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Abstract

Data acquisition for multisite neuron recordings still requires two main problems to be

solved—the reliable detection of spikes and the sorting of these spikes by their originating

neurons. Approaches and solutions for both problems are difficult to evaluate quantitatively,

due to a lack of knowledge about the ‘‘truth’’ behind the experimental data. Biologically

realistic simulations allow us to overcome this fundamental problem and to control all the

processes which lead to the measured data. Within this framework, the quantitative evaluation

of the performance of data analysis methods becomes possible. In this paper, the potential

of independent component analysis (ICA) for spike sorting and detection is studied.

A biologically realistic simulation of hippocampal CA3 is used to obtain a measure of the

quality and usability of ICA for solving the neural cocktail party problem. The results are

promising.
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1. Introduction

It is now common knowledge that the processing power of the brain is based on its
billions of computing units, called neurons. These cells communicate primarily by an
exchange of action potentials within dynamically changing networks. So far, their
corresponding peaks in extracellular voltage are measured most easily using low-
traumatizing microelectrodes that are inserted into the neuropil with as little damage
as possible to the cells.

Unfortunately, an electrode signal is not exclusively the recording of a single
neuron but a mixture of all neurons that surround this electrode. As a consequence,
the analysis of such a signal, especially the extraction of spikes, becomes difficult due
to superposition and elimination effects. The problem is similar to the famous
cocktail party problem, which can be solved by using a multiplicity of recording
devices and an appropriate signal analysis algorithm, e.g. independent component
analysis (ICA) [3].

ICA is an extension of the widely used principal component analysis (PCA). It
assumes that the measured signals are mixtures of statistically independent sources.
While PCA decorrelates measured signals to extract sources from these incoming
mixtures, ICA tries to find not only a decorrelated but statistically independent
decomposition of these mixtures. Here, the statistically independent sources are the
neurons. Having extracted the source signals, sorting and detection becomes much
easier, as each isolated signal then has the characteristics of the corresponding
neuron’s intracellular potential. In the following, we used the fastICA matlab
package from Hyvärinen et al. [3], which is one of the most frequently used methods
due to its high robustness and fast convergence.

Brown et al. [2] already used ICA for spike sorting on 448-channel photo-detector
signals from the seaslug, Tritonia diomedea. In this experiment, neurons were
stimulated to perform time-dependent activity bursts, which were then used to
evaluate the performance of the ICA. However, a drawback of this kind of
evaluation is that the ground truth is not known and can only be crudely estimated,
based either on an expected behavior of the system or on the subjective judgment of
an expert [8].

This fundamental problem may be bypassed using biologically realistic simula-
tions, e.g. with GENESIS [1]. This simulation software was originally developed to
simulate single neurons. The simulation of an ensemble of such neurons can mimic
extracellular recordings as if achieved with real multielectrodes. The difference in this
case is that we know the ground truth, i.e., all the detailed processes behind the
measured data.

So far, neural activity has been measured by spikes that were extracted from the
raw signal trains. But recent results have revealed that the reliability of the
commonly used detection methods is not very high. Menne et al. [4,5] evaluated
different spike detection algorithms on the proposed GENESIS simulations. All
these methods, ranging from simple thresholds to discrete wavelets, showed a rather
bad overall detection performance. To reach a false acceptance rate (FAR) of about
10%, most methods end up with a false rejection rate (FRR) of almost 60%. As long
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as detection results are on this level, the usefulness of sorting algorithms based on
these detections is questionable (this might be one of the reasons why reference data
for the performance of spike sorting approaches can hardly be found).
2. Data and methods

Menne et al.[4] used GENESIS to mimic the behavior of a tiny part of the CA3
region of a rodent Hippocampus, using a network with 72 pyramidal cells and 18
interneurons. Fig. 1a shows this setup. The pyramidal cell clones are arranged in a
6� 12 array. Nine feed-forward and nine feed-backward interneurons are
distributed among the pyramidal cells. The z-coordinate of all cells is randomly
altered in a range of �50 mm; and pyramidal cell clones are rotated randomly around
the z-axis to provide for more morphological variability. Compartment models
according to Traub et al. are used for the pyramidal cells [6] as well as for the
interneurons [7]. Here, a single multielectrode probe equipped with 13 linearly
arranged microelectrodes is simulated. These electrodes are arranged with a step
width of 12:5mm; mimicking their fixation on one side of an insulating carrier.
Without the z-offset, all cells initially have a z-position between the fifth and sixth
electrode. At 15mm cell–electrode distance, positive spike amplitudes lose more than
2
3
of their height [4].
Due to this signal attenuation as well as to the recording directionality of the

simulated electrodes, only certain cells have the possibility to contribute to the mixed
signal above the noise level. Such cells are marked by unfilled triangles in Fig. 1a.
Fig. 1b shows a typical recording obtained with the proposed setup.
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Fig. 1. (a) The GENESIS simulation setup. Pyramids show the position of pyramidal cells. Interneurons

are denoted by ff and fb, respectively. The probe is located perpendicular to the cross. Contributing cells

are shown as large triangles, detectable cells are unfilled. (b) An example for a 1.5 s multi-channel

recording with 13 simulated electrodes.
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Assuming a linear mixture of statistically independent sources measured with 13
electrodes, we can separate the signals of at most 13 cells. Since only 13 pyramidal
cells and 2 interneurons contribute spikes above the noise level, the number of
channels is in a reasonable range.

ICA solves the sorting task before the detection task. Fig. 2 shows an IC and, as
determined by the normalized scalar product, its best matching electrode. The third
plot shows the best matching principal component (PC), and the last plot shows the
best matching intracellular neuronal signal. This particular cell is recorded very well
by the electrode shown. Still, it can be seen that some spikes get weaker or disappear
completely, while other spikes are recorded from other cells. The IC visually matches
an original cell signal, while the PC has problems to separate the signal from the
background signal.

For each IC, we have to decide whether or not it represents a neuron. We used the
simple normalized scalar product between the raw electrode signals and the ICs as a
measure. A large scalar product indicates that an IC correlates well with a certain
subset of spikes found on one of the electrodes. In this way, we constrain our results
to cells that are already visible on the raw data. On the other hand, our method is
based only on extracellular data. Hence, exactly the same framework can be used on
real signals. Furthermore, as we will see later, with the product between IC and
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Fig. 2. The top plot shows an IC with a sufficiently high normalized scalar product with at least one of the

electrode signals. The second plot shows the electrode signal best matching with this IC. The third plot

shows the best matching principal component, and the last plot shows the best matching neuron, in this

case the intracellular potential of pyramidal cell 40. The IC represents the activity of this neuron very well.
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electrode signal, it is possible to estimate the position of the corresponding neuron
relative to all electrodes.

Using our prior knowledge of the extracellular simulation, we derived two receiver
operating characteristic (ROC) curves, one for detection and one for sorting.
Detection results are superior to the quality level of common approaches, as far as
evaluated on simulated data [4]. Here, spike detection means that we combine the
spikes of all ICs and compare them to the spikes of their best matching cells. Spikes
in those ICs are then detected with a positive threshold, as these ICs are assumed to
represent the potentials of single neurons. To determine the spike detection
performance, results are compared with the overall spike train of all cells represented
by these ICs.

The performance of spike sorting is defined by the ability to extract the spikes of
each neuron individually. Therefore, for all significant ICs, we determined the equal
error rate between each IC and its best matching intracellular cell potential.
3. Results

We used a 1:5 s simulation of the described 13 channel multielectrode recording to
extract 13 independent components. Calculating the scalar product between the
electrode signals and the independent components, we extracted six ICs that
matched well enough onto the electrode signals to be taken as representing neuronal
signals. At this point, we completely discarded the remaining seven ICs. In future
work they might be taken into account as well. The scalar product matrix for these
‘‘top 6’’ is shown in Fig. 3a. Each column codes the score between an IC and all 13
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Fig. 3. (a) The gray values show the normalized scalar product of ICs and electrode signals, white for a

best match. Black triangles denote the location of the pyramidal cells represented by the ICs. (b) The black

line with stars shows the ROC curve of a dwtþ pt method [4]. The other lines show the ROC curves for

spike detection of the top six ICs (slash-dotted) and the top three ICs (solid) with their represented cells as

ground truth. The crosses mark the EER for the spike sorting task for each IC with its best matching cell

signal (see triangles in (a)).
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electrodes. The brightest spot in each column can be used as an estimate for the z-
position of the neuron represented by this IC. The ‘‘real’’ positions of the
corresponding pyramidal cell somas are shown as well. They all match very well up
to a constant offset.

Fig. 3b shows the ROC curves for the spike detection performance. So far, the best
result for spike detection performance has been obtained for a combined discrete
wavelet and positive threshold (pt) method [4]. This approach reaches an equal error
rate (EER) of only about 35%. We generated two ROC curves for detection, one
with all six ICs and one with the three ICs representing the three cells closest to the
electrode probe. Of course, the better result is obtained for the latter case
(EER ¼ 12%), however, even for all six cells we still reach an EER of remarkable
14%.

Next we evaluated sorting performance. For this purpose, we generated a ROC
curve for each of the six ICs. So not to clutter Fig. 3b, we only show the equal error
rate (FAR ¼ FRR) of each ROC curve. Sorting is harder than the overall detection
of spikes. For example, a false positive sorted spike of one IC might become a
correctly detected one if we look at the set of all ICs (as we do for detection). In spite
of this, for some of the cells we reach an impressive EER of below 10% for spike
sorting. This means that, for these cells, we succeeded in reconstructing more than
90% of all spikes.

We applied the same procedure to a 5 s simulation. To test robustness and time
independence, we performed an ICA on the complete 5 s and on an arbitrary window
of 1.5 s length. Then, we determined detection and sorting performance on the
signals within the 1.5 s window with the ICs from both, 5 and 1.5 s windows. This
was done for different 1.5 s windows. In all cases, the results obtained with the ICs
from the 5 s interval and the ICs from the respective 1.5 s interval were comparable.
Thus, ICA on multisite neuron recordings appears to be a quite time-independent
and robust analysis method.
4. Discussion

We have shown that ICA is a promising method for spike sorting. We succeeded in
extracting six independent components that matched six pyramidal cells in the
surroundings of the multielectrode. We were able to estimate the position of these
cells up to a certain offset. Not only did we reach a superior result for spike
detection, we even obtained impressively good results for the spike sorting task
within the direct neighborhood of the probe. These results were stable over time.

In the simulation, we used a probe with a very simple linear arrangement of
electrodes along the z-axis without any induced ensemble activity. Using a parallel
version of GENESIS, we will be able to simulate much larger networks with
individually grown cell models with several thousand compartments. Then, it might
be possible not only to design different site layouts for optimal use with ICA,
allowing us to generate 3D maps of detected neurons, but also to examine the
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capabilities and restrictions of using ICA on the analysis of synchronous activity of
neuron ensembles.

ICA can be performed on-the-fly. Once the transformation that decomposes the
mixed signals into their independent sources has been learned, a time series of
electrode data can be decomposed on-line. Hence, ICA multielectrode analysis could
lead to a new generation of experimental devices which allow the experimentalist not
only to visually inspect the neurons located around the probe but to track the
activity of each visible neuron in real time.
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