-Ruiter’s cross-entropy information [12]. Namely, the fractions describe a weighted

variant of the cross-entropy with a strong focus on the lower-dimensional information.



3.4 Estimating dissimilarities in the Odor Space 33K '%ó � Ky~ óyô � �õ�öK & �ª� - KyÌ�2=?²G"C=?>%�  ��è�HÃ  ��³¶RÄ  ����!  ����!  ��³ R��2=?²G"C=?A��  ��´��  ���Äc�  ����!  ��³�!Ã  ��³¶!Ã�2=?²G"C=NXY�  ��´�!�  ���Ä�Ã  ��³)R�  ��³)��  ��³�!Ã�2=?>!"C=?AH�  �����Ã  ��³�  ��³�!Ã  ���Ä��  ��÷ÃR��2=?>�"I=NXY�  ��´��)  ���Ä�Ä  ��³��  ��³RÄ  ����!)��=?A+"C=NXY�  ��´Ä!Ä  ��³� ���³ � ���³ � ���³ � 
Table 3.1: Different Dissimilarity Distances. To make the distances comparable, ø ' is normal-
ized by its maximum ( ù ) and I is inverted, because it is a normalized similarity measure.

This dissimilarity measure applied to the example in equation (4.2) leads to:KyÌ��2=?²G"C=?>$� . �� ª\ú¶ ó �$��� ó �%¶ .  ��³ R�K¿Ìz��=?²�"I=?A#� . �ÍÃõ\ûÄ ó �$��� ó �%¶ .  ��³¶!ÃKyÌ��2=?²G"C=NXY� . �ü�ý\Å��� ó �$��� ó ¶ .  ��³�!ÃKyÌ��2=?>�"I=?A#� . �2Ä�\ûÄ ó �$��� ó �%� .  ��÷ÃR�KyÌ���=?>R"C=NXY� . �� ª\Å�%¶ ó �$��� ó ¶ .  ����!)KyÌ��2=?A+"C=NXY� . �2��\Å�$� ó �$��� ó ¶ . ���³ � 
We now want to compare the new dissimilarity estimate to the basic metrics that were

introduced before. Table 3.1 summarizes the dissimilarities between the example vectors

defined in equation (4.2) according to the presented measures. To make the values com-

parable, the distances K ' and KR~ were normalized by the maximal possible distance on

vectors of this length ( � and ô � , respectively). For the same reason, the similarity mea-

sures K & and

-
were inverted to obtain the corresponding dissimilarity measures �ü�?�úK & �

and ���ª� - � .
Compared to the Euclidean distance K¿~ and the Hamming distance K ' , the subdimen-

sional distance K¿Ì gives better results. Small observations like =UX should be close to =N> ,
since =?> includes =NX completely. The Hamming as well as the Euclidean distance are not

able to describe this. The Tanimoto similarity K & and the Cross-entropy information mea-

sure

-
have similar characteristics, they are both dominated by unweighted probabilities.

Thus sparse vectors are generally discriminated compared to highly stuffed vectors. The
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Figure 3.2: Subdimensional Distance Matrix for Aldrich database. In this matrix, the dissim-
ilarities of all þ$ÿ�� odors with each other are diagrammed. They were derived using the subdi-
mensional distance measure ø Ì . The 851 odorants are not enough to estimate the approx. �����������
dissimilarities.

probability of an overlap with another observation is, of course, higher the more bits are

set. Table 3.1 shows that Tanimoto as well as Cross-entropy quantifies =U> as lying closer

to =?A than to =NX .
None of the classical measures is able to preserve all the expected relationships be-

tween our example vectors. Thus the subdimensional distance is the most satisfying dis-

similarity measure. In the following chapters, we will analyze dissimilarity matrices based

on the subdimensional distance KcÌ .
In Figure 3.2, a diagram of the symmetric dissimilarity matrix, which is based on the

observation vectors from the Aldrich database, is shown. The prominent odorants have

relationships with a lot of elements, whereas for the sparse elements we can estimate

dissimilarities different from one only for some odors. Therefore, it should be mentioned
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that, unfortunately, a huge number of entries has got the maximal value of one. This

is because a lot of odors cannot be related to each other. We have only 851 odorants

to estimate about ÃR c"C � � dissimilarities. There might be unknown odorants that would

model the similarity between two odors better.

To our knowledge, the subdimensional distance measure KÇÌ expresses intuitively sat-

isfying relationships between odors. But, of course, it can just represent an estimate of

odor distance. We hope that our maps might increase the understanding of the existing re-

lationships between odors. The question “How to measure odor distances?” is still one of

the essential questions in analyzing odor perception; this problem should not be neglected

in future work.
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Multidimensional Scaling

Given a set of � arbitrary points in a 	 -dimensional Euclidean space, it is very easy to

construct a symmetric � �9� matrix containing all distances between all � points. Such a

matrix is called a distance matrix. These distances can be calculated using a metric e.g.

the Euclidean metric. An example is given in Figure 4.2 with its corresponding distance

matrix shown in Table 4.1. For more detailed information about metrics, please refer to

Chapter 3.

The inverted problem is much harder to solve. Given only a distance matrix, it is hard

to reconstruct the corresponding points. First of all, not even the correct dimensionality

can be derived directly out of the distance information. No matter what dimensionality the

original points have, distances are scalar values. Further, it is difficult to get a correct con-

figuration for all points, preserving the corresponding distances. The intuitive approach to

reconstructing the points would be to start with two points located at the correct distance.

Then, a third point can be added (as shown in figure 4.1) and so on. The problem is to

find the position for each point where the distances to all the other points are correct. Ad-

justing the distance between two points will affect the distances to all remaining points as

well. It should be mentioned that of course the orientation of the set of points cannot be

reconstructed. This is because only internal relationships are stored in a distance matrix,

not global orientation information.

Multidimensional Scaling (MDS) is an approach that leads to a numerical solution
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Figure 4.1: Reconstructing points from a distance matrix. Each distance specifies many pos-
sible positions, but there are only certain degrees of freedom in a 	 -dimensional (here 	�
 þ )
projection. Note that point � � has two possible positions. The distances of at least �	��
þ�� points
are needed to plot a 	 -dimensional map uniquely.

for the problem described. As a branch of multivariate data analysis it offers models for

representing multidimensional data sets in a lower-dimensional Euclidean space. This

technique identifies important dimensions of the data set from similarity or dissimilar-

ity information about the given observations. These distances do not have to be metric,

because MDS simply “stretches” the similarities to geometrical relationships (distances

between the observations). In the next section we will describe, how MDS is doing this

“stretching”. MDS is a common method for dimensional reduction and the graphical

representation of multidimensional data. Furthermore it can be used to estimate the di-

mensionality of a dataset [42].

4.1 Mathematical Model

The basic idea behind MDS, as proposed by Kruskal [32], is similar to the intuitive ap-

proach illustrated in Figure 4.1. The fundamental problem is finding a position for a point* l where its distance error to all other points is minimal. In general, MDS starts with
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a randomized or normalized configuration for the � points * B "H�#�#�H"`* D . Repeatedly, all

points are pinned down one after the other and the distances to all the other points are

corrected. The scaling is finished after a given number of iterations or after a minimal

configuration has been reached. This happens if the distances cannot be corrected any

further.

Assume a dissimilarity matrix � is given with:

� . ¡¢¢¢£�� BJB 7%7%7 � BÍD
...

...� D+B 7%7%7 � DHD
¤¦¥¥¥§

where � l © represents the dissimilarity between two observations = l and =�© . Furthermore,

assume that there is a representation in a 	 -dimensional space, then there exist corre-

sponding points * l on a 	 -dimensional map, where each * l corresponds to an observation= l .
* B . �Í* BJB �#�#� * B�� �

...* D . �Í* D�B �#�H� * D�� �
Now, a distance matrix � can be derived from these points so that � can be defined as

� . ¡¢¢¢£ K BJB 7%7%7 K BÍD
...

...K D�B 7%7%7 K DHD
¤¦¥¥¥§

with, for example, a Euclidean distance metric Kc~
K l © . KR~H�Í* l "`*¿©H� . ���� �j � ¹ B �Í* l � �ö*¿© � � �

We want to achieve as small an error as possible between the dissimilarities and our

estimated distances. We are thus looking for a function that maps the dissimilarities to
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distances, roughly speaking � Ï d Dj l¦¹ B �j © ¹ B ��� � � l ©�����K l ©I� �
Kruskal [32] formulated a so-called stress function as

�! �"�#$�%� . � l � © ��� � � l ©�����K l ©I� �� l � © K �l ©
The term “stress” should be interpreted as the strain of a spring whose end is joined

to the dissimilarity measure. The distance approximation pulls on the other end of the

spring. The stress is high if the displacement of the distance approximation to the dis-

similarity measure is large. The main difference between the several versions of MDS in

existence is the use of different scaling factors of the stress function [48].

4.1.1 An Example of Multidimensional Scaling

To illustrate the application of MDS a simple example – based on the sketch shown in Fig-

ure 4.2 – was scaled using MDS. The dissimilarity matrix is shown in Table 4.1. These

dissimilarities are just the distance between the points, measured roughly using a com-

mon ruler. Although they were derived using a metric, these dissimilarities will contain

certain errors. Even though this matrix describes only nine points, it is already difficult to

imagine the corresponding map without knowing the original. The map that results from

MDS (Figure 4.3) is almost identical to the sketch, apart from the fact that the map is

turned by a certain angle compared to the original. But this is not surprising – we cannot

expect to achieve the same orientation using MDS, due to the fact that no information

about orientation is stored in a distance matrix.

The so-called scatter plot is a common method for visualizing the quality of MDS

results [30]. This plot displays the quality of the approximation and the “stress” in the

mapping. A map is called “perfect” if the order of the dissimilarities is preserved in
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Figure 4.2: Sketch of some points. Nine points are drawn on a piece of paper as an example set
in a 	 -dimensional Euclidean space (here, 	&
Qþ ). The points are numbered � B to �(' . Table 4.1
shows the corresponding distance matrix. The distances were measured very roughly using just a
simple ruler.

Ky~ / B / � / � /  / ® / ¯ /*) /,+ / '/ B  ¶��¾� � ���¾� ��÷Ã ��´� ¶���Ä �c�³¶ Äc�÷Ã/ � ¶��è�  �c�¾� ¶���� �c�÷Ã �c��� �c�³) ����� ��³/ � � �c�¾�  ����� ¶��÷Ã ¶���� ¶ ���³� )��³¶/  ���è� ¶���� �  �c�³¶ �c��� ¶��³ Äc�¾� )���Ä/ ® ��³Ã �c�÷Ã ¶��÷Ã �c�³¶  � �c�³ ) �����³�/ ¯ ��´� �c�³� ¶��³� �c�³� �  � Äc�³� �% /*) ¶��´Ä �c�³) ¶ ¶��³ �c�³ �  ¶���� �����/,+ �c��¶ ����� ���³� Äc�¾� ) Äc��� ¶����  �c��Ä/ ' Äc�³Ã ��³ )��³¶ )���Ä ���!��� �% ����� �c��Ä  
Table 4.1: Dissimilarity Matrix for Test Points. The elements in this distance matrix are values
measured by hand (Euclidean distance) on the sketch shown in Figure 4.2. The measurements are
in -/. .
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the corresponding distance values, that is, the values in the scatter diagram have to grow

monotonously from left to right. Minimal “stress” would lead to a perfectly straight line

on the scatter plot. The scatter plot for our example can be seen in Figure 4.3. Of course,

usually MDS results are not so close to a straight line.

4.2 Estimating Dimensionality

As mentioned before, a distance matrix provides no information about the dimensionality

of the underlying data, because of its scalar entries. Thus, it is a difficult task to decide

how many dimensions MDS needs for a appropriate approximation of the original data. A

trade-off has to be found between goodness of fit, interpretability and parsimony of data

representation. It is hard to say, how low “stress” values should be. Each dimension has

its corresponding “stress” value. On a plot of these values against their dimension we can

hope for a sharp bend that indicates a fitting dimension. Unfortunately, this is unlikely to

happen, unless we have clearly defined attributes associated with the dimensions [55].

However, for most problems it is a very interesting question what dimensionality will

be best for a multidimensional scaled projection. Especially if we have a dataset like

olfactory dissimilarity data, where we do not know anything about the underlying com-

plexity, this dimensionality could give a clue as to how many independent features formed

the data. In fact, a correct dimensionality estimation of the odor space might help us to

understand and to interpret the perception of smells.

But first, we have to state some general things about the dimensionality of MDS pro-

jections. Assume we have � points represented by an �4� � dissimilarity matrix. Then,

we want to estimate the smallest dimension 	 for which the set can be projected onto a	 -dimensional space. On a straight line (one-dimensional), two points have one degree of

freedom; so do three points on a plane (two-dimensional, see Figure 4.1). To get unam-

biguous results in a 	 -dimensional space, at least 	¸\ � points are needed. Consequently,

an ��� � ��� dimensional space is an upper boundary for performing MDS on � points. A

higher dimension will not lead to a better embedding of these points into the metric space,
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Figure 4.3: Sample Run of Multidimensional Scaling. MDS calculates Euclidean points based
on the distance (dissimilarity) matrix given by Table 4.1. Top: The resulting map for the given
dissimilarities. Note that the map can have a different orientation than the original points. Bottom:
The scatter diagram, which compares the new (Euclidean) distances to the input dissimilarities.
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since each point then simply receives its own dimension.

If the extrinsic dimension of these � points should in fact be higher than �M� � , this ei-

ther indicates that there is not enough information or that the dataset might be non-metric

as well as not very close related to metric characteristics. Of course, we can project �
points into a space with a dimension higher than � �]� , but all dimensions beyond �:�ú�
will lead to some kind of trivial solution. In other words, � points are just not able to span

more than �:� � dimensions.

However, we are interested in an estimation of the lower bound. What is the smallest

dimensionality that represents the dissimilarities with acceptable quality? In this thesis,

we use a simple method to estimate the lower bound roughly. Assuming we have a dis-

similarity matrix derived from � -dimensional points, then we will not be able to increase

the quality of a projection by increasing the dimension of the projection space beyond� . This is because the relationships between the points can be captured perfectly in � di-

mensions. Thus, the quality of an MDS projection will not increase significantly between

an � - and an �v\ � -dimensional MDS, once the appropriate dimensionality � has been

reached. Any dimension higher than this will be pointless for this data set.

4.3 Application on Dissimilarity Data

The same process was applied to the odor data set. Starting at a low dimension we ob-

served the projection quality of the MDS to get a rough estimate of the dimension at

which we seem to obtain the best results. Anyhow, the problem of the dimensionality of

odor space should be a topic of further research, especially with an eye to the extraction

of independent sets of odors.

To perform MDS on data related to odor perception, we used (as described in Chapter

3) a dataset based on the Aldrich Flavor and Fragrances Catalog [2]. To estimate dissim-

ilarities between different odors, the best results were obtained using the subdimensional
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Figure 4.4: Scatter Plot of two dimensional MDS on Aldrich database. Dissimilarities 0 l are
plotted against the corresponding distance ø l after 2D MDS. The discrepancy between dissimilar-
ities and the estimated distances is obvious.

distance K¿Ì (see Section 3.4.1). Again, it should be mentioned that “best” in the context

of distance estimation means that the chosen (semi-) metric yields the intuitively most

satisfying results for the dissimilarities of two observations =U> and =?A .
4.3.1 A First Approach using 2D MDS

In a first attempt the odor data were projected directly onto a two-dimensional Euclidean

space. The main goal of this project was to derive a map for odors; thus, a two- or pos-

sibly three-dimensional projection would be exactly what we are looking for. On the

other hand, MDS applied the odor data with a two-dimensional target space is not a very

promising approach, because we expect the space to be high-dimensional and possibly

not even metric. For this reason, it is not very likely that we can find a satisfying configu-

ration in such a low dimensional Euclidean space.

The result of the two-dimensional projection of the Aldrich database is shown in Fig-
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Figure 4.5: Map resulting from two dimensional MDS based on Aldrich database. The labels
are located centered around their coordinates in the 2D Euclidean space.
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ure 4.5. Some relationships between single odors and some tendencies between groups

may already be apparent, but, as expected, the neighborhood relationships are very badly

preserved by this very strong dimensionality reduction. However, we can use this first

result as an illustration of what a map could look like in the end. We are not looking at

chemicals anymore, we are mapping odors onto a plane.

Unfortunately, if we take a look at the corresponding scatter diagram we will see that

this first “map” is in fact almost useless. In Figure 4.4, the distances, result from applying

a two-dimensional MDS, are plotted against the initial dissimilarities. We never expected

to receive as good a result as for the simple example in Section 4.1.1 (see Figure 4.3), but

at least the order of the distances should be similar to that of the dissimilarities. Preserving

the exact order would be an almost perfect result, i.e. we hope to obtain a monotonously

ascending graph in the scatter plot. Small dissimilarities should be transformed to small

distances and large dissimilarities to larger distances.

In this case, however, almost no dissimilarities are still in the same order as before.

As can be seen in Figure 4.4, some of the smallest dissimilarities are now represented by

distances that are larger than those associated with huge dissimilarities. So one cannot

even predict, if two odors lie close together because they are very similar or just because

the huge dissimilarity between them has disappeared. In other words, projecting the dis-

similarities directly into two dimensions via MDS leads to a unsatisfactory map of the

odor space.

4.3.2 Using 1 -dimensional MDS

To estimate the dissimilarities in a more appropriate way, we used MDS again but this

time to project the odor database onto higher 	 -dimensional spaces. These results are not

useful as “maps”, but there are other well-known methods to perform a certain type of

data mining on high-dimensional data. This problem is the topic of Chapter 5.

If we take a look at the scatter plot for an eight-dimensional MDS (Figure 4.6, top),
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we see that this projection is much better compared to the 2D result as shown in Figure

4.4. In particular, higher dissimilarities are not projected onto very small distances any

more. However, the discrepancies between dissimilarities and distances are still spread

over a large interval. If we compare the eight-dimensional plot to the scatter plot of a 16-

dimensional MDS (shown in Figure 4.6, bottom), we can again see an increase in quality.

It seems as if we are already pretty close to a suitable dimension. Most of the values are

more or less distributed around a straight line.

We performed MDS on several dimensions larger than 16. The 32-dimensional MDS

seemed to be very close to the optimal Euclidean representation of the odor space. If

we compare the scatter plot of 32-dimensional MDS (see Figure 4.7, top) and the 16-

dimensional plot (see Figure 4.6, bottom), a slight improvement in projecting the dissim-

ilarities onto distances can be seen.

A 64-dimensional MDS does not improve the overall results significantly, even though

doubling the dimensionality of the projection space affords an extra 32 degrees of free-

dom. So for the odor space with its corresponding distance matrix, a projection onto

32 dimensions seems to guarantee that small dissimilarities are represented by small dis-

tances and large dissimilarities by large distances. Compared to the example in Section

4.1.1, of course we do not obtain a perfect result, but we should not forget that our dis-

similarity estimation is based on a semi-metric and on a relatively small amount of data.

4.3.3 Missing Data

Finally, the problem of missing data should be addressed. Datasets often have incomplete

distance matrices, that is, some distances are simply unknown. It might be, that dis-

tances between two elements were not measured or that these measurements are invalid

because of measurement errors. These gaps can be some kind of interpolated by skipping

these values while performing the MDS. In other words, the missing entries arise from

the estimate of all other dissimilarities. Because MDS works with Euclidean points, the

corresponding distance matrix never has missing entries.
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Figure 4.6: Scatter Plots of eight- and 16-dimensional MDS on the Aldrich database. Top:
The eight-dimensional MDS results are significantly better compared to the two-dimensional MDS
scatter plot, but especially the large dissimilarities are still mapped onto a wide range of distances.
Bottom: 16-dimensional MDS delivers a significant increase in the quality of the projection again
compared to eight-dimensional MDS.
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Figure 4.7: Scatter Plot of 32- and 64-dimensional MDS on Aldrich database. Top: 32-
dimensional MDS leads to a relatively good quality for those dissimilarities not equal to one.
Bottom: 64-dimensional MDS does not improve the results for dissimilarity entries not equal to
one but projects the values of one closer together.
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Figure 4.8: Stress values for different Dimensions. MDS has been performed for several di-
mensional reductions between 8 and 76 dimensions. The stress for all distances decreases asymp-
totically with increasing dimensionality. For the uncritical dissimilarities only, we do not reach a
better relaxation with more than 32 dimensions.

In the special case of our odor database we have not the same but a similar problem.

Although the K¿Ì semi-metric evaluates dissimilarities between all observation vectors,

meaning that the dissimilarity matrix has no gaps, we cannot be sure that this matrix is

complete in the sense that all of the data are reliable. If vectors do not overlap, we re-

ceive a maximum dissimilarity of one. But this may not reflect the actual dissimilarity

between the odors, since there is no guarantee that the set of chemicals is complete. As

described in Chapter 3, we gleaned information about odors using chemical perception

profiles as actually the only source of our dataset. This means a similarity between odors

corresponds to an evocation by a similar set of odorants. Of course it might be that the

odorant (or even a whole set of odorants) that expresses the similarity of two seemingly

unrelated odors is simply not included in the database, because it has not been profiled or

even discovered yet.
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In Chapter 3, Figure 3.2, almost eighty percent of all distances have values close to

one. The set of 851 chemicals, which were used, was not sufficient to fill all of the approx.ÃR ��³ � � entries in the matrix. Of course, we do not expect a lot of odorants to turn up to

smell completely different to anything this world has ever smelled, so dissimilar odors

will still be dissimilar after the addition of some more (so far unknown) chemicals or any

other kind of information. But since KcÌ . � just means something like “they seem to have

nothing in common.” we focused on the dissimilarities, that are not equal to one. Apart

from this, we are most interested in similar odors and on relationships between them.

On the other hand, we cannot completely ignore the information contained in a value ofK¿Ì . � , because otherwise the differences between distinct groups of odors will not be

preserved – only the distances within a group will be taken into account.

To solve these problems, we modified the standard Multidimensional Scaling algo-

rithm. This new version not simply skips certain values but skips them round-wise. The

critical values are ignored in every second iteration of the MDS. Because of that, the other

values have been corrected without losing the distance information of the unsecured data.

This version of MDS converges against the original MDS as the number of iterations

tends towards infinity.

In Figure 4.8, the stress relaxation for several dimensions between 8 and 76 dimen-

sions is shown. Two graphs can be seen, the first one represents the stress value for all

dissimilarities, the second one represents the stress of the uncritical values, namely the

dissimilarities lower than one. As we know, the relaxation of the stress converges against

zero, because the same output and input dimension is a trivial solution. Remarkably,

the relaxation of the uncritical stress does not only converge against a certain value fur-

thermore it seems to increase again. This effect might result from the better relaxation of

critical values in higher dimensions. However, the estimation of 32 dimensions for a good

relaxation of dissimilarities that we have derived from Figures 4.6 and 4.7 can be spotted

by watching the stress relaxation as well.
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4.3.4 Accuracy of Results

Two major problems occur if MDS is applied on odor dissimilarities. First, MDS might

reach as a numerical minimization method a local minimum instead of a global minimum.

Therefore, several runs should be performed with different starting configurations [55]. If

MDS still reaches a similar configuration, we can assume that we might have reached a

global and not only a local minimum.

In addition, we have to deal with the problem of missing data, as discussed in Section

4.3.3. It is far from clear whether MDS will end with several degrees of freedom or not.

Except for rotation, it is possible to get ambiguous configurations that solve the mapping

problem.

Hence, we performed a Monte-Carlo-simulation on our starting configurations. For

each dimensionality we run MDS 50 times, each time with a starting configuration that

was chosen by random. To compare the results, we calculated the standard deviation of

each inter-point distance ( � distances) and their corresponding confidence intervals.

We computed )R��� -confidence intervals (see Definition A.1.5) for the standard devi-

ations based on K -dimensional data, where K . �%��"C¶R�¿"IÃy� . For that purpose we used a

classical method assuming normally distributed data. This is justified here, because the

empirical kurtosis turned out to be rather small, less than one percent on average.

Since we did this calculation for all approx.73000 inter-point distances, the results

are not very easy to represent. The empirical standard deviations (see Definition A.1.3)

for the results of a 32-dimensional MDS have been sorted and downsampled. So, the

remaining deviations are representing the overall distribution of the standard deviation.

Interestingly, for most of the points we have a standard deviation of less than two percent.

These results are much better than expected, especially referring to the missing data prob-

lem.

In Figure 4.9 different dimensions are compared. To argue that a certain dimensional
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Figure 4.9: Comparison of 16D, 32D and 42D MDS results on Aldrich database. The con-
fidence intervals between 16D and 32D MDS are clearly disjunctive. The overlap seen between
32D and 42D indicates, that we cannot be sure, whether we obtain better results or not. Here we
took 100 equally distributed representatives out of the ordered and complete set of approx. 73000
inter-point distances.

representation is more sufficient than another, the confidence intervals of their corre-

sponding deviations should not overlap. In conformity with the presumption in Section

4.3.2, the 32-dimensional estimate yields significant better results compared to results

from 16-dimensional MDS. On the other hand, if we compare 32-dimensional MDS to

42-dimensional MDS, we observe an overlap of the confidence intervals.

Considering these results, it is reasonable to assume that there is a robust configuration

for MDS derived from the odor dissimilarity matrix. Beyond this, there is evidence that

a good approximation of the odor space – based on this data – can be made with an

Euclidean space of approx. 32 dimensions. Thus, a 32-dimensional representation of

odor space will be used as a data source in the next chapters.
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Self Organizing Maps

In the previous chapters, we used a special metric – the so-called subdimensional distanceK¿Ì , as introduced in Section 3.4.1 – to estimate dissimilarities in psychophysical odor data.

Then, in Chapter 4, we used a multidimensional scaling method to project the odor space

model onto a Euclidean space. Unfortunately, this space seems to be very complex, so we

had to use an approximately 32-dimensional Euclidean space to preserve as many inter-

point relationships as possible. In this chapter, the emphasis will be on the visualization

and analysis of the preprocessed data, i.e. the 32-dimensional Euclidean representation of

odor dissimilarity data.

It may be useful to note that the preprocessing has a much higher impact on the re-

sult than the choice of the analysis method. However, the scope of this chapter is to

make the data more readable by projecting as many relationships as possible onto a two-

dimensional map.

There are two general approaches to handling multidimensional data sets. First, we

can search for groups of elements that have a close relationship to each other. Such groups

are called clusters. The search for such groups is called clustering. Clustered data can

be used to examine neighborhood relationships or to search for features that might be

characteristic for certain clusters. The second approach is to reduce the dimensionality of

the system in such a way that a human-readable map (meaning a two- or at most three-

dimensional map) is produced for visualization of the dataset. Based on such a map,
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further examinations can be performed by a human.

In Chapter 4, the odor space seemed to be much too complex to obtain a high quality

representation in only two dimensions. Thus, we have to find a combination of clustering

and visualization methods. Neural network algorithms have already been used for a wide

variety of applications, for visualization problems as well as for data analysis. Kohonen

[29] gives a comprehensive treatment of this subject. We will use so-called self-organizing

maps (SOMs or Kohonen maps) as a tool to visualize and to analyze the multidimensional

odor space that we have obtained by MDS in Chapter 4.

5.1 Visualization of high-dimensional data

An intuitive approach to visualizing high-dimensional data is to use a “profile” of the

feature vectors. This profile might be simply a graphical representation of the entries of

the features. The same, two prominent dimensions (the first two principal components,

for example) can be used as a two-dimensional location for the feature vector, while the

remaining features are used as icon properties (colors, shape, polygons etc.).

The drawback of such methods is clearly that they do not reduce the amount of data.

Analyzing a large data set will not become much easier than examining the raw data.

On the other hand, if relevant features are known already, these methods can be useful

to emphasize such characteristics. Faces are a classical example for the use of icons for

visualization. Features like eye distance, size of the mouth and skin color can be expressed

through a face icon that characterizes a face much more intuitively than a vector could do

[6]. Jain [25] introduces some more examples for the handling of known features.

5.2 Self-Organizing Maps (SOMs)

A self-organizing map (SOM) is a set of artificial neurons that is organized as a regular

low-dimensional grid. We use these maps to express a high-dimensional input space 2
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Figure 5.1: Abstract Kohonen model. Each input vector 34 l6587
is connected to each grid

neuron 9 l 5;: . So each input vector 4 l can transmit signals to each grid neuron 9 l highly in
parallel. In Kohonen’s model, the grid neuron 9 x , which has a minimal distance to 34 l , is activated
by the input. The other neurons are not activated by the input.

through a human readable map < . Thus, the SOM, which represents such a desired map< , is typically two-dimensional. The neurons on the maps are not only inter-connected,

they are also connected with the whole input space 2 .

In Figure 5.1, each input vector * l u=2 is interpreted as an input neuron that is con-

nected to all grid neurons. The number of neurons in the SOM grid may vary from a few

dozen up to several thousand. A K -dimensional vector >? l . �A@ l B "#�#�H�H"�@ l ÎY� E is associated

with each neuron ? l u;< , where K is the input dimension.

In this abstract Kohonen model, an input vector >* . �CB B "#�H�#�H"DBHÎz� E u w Î is connected

to all neurons in parallel. When one of these input “neurons” >* fires, the input ( >* at

each neuron) is compared with all grid neurons >? l . The location of best match — that

is, interpreted topographically the closest neuron or interpreted neurally the most similar

neuron — is defined as the location of the response.

Definition 5.2.1 Best Matching Unit

Let >* . �CB B "#�#�#��"DB#Îz� E u9w Î be an input vector and < a self-organizing map with vectors>? l . �A@ l B "#�#�H�H"�@ l Îz� E u w Î . The Best Matching Unit (BMU) is then defined as the indexE of the vector >? x that lies closest to the input vector >* using a given metric 3ä3$7c3ä3 , i.e.
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Figure 5.2: Flat torus versus dough-nut surface. If we physically glue the top edge of a square
to its bottom edge, and its left edge to its right edge, then we will get a doughnut surface. Thus,
the flat torus and the doughnut have the same topology. Picture taken from [52]E . ÐGF f �eÏ d l |É3ä3A>* �H>? l 3ä3�} , which is the same as3è3A>*e� >? x#3ä3 . �eÏ d l |É3è3A>*e�I>? l 3è3�}

The neurons are connected to their topographical neighbors in the low-dimensional

grid. This neighborhood relationship dictates the structure of the map (see Section 5.2.1).

Self-organizing maps can have different structures. If the left and right side of the map

are glued together, for example, the map has a cylindric structure. If the top side is also

glued onto the bottom side of the map, the structure becomes toroid or doughnut shaped

(see Figure 5.2).

In general, these mappings are topology-conserving. Mathematically spoken, the

property of topology conservation means that the mapping is continuous. If two points

are neighbors in the original dataset, they should also be neighbors on the projection.
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5.2.1 Competitive Learning of SOM

The Euclidean distance

KR~���>*8"J>? l � . ���� Îj © ¹ B �CBC©ý�K@ l ©z� � . 3è3A>*e�H>? l 3ä3 �
is used to define the BMU in many practical applications. The BMU as well as its to-

pographical neighbors will activate each other and learn from input >* . A typical neigh-

borhood kernel or neighborhood function LLx l can be written in terms of the Gaussian

function, LÇx l . æ Ò$MON�� 3ä3 {Hx��ö{ l 3ä3 ��QP � R
where {#xI"I{ l uvw � are the SOM coordinates of ? x and ? l and P is the size of the kernel. Of

course it is possible to use other kernel functions — Mexican-hat or cosine, for example.

In the following, we will use the basic self-organizing map algorithm. Hence, we refer

to Kohonen [29] or Kaski [28] for a detailed description of variations from the standard

SOM.

5.2.2 Training of Self-Organizing Maps

The SOM is trained iteratively. A sample vector >* is chosen from the training set ran-

domly and the distance to all map neurons ? l is calculated. The BMU (see Definition

5.2.1) — namely ? x — is moved closer to the input vector >* . Note that the grid neuron isK -dimensional, just as the input vectors are. The topological neighbors of ? x are treated

similarly, weighted by the neighborhood function L,x l .
The SOM learning rule for each neuron ? l can then be formulated as follows:

? l �CS�\Å�$� . ? l �CS`��\]�P�CS`�TLÇx l �CS`���6*��US`��� ? l �CS`�J�Ô" (2.1)

where E is the index of the BMU and S denotes the time. *��US`� is the randomly chosen

vector from the input set at time S , L�x l �CS`� is the neighborhood kernel function for ? l with

center ? x and �[�CS`� is the learning rate at time S .
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Figure 5.3: Competitive Learning of SOM. The input vector 34 is marked by a cross. Filled dots
represent the SOM neurons ù l at time V , the hollow dots are the SOM neurons after learning 34 at
time VW�KX . Picture taken from [28]

Initialization All � -dimensional neurons ? l are set using the first prin-
cipal components (or chosen arbitrarily). Learning rate �ZY
and neighborhood radius P[Y must be initialized.

Step 1 Chose an input vector *��US`� from the training set.
Step 2 Evaluate the BMU to find the neuron ? x which is closest to*��CS`� .
Step 3 The neuron ? x and all neighboring neurons are recalculated

(as in equation 2.1).
Step 4 Modify learning rate � and radius P .
Step 5 Test for convergence. Stop or go back to step 1.

Table 5.1: Basic SOM Algorithm.

Table 5.1 summarizes the basic SOM algorithm. In an initialization step, all grid neu-

rons ? l have to be set to a given start value. This value can be chosen using the first

principal components, or it can be chosen arbitrarily. In general, the initialization using

the principal components yields faster convergence. Then, the first vector is chosen from

the training set. Using the neighborhood function, the BMU and the neighboring neurons

are moved according to the current learning rate � . Finally, learning rate and neighbor-

hood radius are changed.
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This training usually is performed in two phases. First, an initial phase is performed

using a large learning rate �,Y and a neighborhood radius P\Y . The second phase is for

fine-tuning the roughly approximated results using a much lower learning rate.

At the end of each round, the algorithm tests if the system has already converged. If

so, the algorithm terminates, otherwise it picks a new vector from the training set and

continues to train the map.

5.2.3 An Example of Self-Organizing Maps

We will demonstrate how the classical SOM learns on a simple two-dimensional example.

In Figure 5.4, a set / of about 1500 points is shown. We produced 500 randomly gener-

ated points using a uniform distribution for a circle with radius { .  c�´� . These data were

duplicated twice. We moved the center of one copy to the coordinates �¦���#�H� and scaled

down the second circle with a scale factor of E .  ���� . The center of the small circle was

moved to �¦���C �� . Thus, the density of the points is the highest in this circle.

It should be mentioned that the input dimension K here is two. That is, the input di-

mension is equal to the dimension of the SOM grid. This means that the training of the

Kohonen map will not lead to a dimensional reduction but to a reduction in the number of

data elements (the map consists of less map units than there are points in the training set).

In this example, the default grid size (based on the heuristic formula Ê+mN� / � . �Ç7F3 / 3 Y � ®Fü� � B ,
see [28] for details) was used.

We chose a two-dimensional example because the training results of the map can

easily be matched and overlaid with the original data. For the more usual case of multi-

dimensional data, only the resulting SOM map can be analyzed; a projection of the map

units into the input dimension is not possible because this projection would, of course, be

as problematic as visualizing the input data directly.

The SOM was initialized linearly using the first principal components, that is, the two
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Figure 5.4: Two-dimensional example: Training set for the Self-Organizing Map. Each circle
consists of 500 points. The density of the points in the small circle is twice as large as the density
in the large ones. The points are generated using a uniform distribution.
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Figure 5.5: Two-dimensional example: Initialization of the Self-Organizing Map. The SOM
is now initialized using the two first principal components of the training set.
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Figure 5.6: Two-dimensional example: After the training of the Self-Organizing Map. The
SOM is now trained on the given set. The grid elements are drawn together into the circle areas.
The elements are closest together on the small circle (the area where the points are most dense).

largest eigenvectors. Figure 5.5 shows the SOM after linear initialization but before train-

ing. It is clear that the first two principal components correspond to the directions of the

highest standard deviation of the whole system. If the principal components cannot be

calculated, the point initialization can also be done randomly.

After initialization, the SOM is trained in two phases: first rough training and then

fine-tuning. The result after the fine-tuning can be seen in Figure 5.6. The points in the

circles are the training set. As specified by the competitive learning principal (see Figure

5.3), the grid units are attracted to the training points if they are the BMU or neighbors of

these. Dense groupings of grid neurons can be interpreted as clusters in the training set.

It can be seen here that the grid distances are small over the two large circles and even

smaller over the small circle. We have already mentioned that, in fact, the points in the

small circle have the highest density.

The so-called U-matrix, a matrix that contains the distances between all neighboring

neurons, can be calculated to find groups formed by dense sets of grid neurons. These

distances can be displayed color-coded on the low-dimensional representation of the map,
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Figure 5.7: Unified distance matrix. The U-matrix contains the distances between all neighbor-
ing neurons. Dark shades represent small distances, bright shades represent large distances.

because the distances are scalar values whatever the dimension of the underlying system

is. In Figure 5.7, the U-matrix for our example is shown. We can identify the three

circles as areas of dense (dark) grid elements on the U-matrix. They are separated from

each other by huge distances (bright) between neighbors that were attracted by different

clusters during training.

5.3 Learning the Odor Space by a SOM

In the following, we will describe the application of self-organizing maps to the odor

space information that we derived in the previous chapters. These data consist of Eu-

clidean distance information about inter-odorant dissimilarities in a 32-dimensional space.

The data was derived by applying MDS to subdimensional distances derived from a psy-

chophysical odor database. As we have seen, SOMs can be used to represent the structure

of a high-dimensional space by a two-dimensional grid. We used the SOM Toolbox for

Matlab5 as described by Vesanto et al. [50] and [51].

We used a two-dimensional Ã� �öÃ� SOM using a Gaussian neighborhood function

(see Section 5.2.1) to estimate the 32-dimensional odor space points. Moreover, we de-

cided to use a toroid map. The grid neurons were initialized linearly that is along the

direction of the first two principal components. To visualize the internal structure of the
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Figure 5.8: Clustered Kohonen Map of Odor Space. A Kohonen map learned the high-
dimensional Euclidean points derived in Chapter 4. The map was clustered using k-means clus-
tering.

trained map, we used the k-means clustering method as provided by the SOM Toolbox.

Figure 5.8 shows a Kohonen map that expresses the structure of the odor space. The

clustering resulted in 37 clusters. Of course, one would wish to use a larger training set,

but we already discussed the problem of the given input data in Section 3.3, and in Chap-

ter 7, this problem will be picked up again.

After applying MDS on a set of dissimilarity measures we obtain an Euclidean repre-

sentative for each odor descriptor. These points were taken as a training set for our SOM.

After the training is completed, we can calculate the nearest neighbor in the grid for each

of these representatives — and for any other point in the odor space. Thus, we are able to

label the map using a set of odor descriptors. In Figure 5.11, the clustered SOM has been

labeled using the Aldrich descriptors.
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Figure 5.9: Fragmented Clusters on the Kohonen Map of Odor Space. Here the fragmented
clusters 15 and 22 are highlighted as an example for the fragmentation of clusters.

We should take a closer look at the clustered map. Some clusters appear more than

once. Cluster 15 and cluster 22, for example, appear twice. In Figure 5.9, they are high-

lighted. Cluster 15 is located in the lower right corner and below the center of the map,

cluster 22 appears to the top right and bottom left of the center.

It is hardly surprising that such fragments appear when we perform dimensional re-

duction. If we try to approximate the structure of a three-dimensional box using a simple

sheet of paper, for example, we can imagine that the sheet could be squashed into the

shape of the box. Not surprisingly, points on the two-dimensional sheet of paper that are

not close to one another might become neighbors in the three-dimensional approximation

of the box.
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(a) (b)

Figure 5.10: Surface of Odor Space. The low-dimensional grid of a Kohonen map can be struc-
tured in three ways (simple sheet, cylinder, toroid). a: The simple sheet of the odor space SOM.
b: The odor space surface projected onto a toroid.

In Figure 5.10, this effect is illustrated for Kohonen maps. We interpreted the third

dimension of our MDS data as a kind of height information and projected it onto the SOM

plane. In Figure 5.10.a we can see how some areas bulge up or down. In Figure 5.10.b,

on the toroid projection, it becomes even more clear that points can be spatial neighbors

in the neuronal dimension but not topological neighbors on the map.

The main goal has been to produce a map of the olfactory perception space. Finally,

only the odor descriptors are missing on the map. We projected each descriptor onto its

BMU, that is, the grid element that lies closest to the 32-dimensional coordinates of the

odor. In the database, some descriptors are trivial, because they are evoked by only a

single chemical (e.g. grapefruit). To increase the readability of the map, these descriptors

were not used as labels on the map.

In Figure 5.11, the odor map is labeled with odor descriptors. We have to read the map

carefully. As we have already mentioned, some odors and their corresponding clusters are

neighbors in odor space even though they are far apart on the map. Also some clusters

are far apart in odor space, but they are neighbors on the map. This effect can be checked

by consulting the U-matrix (see Section 5.2.3).

Figure 5.12 shows the U-matrix of our map. Bright shades represent large distances
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Figure 5.11: Map of the Odor Space. This map is the same as map 5.8 with label added. The
clusters are still marked using shades of gray, but each non-trivial odor descriptor was used as a
label for its BMU. The map is toroid, so the left and right sides as well as the top and bottom sides
are interconnected.
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Figure 5.12: U-matrix of the Odor Space. The distances between neighboring grid units of the
trained SOM for the Aldrich database are shown. Dark shades represent small distances, bright
shades represent large distances.

between clusters, dark shades represent small distances. For example, in Figure 5.11,

bottom center, the odors light, coffee and cocoa are neighbors. But by checking the corre-

sponding distances in the U-matrix in Figure 5.12, we note huge distances between coffee

and light, while coffee and cocoa are real neighbors.

Please note that in Figure 5.8, we can already see that coffee and cocoa are real neigh-

bors as they belong to the same cluster. In general, we can of course be sure that odors

are related if they belong to the same cluster.
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Applications of the Olfactory Perception Map

In the previous chapters, we spent much time describing details, problems and restrictions

of our mapping infrastructure. The crucial question of the applicability of the map has

not been covered so far. Hence, in this chapter we will try to illustrate possibilities that

are enabled by this new approach. The mapping approach will be compared against the

old approach, the directed graph model of Chee-Ruiter [12].

We will conclude with fascinating evidence that we found for a hypothesis about ecolog-

ical proximities between chemicals.

6.1 The order of apple, banana and cherry

Even though it is known that Parkinson’s disease, for example, influences the sense of

smell, there are only a few simple tests available for the clinical use [15]. It can just be

tested whether or not a patient can detect a certain stimulus or not.

Our new approach has an outstanding property that is not in the scope of the models

proposed so far. We are able to quantify the order of odors. Some quantifications are not

very surprising. In Chapter 5, we motivated the use of the U-matrix with the question

whether coffee is more related to cocoa or to light. The insight that coffee is more closely

related to cocoa than to light is not very surprising.

But let us take another example. A popular example for the main problem in odor
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perception is the question of the order of the three odors apple, banana and cherry. Is

cherry closer to banana than to apple, or is cherry located somewhere between apple and

banana, or is there a totally different order?

Without the map, this is a philosophical question. Maybe people know cocktails that

are made using cherry and banana juice, but not apple juice. So they might advance the

opinion that cherry and banana belong together.

However, we can try to give a more objective answer using the maps. First, referring

to the labeled map in Figure 5.11 and the cluster map in Figure 5.8, we find that cherry

belongs to cluster 17, apple to cluster 19 and banana to cluster 11. Because of the toroid

character of the map, cluster 17 and cluster 19 are neighbors; similarly, cluster 19 and

cluster 11 are next to each other. Furthermore, there is at least one cluster between cluster

11 and cluster 17. Finally, the U-matrix in Figure 5.12 shows that there is a real neigh-

borhood relationship between cluster 17 and cluster 19, as well as between 11 and 19.

Thus, the odor map indicates that the order is as follows:

cherry – apple – banana

This may be a small illustration of the kind of unanswered problems that will become

solvable using a solid odor perception map like ours.

6.2 Comparison between old and new maps

There are some hypotheses that have been built on existing mappings, so it will be inter-

esting to compare our approach with existing approaches. Unfortunately, the comparison

with most models like Woskow’s odor maps is difficult because they used their maps to

categorize odorants (chemicals) instead of odors.

If we compare Henning’s odor prism with our map, we cannot find any relationships
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Figure 6.1: A group of herbaceous odors. In the small cutout, the part of Chee-Ruiter’s directed
graph that shows the group of herbaceous odors can be seen. On the map, clusters that include
odors in the graph are highlighted. celery, caraway and pleasant are elements of the fragmented
cluster 15. Thus, in the 32-dimensional odor space, the highlighted group is contiguous.

between the prism and our map. More fundamentally, we would strongly disagree with

the idea that the odor space is three-dimensional, based on our findings about the dimen-

sionality of odor space (see Section 4.2).

The most recent model that is interesting for a closer comparison is the directed graph

of Chee-Ruiter [12], who discovered certain structures in her graph. We were curious if

her interpretation still holds up against our more rigorous maps.

Fortunately, we found most of the proposed groups in our map, too. A certain consis-

tency was to be expected, because the directed graph shows the most significant similarity

from one odor to another, and this information is part of our map as well. To illustrate the

correspondences between the directed graph and our model, we picked out three sets of

odor descriptors that form groups on the directed graph and highlighted them on our map.
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First, we took a group of herbaceous odors. In Chee-Ruiter’s graph, we find an co-

herent group consisting of odors like lilac, celery and peppermint. We highlighted each

cluster that includes one of these odor descriptors. In Figure 6.1, it can be seen that,

as proposed by Chee-Ruiter, the odors form a contiguous group. At first sight, it might

look as if there are two groups. But this is because cluster 15 — one of the fragmented

clusters, see Figure 5.9 — consists of celery, caraway and pleasant. Thus, in terms of a

32-dimensional odor space, the group of herbaceous odors is coherent on our map as well.

Let us compare a second grouping that Chee-Ruiter found in her directed graph. This

group consists of unpleasant odors like rancid, putrid and sweaty. In Figure 6.2.a, this

part of the directed graph is shown. Again we took our odor map and highlighted each

cluster that includes one of the unpleasant odors. Keeping in mind the toroid structure of

the map, we obtain a contiguous group for these odors.

Finally, we took a group of smoky and nutty odors like peanut, coffee and bacon. In

Figure 6.2.b, they form a coherent group on the odor map as well. Remarkably, these

parts of the directed graph are not coherent but separated into three parts.

6.3 Ecoproximity Hypothesis

Chee-Ruiter [12] proposed the hypothesis that, underlying the odor space, there might

be a larger functional organization than just the representation of homologous series of

molecules. She found indications in the directed graph model that the chemical compo-

sition of molecules already leads to clearly segregated groups. The fact that carbon, ni-

trogen and sulfur are key atoms that cycle through the metabolism of animals and plants

might be a reason for this.

According to this hypothesis, the olfactory system processes metabolically similar

odorants using similar neural activation patterns. But if similar odorants are processed
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(a)

(b)

Figure 6.2: Groups of unpleasant and nutty odors. Groups of odors in the directed graph
model are tested against our odor map. (a): Unpleasant odors — shown as a part of Chee-Ruiter’s
directed graph — are highlighted on the odor map. The map is toroid, so unpleasant odors are a
contiguous group on our map as well. (b): Smoky and nutty odors are examined. Again, they are
shown as part of Chee-Ruiter’s directed graph. Remarkably, these parts of the directed graph are
not connected, and their relationship had so far only been assumed. On the odor map, we found
evidence for their coherency.
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(a)

(b)

Figure 6.3: Ecoproximity of compounds containing nitrogen and sulfur. The brighter a cluster
is, the higher is the percentage of its odors that are evoked by odorants containing nitrogen (a) and
sulfur (b). Compounds that contain both nitrogen and sulfur are included as well.
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using similar patterns, one would presume that this group of chemicals will only be able

to activate a related set of odors. In the following we will refer to this hypothesis as the

Ecoproximity Hypothesis.

Let us consider an intuitive test. We take the odor profiles of a group of compounds

and try to interpret the result in terms of a possible underlying order. If the odorants are

chosen using a characteristic that is relevant for their position in the odor space, we should

obtain a set of odors that more or less forms a group on the map. On the other hand, if

the odorants are chosen based on an irrelevant characteristic, the corresponding group of

odors will be spread all over the map.

We took all compounds that contain nitrogen and highlighted their odors on our map.

We did the same for compounds that contain sulfur. We obtained fascinating results.

In Figure 6.3.a, the result for compounds containing nitrogen can be seen. The shades

of the clusters represent the percentage of their odors that can be evoked by odorants con-

taining nitrogen. The brighter the cluster is, the higher the percentage of evoked odors.

Interestingly, these odors form very segregated groups. The structure seems to be

two-part and includes oily, nutty and earthy odors. In Figure 6.3.b, the same thing was

done for compounds containing sulfur. Accordingly, we obtain clearly segregated groups

containing smoky and garlic-like odors.

At first sight, one might be surprised that the two groups of nitrogen- and sulfur-

evoked odors are not totally disjoint. But we should not forget that there is an overlap

caused by chemicals that contain both nitrogen and sulfur. Other reasons that might lead

to an overlap are other common features that are not part of this small experiment. There

might be other characterizing elements, oxygen for example, that are contained in several

compounds, no matter whether they are nitrogen or sulfur compounds.
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Conclusion and Future Work

7.1 Conclusion

It has been the main goal of this thesis to develop an infrastructure for generating a robust

and reliable map of the “olfactory perception space”. We used proven techniques to re-

duce highly complex psychophysical data systematically to a low-dimensional level that

may be much easier to explore for human scientists.

7.1.1 An infrastructure for quantifying Odor Space

In Chapter 2, the state of neuroscience research was outlined. Now we have got a feeling

for the problems that arise in understanding the sense of smell. In particular, it is still far

from clear what molecular characteristics lead to the corresponding odor perceptions.

Historical mapping attempts, like Henning’s “Odor Prism” [21], for example, try to

take the reasonable route of interpreting psychophysical observations to achieve a better

understanding of relationships between odors. A new and promising approach was pro-

posed by Chee-Ruiter [12]. She extracted information about odor similarities from large

existing databases and expressed them through a directed graph.

The idea was to project information about odor perceptions onto a map. This map

should function as an “odor wheel” similar in concept to a “color wheel”. Thus, this thesis
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focused on the application and extension of this idea. We think that our mapping approach

will lead to new insights into the structure of the odor space, which, unfortunately, has so

far been just a continuum of unknown structure containing all odor perceptions.

Using a specially designed metric, multidimensional scaling and self-organizing maps,

an infrastructure has been proposed to visualize the odor space through a meaningful map.

The underlying techniques as well as related problems and restrictions were motivated and

discussed.

7.1.2 Quantifying odor quality data

As proposed by Chee-Ruiter [12], published databases of odorants (chemicals with a

smell) like the Aldrich Flavor and Fragrances Catalog [2] and Dravnieks Atlas of Odor

Character Profiles [17] were the source for odor information. According to Dravnieks

[16], a set of descriptors – like Aldrich’s – is a reliable and reproducible representation of

odor perception.

Chee-Ruiter used a data set based on the Aldrich Fragrances Catalog (including 851

chemicals using 278 odor descriptors) for a first mapping approach. We used the same

database for our new model of the odor space. We have shown that the subdimensional

distance KyÌ yields the intuitively most satisfying results for estimating dissimilarities be-

tween different odors. The measure KcÌ can be interpreted as a weighted version of Chee-

Ruiter’s Cross-Entropy Information I as proposed in Chapter 3.

7.1.3 Scaling of quantified data via MDS

Given a dissimilarity matrix, MDS projects these dissimilarities, which do not have to be

metric, into the nearest Euclidean space. MDS is a well-known method for dimension

reduction and graphical representation of multidimensional data.

The feature of non-metric scaling is essential for mapping the odor space because
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there is no indication that the odor space has a metric structure. In other words, we pro-

jected a space of unknown structure into an Euclidean space that best approximates this

structure.

MDS can also be used to estimate the dimensionality of a data set [32]. We found

evidence that the odor space seems to be approximately 32-dimensional. However, an

accurate answer to this question is by far not easy to give. This should thus be the topic

of further research.

7.1.4 Generating Kohonen Maps of scaled data

With the methods applied in Chapter 3 and 4 we obtained coordinates of odor descriptors

located in an Euclidean space that represents an approximation of “olfactory perception

space”. In Chapter 5, we used self-organizing maps to generate two-dimensional maps

from this high-dimensional Euclidean space.

The use of these maps is restricted by several criteria. Namely, there is the problem

of fragmented clusters that makes the definition of neighborhoods more complex. Some

clusters might be close to one another even if they are not neighbors on the Kohonen map.

We can solve this problem by consulting a second map that identifies the clusters using

numbers (see Figures 5.8 and 5.9). Furthermore, we have to be careful even if two clusters

are neighbors on the Kohonen map. It might be that they are not very close together in

terms of their high-dimensional representation. So we have to consult a third map to solve

this problem, the so-called U-matrix (see Figure 5.12).

7.1.5 Using the Olfactory Perception Map

The new approach of mapping the olfactory perception space enabled us to find several

interesting indications and ideas about odor perception. Beyond doubt, the most fasci-

nating new feature is the possibility to answer questions like: “How are apple, banana

and cherry ordered?” It is no longer true that such questions cannot be answered in odor
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perception.

Furthermore, we showed that the directed graph approach by Chee-Ruiter had al-

ready led to reasonable hypotheses, for which we could now formulate much stronger

arguments. In particular, we were able to show strong evidence for the ecoproximity hy-

pothesis.

In other words, we have found evidence that the olfactory system processes metaboli-

cally similar odorants using similar neural activation patterns. We were able to show that

similar odorants evoke only related sets of odors. Thus, it seems as if these groups of

chemicals are processed using similar neural activation patterns.

7.2 Future Work

Even though the description “a color wheel for odors” is very evocative, we are not trying

to find a continuum of odors. The question is whether we are able to create a meaningful

map that expresses all the information we can obtain from experiments. On this map, we

will then be able to test ideas and models that might represent the “truth” about odor space.

One of the striking problems in evaluating such a model is that we do not even have

an idea of what the reality looks like. We simply do not know how the “olfactory percep-

tion space” is structured. So it is very difficult to say something about potential errors in

estimating similarities between odors.

However, this is the goal of modeling the odor space. The model should incorporate

as much information as possible and tries to model real olfactory perception as well as

possible.

What does the “olfactory perception map” represent? Maybe we can already see a

map of the pyriform cortex. Can we find some similarities between our psychophysical



80 Conclusion and Future Work

model and the odor space hypotheses by Hopfield [23]? Or the map will just turn out to

be an example of how insufficiently olfactory perception is categorized by odor profiles.

In any case, it is essential to search for evidence about the correctness or falseness of

the model when compared with the real world. Otherwise the work presented here will

become worthless.

7.2.1 Odor Perception vs. Face Recognition

There is a striking analogy between odor and face perception. People often have problems

describing faces, but they are very adept at discriminating faces. This is why the police

works with photofit techniques. It is much more fruitful to ask persons if they know a

face than to ask them for a detailed description.

With odorants, the case is similar. Asking people for their description of an odorant

often leads to a typical answer like “I know this odorant.” followed by a more or less

inadequate description. So when people have to characterize odorants, they are given a

characterization form — just as for photofit techniques — and only have to judge whether

or not a certain smell fits to certain odor descriptors.

We could probably learn from results in face perception, since we know more about

face perception than about odor perception. For faces, there are already sophisticated

models that express a multi-dimensional face space [24]. Of course there is a physical

continuum in face perception. We can physically measure similarities, e.g. eye distance

and hair color. In odor perception, we do not know if this is possible. Therefore, in face

perception, we can easily distinguish between different features and different values of

the same feature.

Let us assume we apply the presented infrastructure to a psychophysical face database.

The resulting map might look like the one in Figure 7.1. big eyes and round face would

probably be quite close to cute, while bushy eyebrows would be close to brown eyes, be-
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round face

bushy eyebrows

cute

big eyes

brown eyes

feminine

friendly

smooth skin

blue eyes

strict

Figure 7.1: A fictitious face perception map. Applying our mapping infrastructure to a psy-
chophysical face database might lead to a map like this.

cause people with bushy eyebrows are usually dark haired. In face perception, we know

that blue eyes and brown eyes are two values for the same feature and that bushy eyebrows

is a value for a different feature.

We do not have any knowledge like this in odor perception. We can state that “pleas-

ant” and “unpleasant” are descriptions of a hedonic value, but we simply do not know

whether any two odors are values of the same feature or if they belong to different fea-

tures. If we compare apple to brown eyes, is cherry then more like brown eyes or more

like smooth skin?

In face perception, we have indications for the existence of prototypes [35]. And it

seems like not only faces are processed this way [20]. Can we find a prototype for odor-

ants as well?

A lot of effort should be spent on answering this questions, because this could lead to

a new, revolutionary insight into the perception of odorants.
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7.2.2 Dimensionality of Odor Space

Future work should definitively also address the problem of dimensionality. On one hand,

this problem corresponds strongly with the feature extraction problem we just discussed,

because the number of features equals the dimension of the odor space. On the other

hand, we will learn a lot about the complexity of the olfactory cortex and especially the

structures between the bulb and the cortex.

For our model and the underlying data, a space with a dimensionality of approxi-

mately 32 dimensions seemed to be sufficient. But we should not forget that this estimate

is only a rough guess resulting from the scatter diagrams. It should be possible to increase

the precision of such an estimate significantly.

Especially the extraction of independent subsets of odors might lead to new revela-

tions about the general organization of odor perception space.

We used a standard MDS method. There are different possibilities to scale multi-

dimensional data. Most of them, Sammon mapping [44], for example, have the same

mathematical background and therefore differ only in some degree of relaxation. But

there are some new approaches using linear embedding [43] and geometric frameworks

[49] that might be able to estimate the intrinsic dimensionality of odor space better than

MDS.

7.2.3 Psychophysical Experiments

Last but not least, a small experiment should be mentioned here. Although the number

of subjects as well as the number of trials was not sufficient by far to obtain significant

results, it was a very interesting experience — especially for the author — to get an in-

sight into planning and performing a psychophysical experiment. Besides, the results

emphasized the necessity of psychophysical experiments as a practical contribution to the

mapping of odor space.
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group members chemical odor quality profile� BJB 2-Methylpyrazine] � B � 2-Methoxypyrazine� B � 2-Methoxy-3-methylpyrazine^ � Allyl hexanoate fruity — sweet — pineapple� ]`_ba � � � B Hexyl butyrate sweet — fruity — pineapple� �J� Methyl 2-methylbutyrate fruity — sweet — apple� � � 6-Amyl-alpha-pyrone coconut — nutty — sweet�P� B o-Toluenethiola �P� � 4-(Methylthio)butanol�P�J� Ethyl methyl sulfide

Table 7.1: List of Oxygen carrying compounds. This is an example of how to choose odorants
based on similarities in their odor quality profile. The profile of c � is most similar to d � B and most
dissimilar to d � � . For this example only the profiles of the fehg6ij� odorants are of interest.

We checked nine chemicals (see Table 7.1) against allyl hexanoate, an odorant with

the profile sweet–fruity–pineapple. Three of the compounds contain nitrogen, three oxy-

gen (as allyl hexanoate does) and three contain sulfur. The three compounds containing

oxygen were chosen to have a decreasing similarity to allyl hexanoate in terms of their

odor quality profile. To increase objectivity and to avoid the use of language, we per-

formed a discrimination experiment – namely a forced-choice triangular test in which the

subjects have to state, which of three presented odorants is different.

The results in Figure 7.2 are so good that it might be thought it shows the results we

wanted to obtain, but these are the actual data from our experiment. The subjects had no

problem discriminating nitrogen or sulfur compounds from odorants without nitrogen and

sulfur. Instead, the more similar the profile of the oxygen-carrying compounds is to allyl

hexanoate, the harder is it to make the correct choice.

It turned out to be really difficult to design an psychophysical experiment in a rea-

sonable way. Are there gender differences? Do people discriminate odor quality or odor

intensity? Can some subjects perceive some odors better than other subjects?
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Figure 7.2: Percentage of successfully discriminated odorants. c � and d � l contain neither
nitrogen nor sulfur. d B l are nitrogen compounds, d � l are sulfur compounds. All odorants d © l
were tested against c � in a forced-choice triangular test.

Hopefully, our new approach to mapping the odor space will inspire several psy-

chophysical experiments. Our maps will surely contribute to the successful design of

these experiments.
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Mathematical Notes

A.1 Statistics

Definition A.1.1 Mean Value. The arithmetic mean value * for a distribution * .�Í* B "#�#�H�H"¼* D � is defined as follows: * . �� j,l * l
Definition A.1.2 Sample Variance. The variance P\k is a measure of how spread

out a sample * . �Í* B "H�#�#�H"`* D � is. It is computed as the average squared deviation of each

variable from its mean a �> . � l �Í* l � *,�ü�� � �
Definition A.1.3 Sample Standard Deviation (normalized with �:� � ). The standard

deviation la > of a sample * . � * B "#�H�#�H"¼* D � is defined as the square root of the sample vari-

ance. It is the most commonly used measure of spread.

a > . ���� �� �û� n jLl �Í* l � *,� � q
Definition A.1.4 Chi-squared statistics. Let * . �Í* B "#�#�H��"¼* D � be a random sample



2 Mathematical Notes

from a normal distribution with mean @ and standard deviation P . Then the quantity

m � . �Í* B �K@8���P � \ � * � �K@����P � \Å7%7%7#\ �Í* D �=@8���P �. Dj l(¹ B � * l �n@8���P �
has a chi-squared distribution with � degrees of freedom.

Definition A.1.5 Confidence Interval. Let * . �Í* B "H�#�#�z"¼* D � be a random sample

from a normal distribution with unknown mean @ and unknown standard deviation P . A���ª��� � confidence interval for P is given by� a >�7$� B " a >õ7$� � �
where

a
denotes the sample standard deviation,� B . �:� �m �D ñ B � B ñpo r � "� � . �:� �m �D ñ B � o r � "

and m �D ñ Brq s denotes the gammy-quantile of the chi-squared distribution with ���v�0�$� de-

grees of freedom.

Nongaussianity can be measured by the absolute value of kurtosis. The kurtosis is zero for

a gaussian distribution, and greater or lower zero for most nongaussian random samples.

Definition A.1.6 Kurtosis. The kurtosis te> of a sample * . �Í* B "#�#�#��"¼* D � is defined

as follows: t > . BD � l �Í* l � *é� a >  ��¶
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Figure A.1: e -node Hypercubes with eu
�þG�r�v�w� . Picture taken from [34]

A.2 Hypercubes

Definition A.2.1 Hypercube. The r-dimensional hypercube has
] . �vx nodes and{��yx ñ B edges. Each node is representing an { -bit binary string. Two nodes are linked with

an edge if and only if their binary strings differ in precisely one bit.

In other words, all nodes *8" V , that are connected by an edge, have a Hamming distance ofK ' �Í*8" V � . � z � *8" V �[ub{e�
Consequently each node is incident to { . å ;�| ] other nodes, one for each bit position.
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(a)

(b)

Figure A.2: 4-dimensional Hypercube. (a): Two 3-dimensional hypercubes (b): The hyper-
cubes are extended to a 4-dimensional hypercube. Still all connected nodes have a Hamming
distance of 1. Picture taken from [34]
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1 putrid 2 roasted 3 meaty 4 burnt
5 rancid 6 pungent 7 fatty 8 butter
9 cheese 10 creamy 11 oily 12 sour

13 balsamic 14 anise 15 balsam 16 caramel
17 chocolate 18 cinnamon 19 honey 20 sweet
21 vanilla 22 soapy 23 waxy 24 wine-like
25 coffee 26 smoky 27 chemical 28 fruity
29 apple 30 apricot 31 banana 32 berry
33 cherry 34 coconut 35 grape 36 grapefruit
37 jam 38 melon 39 peach 40 pear
41 pineapple 42 plum 43 quince 44 raspberry
45 strawberry 46 citrus 47 lemon 48 lime
49 orange 50 ethereal 51 nutty 52 almond
53 hazelnut 54 peanut 55 walnut 56 spicy
57 pepper 58 medicinal 59 mint 60 floral
61 blossom 62 carnation 63 gardenia 64 geranium
65 hawthorne 66 hyacinth 67 iris 68 jasmine
69 jonquil 70 lilac 71 lily 72 marigold
73 narcissus 74 rose 75 violet 76 woody
77 green 78 mossy 79 vegetable 80 herbaceous
81 caraway 82 sage 83 earthy 84 musty
85 camphoraceous 86 sulfurous 87 egg 88 cabbage
89 metallic 90 alliaceous 91 onion 92 garlic
93 animal 94 pungent 95 tart 96 leafy
97 strong 98 powerful 99 fragrant 100 aromatic

101 faint 102 popcorn 103 potato chip 104 toasted grain
105 bread crust 106 heavy 107 cocoa 108 cereal
109 bread 110 odorless 111 anise 112 phenolic
113 harsh 114 bacon 115 savory 116 horseradish
117 amber 118 dry 119 elegant 120 incense
121 oriental 122 eggyolk 123 hard-boiled egg 124 penetrating
125 fennel 126 mushroom 127 cadaverous 128 gasoline
129 pleasant 130 mild 131 bitter almond 132 repulsive
133 urine 134 quinoline 135 rubbery 136 fresh
137 fishy 138 peppermint 139 cresylic 140 milk
141 rum 142 warm 143 sharp 144 sweaty
145 spearmint 146 refreshing 147 terpene 148 cool
149 clove 150 cassia 151 lemon peel 152 intense
153 acid 154 raisin 155 prune 156 musk
157 weak 158 unpleasant 159 baked potato 160 sauted garlic
161 clams 162 orange blossom 163 very strong 164 fenugreek
165 licorice 166 diffusive 167 butyric 168 roasted crude sugar
169 mildew 170 moldy 171 whiskey 172 peanut butter
173 new leather 174 roasted nut 175 grassy 176 grilled chicken
177 tea 178 roasted barley 179 boiled poultry 180 delicate
181 magnolia 182 plastic 183 seedy 184 light
185 brandy 186 sour 187 burnt almond 188 chamomile
189 passion fruit 190 dried fruit 191 maple 192 butterscotch
193 tobacco 194 leather 195 rhubarb 196 skunk
197 candy 198 raw potato 199 wintergreen 200 cognac
201 mustard 202 baked bread 203 ripe 204 lavender
205 smoked sausage 206 toasted 207 sickening 208 alcoholic
209 leafy 210 acrid 211 bitter 212 tropical fruit
213 unripe fruit 214 hot sugar 215 fecal 216 fusel oil
217 mango 218 pine 219 turpentine 220 celery
221 grape skin 222 green bell peppers 223 green peas 224 tomato leaves
225 ammonia 226 cedarwood 227 blueberry 228 rooty
229 creosote 230 clean 231 bergamot 232 malt
233 black currant 234 mercaptan 235 galbanum 236 roasted almond
237 roasted peanut 238 gardenia 239 candy circus peanuts 240 dairy
241 buttermilk 242 stinging 243 cucumber 244 watermelon
245 acrylic 246 bread 247 roasted corn 248 boiled cabbage
249 fried 250 cooked onion 251 cooked meat 252 crackers
253 wild 254 menthol 255 rich 256 brown
257 tomato 258 parmesan cheese 259 romano cheese 260 ricotta cheese
261 green bean 262 sherry 263 amine 264 acetic
265 saffron 266 mothballs 267 decayed 268 bland
269 petroleum 270 cauliflower 271 fermented soybean 272 lard
273 burnt caramel 274 roasted coffee 275 wet 276 orange peel
277 mandarin 278 flat

Table B.1: Aldrich Database Labels. This is the complete list of odor descriptors that we used
for the odor maps.
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Figure B.1: Chee-Ruiter’s Directed Graph. The directed graph models an odor quality map for
Aldrich data. Picture taken from [12].
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Figure B.2: Clustered Kohonen Map of Odor Space.
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Figure B.3: Map of the Odor Space.
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Figure B.4: U-matrix of the Odor Space.
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Figure B.5: U-matrix of the Odor Space including Clusters.
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