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Abstract

Motivation

Ischemic stroke, triggered by an obstruction in the cerebral blood supply, leads to infarction

of the affected brain tissue. An accurate and reproducible automatic segmentation is of high

interest, since the lesion volume is an important end-point for clinical trials. However, vari-

ous factors, such as the high variance in lesion shape, location and appearance, render it a

difficult task.

Methods

In this article, nine classification methods (e.g. Generalized Linear Models, Random Deci-

sion Forests and Convolutional Neural Networks) are evaluated and compared with each

other using 37 multiparametric MRI datasets of ischemic stroke patients in the sub-acute

phase in terms of their accuracy and reliability for ischemic stroke lesion segmentation.

Within this context, a multi-spectral classification approach is compared against mono-

spectral classification performance using only FLAIR MRI datasets and two sets of expert

segmentations are used for inter-observer agreement evaluation.

Results and Conclusion

The results of this study reveal that high-level machine learning methods lead to signifi-

cantly better segmentation results compared to the rather simple classification methods,

pointing towards a difficult non-linear problem. The overall best segmentation results were

achieved by a Random Decision Forest and a Convolutional Neural Networks classification

approach, even outperforming all previously published results. However, none of the meth-

ods tested in this work are capable of achieving results in the range of the human observer

agreement and the automatic ischemic stroke lesion segmentation remains a complicated

problem that needs to be explored in more detail to improve the segmentation results.
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Introduction
The ischemic stroke, one of the leading causes of death and disability worldwide, is triggered by
an obstruction in the cerebrovascular system preventing the blood to reach the brain regions
supplied by the blocked blood vessel directly. Irreversible damage of the affected brain cells
occurs within minutes to hours depending on the existence and characteristics of collateral con-
nections, which may still supply some affected brain regions with reduced blood flow (hypoper-
fusion). In contrast to these rather acute changes, tissue alterations induced by secondary
molecular effects continue for weeks to month. During this time, the patient’s impairment as
well as the appearance of the stroke lesion in magnetic resonance imaging (MRI) datasets,
which is an established imaging modality for follow-up stroke assessment, fluctuates.

The reliable and reproducible lesion segmentation in follow-up image sequences is of high
interest, since the lesion volume is one important imaging end-point for clinical trials. How-
ever, the automatic localization and segmentation of ischemic stroke lesions in MRI volumes is
not a trivial task, since the lesion shape and location depends on several factors such as time-
from-symptom onset, occlusion site, patient-specific differences regarding the vessel anatomy,
collateral connections and potential tissue preconditioning due to a coexisting incomplete ste-
nosis [1]. The presence of other white matter hyperintensities (Leukoaraiosis) may furthermore
complicate a precise automatic segmentation. Rekik et al. [2] identified a number of common
biological- and imaging-dependent challenges that have to be dealt with when segmenting
stroke lesion in MRI volumes, including fogging in diffusion weighted (DWI) sequences, the
T2 shine through effect and tissue deformations.

Furthermore, Rekik et al. [2] performed a review of non-chronic ischemic stroke lesion seg-
mentation methods. The majority of the 25 reviewed articles describe voxel-based (n = 13)
approaches in contrast to image-based (n = 9), atlas-guided (n = 1) and deformable model
(n = 2) methods. Only a few of these are fully automatic approaches and none is based on
supervised training of a classifier, which may be beneficial for lesion segmentation in mono-
modal and especially when employing multi-spectral image sequences.

Chronic stroke lesion segmentation, on the other hand, has been approached with machine
learning techniques. For example, Seghier et al. [3] proposed an outlier search with subsequent
fuzzy clustering of voxels in T1-weighted (T1w) MRI datasets for segmentation of chronic
lesions. Forbes et al. [4] presented a Bayesian multi-spectral hidden Markov model with individ-
ual weights for the different MRI sequences. However, their method was only evaluated on a sin-
gle case. An interesting semi-automatic as well as automatic method can be found inWilke et al.
[5], which takes the special stroke characteristics into account and employs four-class fuzzy-
clustering to segment chronic ischemic stroke lesions in T1wMRI volumes. However, it was
found that user-interaction is still required to achieve acceptable segmentation results. Mitra
et al. [6] approached the problem of chronic lesion segmentation with a combination of Bayes-
ian-Markov random fields and random decision forests (RDF) for voxel-wise classification in
multi-spectral MRI volumes with comparatively good results. A most recent work by Chyzhyk
et al. [7] proposes active learning for interactive, single-patient segmentation frommulti-spec-
tral volumes. In related previous works, we have shown Extra Tree (ET) forests [8] outperform
all previously published methods and also obtained acceptable results with support vector
machines (SVM) [9], but found the latter time-consuming and difficult to optimize.

As a drawback, most previously presented methods were only evaluated using a limited
number of private datasets that are often insufficiently described, which makes a comparison
of these methods difficult, if not impossible. This deficiency can partially be attributed to the
lack of publicly available non-acute datasets of ischemic stroke lesions with manual ground
truth segmentations.
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In this work, we evaluate and compare nine popular classification approaches in a fair and
direct comparison using a clinically relevant set of MRI images of sub-acute ischemic stroke
patients. These approaches include comparably simple methods like k-Nearest-Neighbors
(kNN) and Gaussian Naive Bayes (GNB), statistical approaches like Generalized Linear Models
(GLM), as well as high-level machine learning techniques like Random Decision Forests (RDF)
and Convolutional Neural Networks (CNN). The results shed light on the nature of the seg-
mentation problem and constitute a solid base for developing more specialized solutions. The
evaluation includes a juxtaposition of mono- against multi-spectral MRI datasets and takes
inter-observer variability into account.

In contrast to our previous work [8], we now investigate a wide range of classifiers, employ
a clinically more relevant best-effort appraoch and investigate the influence of multiple raters
on the machine learning methods.

Materials and Methods

Data and ground truth
Various MRI sequences are typically utilized in the clinical routine for the assessment of ische-
mic stroke lesions, as they provide insights into different aspects of the disease. Fluid attenua-
tion inversion recovery (FLAIR) MRI is probably the most prominent technique for imaging in
sub-acute ischemic stroke patients, followed by DWI and T1w datasets. In the sub-acute phase
(here:>24 hours and<2 weeks), the lesion usually appears hyper-intense in FLAIR and DWI
and hypo-intense in T1w datasets.

The database used for evaluation in this study consists of 37 cases acquired routinely for
two clinical studies on spatial neglect [10–12]. More information on the patients, lesion charac-
teristics, imaging parameters, and image quality are detailed in a previous work [8].

Each dataset was manually segmented (as filled volume) in axial FLAIR images by two
observers with several years of dedicated experience in stroke imaging (GTG and GTL). If
required and available, other MRI sequences were used to resolve ambiguities. In case of a pre-
vious acute ischemic stroke history, only the newest ischemic stroke lesions were segmented.
Hemorrhages were only included in the manual lesion segmentations if completely encircled
by ischemic tissue.

The pre-processed cases as well as the ground-truth and segmentation results are available
from http://dx.doi.org/10.6084/m9.figshare.1585018. Some of the cases have recently been
incorporated in the evaluation dataset of the ISLES 2015 Ischemic Stroke Lesion Segmentation
challenge (www.isles-challenge.org), together with an larger set of images.

Image segmentation as voxel classification task
Treating a segmentation problem as voxel-wise segmentation task enables the application of
machine learning techniques. Each image voxel is treated as one stand-alone sample, character-
ized by a number of features (e.g. its gray-value) and assigned to a binary class (0 = background,
1 = lesion). To obtain a generalized solution model for the problem, a classifier is trained on a
set of labeled training samples. During the subsequent application, a formerly unseen volume
is passed to the trained classifier, which decides for every voxel whether it belongs to an ische-
mic stroke lesion or not.

The image features
Four different types of simple image features are employed in this work, namely the intensity
feature, the weighted local mean, the 2D center distance and the local histogram. They provide
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the classifier with information of the voxel’s gray-value and the gray-values in a small neigh-
borhood as well as their distribution. More details about these features can be found in Maier
et al. [8].

Pre- and post-processing
All images, both for the training and testing phase, are prepared using the fully automatic pre-
processing pipeline described in Maier et al. [8]. This includes down-sampling, intracranial
segmentation, bias field correction and intensity standardization. Due to the automatic nature
of this pre-processing, insufficient outcome can and does occur. For example, the bias field cor-
rection might fail, the skull-stripping can leave some skull tissue in the image or the intensity
standardization can falsely skew the image’s histogram. A good classifier should be able to deal
with such cases. For post-processing after voxel-wise classification, all connected binary objects
with a size<1.5 ml are removed from the segmentation under the assumption that they consti-
tute outliers, e.g. due to noise. The size corresponds to objects of a side length of less than 4
pixel at working resolution. The smallest lesion in the data set is 1.8 ml in volume. This proce-
dure has previously been proven effective, especially to reduce the number of false-positives in
the skull [8]. A schematic overview of the processing pipeline can be found in Fig 1.

Classification methods
A total of 9 classification methods are evaluated and compared with each other in this study.
The function and set-up of these classification methods is described in this section. If not noted
otherwise, no effort has been undertaken to optimize their parameters for this segmentation
problem. Instead, they were executed with their best-practice parameter values, i.e. the default
parameters of the scikit-learn [13] toolkit.

Gaussian Naive Bayes. Naive Bayes classifiers approach the classification task with the
“naive” assumption of independence between every pair of features. The Gaussian Naive Bayes
classifier assumes the likelihood of the features to be Gaussian:

PðxijyÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q exp � ðxi � myÞ2Þ
s2
y

ð1Þ

, where xi is a dependent feature vector, y a class variable and the parameters σy and μy are esti-
mated using maximum likelihood.

Even though GNB oversimplifies the reality, they have been found to perform surprising
well in a number of real-world problems. Furthermore, GNB classifiers require only a small
amount of training data, are parameter-free and train very fast. They are well researched, both
from a theoretical [14] and empirical [15] point of view.

k-Nearest-Neighbors. The supervised k-Nearest-Neighbors [16] approach classifies test-
ing samples by transferring the majority label of the k nearest training neighbors to the corre-
sponding test case. Although multiple distance definitions have been proposed in the past, the
Euclidean distance is used most commonly and also employed in this study.

kNN classifiers do not generalize from the training set, but simply store the training data.
Comparable to GNB classifiers, k-Nearest-Neighbors models have been found to perform well
for many real-world classification problems.

Besides the definition of the distance metric, the choice of k is crucial. Higher values for k
reduce the influence of noise, whereas lower values lead to more distinct class boundaries. As
an additional parameter, the training samples votes can be weighted by their distance. How-
ever, this feature was not used in this study to keep the method as simple as possible.
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Generalized Linear Models. In a Generalized Linear Model, tissue infarction probability
can, for example, be represented by the logistic function as typically used for biological applica-
tions:

FðtÞ ¼ et

et þ 1
ð2Þ

with t being a linear function of the input parameters x,

t ¼ b0 þ b1x1 þ . . .þ bnxn ð3Þ

The main advantages of the algorithm are the simplicity, comparably high speed for the train-
ing as well as for the testing phase, and possibility to investigate the different effects of the mul-
tiple input parameters on the outcome probability in terms of the β parameters. However,
logistic regression models are also known to be unsuitable for inherently nonlinear problems.

Gradient Boosting classifier. Gradient Boosting (GB) classifiers describe a generalized
boosting method to arbitrary differentiable loss functions. In case of the GB classifier imple-
mentation used in this study, this method is similar to decision forests in the sense that a large
number of decision trees is trained. These weak classifiers are optimized at each stage to fit the
negative gradient of the deviance (twice binomial negative log-likelihood) loss function, i.e. the
steepest gradient descent. The learning rate regularization strategy proposed by Friedman et al.
[17] is employed in this work, but not the bootstrapping strategy described in Friedman et al.
[18], which would result in stochastic GBs.

GB classifiers are known to achieve a high predictive power and to be robust against outliers
in output space. A severe drawback is their sequential nature, which leads to long training
times. They can be considered a predecessor to decision forests.

GB classifiers required the definition of a number of hyper-parameters. In general, there is a
trade-off between the learning rate and the number of estimators while the maximum tree
depth should be kept small to allow faster training times. For this application, we chose to train
100 trees with a maximum depth of 20.

AdaBoost. AdaBoost (AB) [19] represents another well-known boosting method, where a
sequence of weak learners is fitted to repeatedly modified versions of the training data. A
weighted majority vote at application time is used to achieve the final class prediction. In con-
trast to decision trees, which utilize bootstrapping for this purpose, AdaBoost assigns

Fig 1. Processing pipeline.

doi:10.1371/journal.pone.0145118.g001
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individual weights to the training samples: The first weak classifier is trained on the uniformly
weighted samples, then the weights are iteratively increased for training samples wrongly pre-
dicted in previous steps. Hence, difficult and complex training samples obtain a greater weight
for later weak classifiers.

AdaBoost is often considered as one of the best out-of-the-box classifiers. Nonetheless, it is
also known to be sensitive to noise and outliers, as it explicitly increases their influence.

The implementation used in this study employs decision tree stumps as weak classifiers.
Important additional parameters are the number of estimators and the learning rate, which
penalizes later classifiers. The first value was set to 100, the latter kept at its default value 1.0.

Random Decision Forests. Random Decision Forest classifiers [20] rate among the most
recent and popular boosting methods and have proven their classification performance for dif-
ficult problems in many applications [6, 21]. Based on decision trees [22] as weak classifiers,
they employ training set bagging [23] and random subspaces [24] to introduce a measure of
randomness into the training.

RDF classifiers are inherently parallel and, hence, train very fast. The randomness avoids
the training to get stuck at a local minimum, which improves the predictive accuracy and con-
trols over-fitting.

While RDF classifiers depend on a number of parameters, such as the number of trees, the
features considered at each split, and the maximum tree depth, they have been found to be easy
to optimize [8, 21]. For this application, we chose to train 100 trees with a maximum depth of 20.

Extra Tree forests. Extra Tree (ET) forest classifiers are a variant of RDF introduced by
Geurts et al. [25], which add an additional layer of randomness. Instead of searching for the
optimal split, a random split threshold is used during the training of the decision trees. The
implementation used in this work did not employ bootstrapping of the training data.

ETs have been found to decrease the variance at the cost of a bias even greater than it is the
case for RDFs. Furthermore, they might show improved prediction for difficult classification
problems with many inter-dependent features.

ET methods require the same parameters as RDF classifiers.
Convolutional Neural Networks. In recent benchmarks, neural networks present the

winning solutions for various computer vision tasks like object detection, street number recog-
nition and mitosis detection [26–28]. Convolutional Neural Networks [29] are a special form
of neural networks that transform the input by repeated steps of convolution followed by pool-
ing. The output of this feature extraction step forms the input to a classical fully connected neu-
ral network. The whole network including the kernels of the convolution is trained using back
propagation.

By training their own feature extractors, CNNs can be easily applied to new problems. Their
classification speed is comparable to other methods. However, their training time is consider-
ably longer. Also the network’s architecture and multiple hyper parameters need to be chosen
carefully for good results. In order to achieve a good generalization, a high training sample
count, the convolutional architecture [30] and dropout layers [31] are recommended.

Contrary to the other methods presented in this paper, the CNN uses the raw image input
instead of the manually designed features. Therefore, 107 overlapping patches of 37x37x3 vox-
els are sampled from the training data in a uniform random manner and labeled according to
the center voxel’s classification in the ground truth. For our experiments, the Caffe [32] frame-
work is used. The network is built from three steps of convolution with rectified linear activa-
tion (RELU) and pooling, followed by one fully connected layers with RELU and one with
softmax activation. The precise network architecture is described in Table 1. Learning was per-
formed in a fully supervised manner using a batch size of 500, a learning rate of 0.0001, a
weight decay of 0.004, and a momentum of 0.9.
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Tuned Extra Tree forests. To assess the upward potential of forest-based methods, we
also included tuned Extra Trees forests (tunedET) in our set of classifiers. They are ET classifi-
ers with tuned parameters for improved classification results as described in Maier et al. [8].

Evaluation metrics
The evaluation of the nine classification techniques described above was conducted using three
different metrics: (1) the dice metric (DM), which describes the volume overlap between two
segmentations and is sensitive to the lesion size, (2) the average symmetric surface distance
(ASSD), which denotes the average surface distance between two segmentations, and (3) the
Hausdorff distance (HD), which is a measure of the maximum surface distance and is, hence,
especially sensitive to outliers. Additionally, precision and recall values are reported for each
classifier to assess over- and under-segmentation, respectively.

The DM is defined as

DM ¼ 2jA \ Bj
jAj þ jBj ð4Þ

with A and B denoting the set of all voxels of ground truth and segmentation respectively. To
compute the ASSD, we first define the average surface distance (ASD), a directed metric, as

ASDðAS;BSÞ ¼
P

a2AS
minb2BSdða; bÞ
jASj

ð5Þ

and then average over both directions to obtain the ASSD

ASSDðAS; BSÞ ¼
ASDðAS;BSÞ þ ASDðBS;ASÞ

2
ð6Þ

Here AS and BS denote the surface voxels of ground truth and segmentation respectively. Sim-
milar, the HD is defined as the maximum of all surface distances with

HDðAS; BSÞ ¼ maxfmax
a2AS

min
b2BS

dða; bÞ; max
b2BS

min
a2AS

dðb; aÞg ð7Þ

The distance measure d(�) employed in both cases is the Euclidean distance, computed taking

Table 1. Convolutional neural network architecture.

Layer Type Maps and neurones Kernel size

0 input 3 maps of 37 × 37 neurons

1 convolution 100 maps of 35 × 35 neurons 3 × 3

2 pooling 100 maps of 18 × 18 neurons 2 × 2

3 convolution 150 maps of 16 × 16 neurons 3 × 3

4 pooling 150 maps of 8 × 8 neurons 2 × 2

5 convolution 150 maps of 6 × 6 neurons 3 × 3

6 pooling 150 maps of 3 × 3 neurons 2 × 2

7 fully connected 300 neurons 1 × 1

8 fully connected 2 neurons 1 × 1

The input is processed from the top to the bottom, where the two output neurons each represent one class.

Rectified linear activation is used after each convolution and the first fully connected layer. The two final

neurons are activated by a softmax function and can be interpreted as the probability of a particular input to

belong to the respective class.

doi:10.1371/journal.pone.0145118.t001

Comparison of Stroke Lesion Segmentation Methods

PLOS ONE | DOI:10.1371/journal.pone.0145118 December 16, 2015 7 / 16



the voxel size into account. Finally, precision and recall are computed from true positive (TP),
false positive (FP) and false negative (FN) voxels as

precision ¼ TP
TP þ FP

ð8Þ

and

recall ¼ TP
TP þ FN

ð9Þ

Results
For the experiments, all methods were trained and evaluated with the leave-one-out evaluation
schema, i.e. 36 cases were used for training and the remaining for testing in all possible combina-
tions. At working resolution, the number of available voxels for training surpassed the ten mil-
lion. To speed up training, only a sub-set of n = 500,000 of these were selected. For this purpose,
we randomly sampled 500,000/36� 14,000 training voxels from each training case using strati-
fied random sampling, i.e. keeping each cases lesion to background ratio intact. In a previous
study [8] we have shown that using more than 100,000 samples did not significantly improve
the results, and hence we chose here a larger value for n for an ample security margin. The exact
positions of the randomly selected training voxels of each case that were used to generate the
results presented in this article are available from the corresponding author on request. The
CNN required another approach since it trains on the actual images and learns its own features.

For the experiments, we distinguish between two scenarios: (I) Under the assumption that a
FLAIR image is almost always acquired for ischemic stroke assessment with MRI, the flair set
of experiments is mono-spectral using only the FLAIR sequence. The results obtained for all
classifiers are displayed in Table 2.

(II) In the clinical routine, the acquisition of some MRI sequences can be skipped due to
various reasons. Our second setting constitutes a besteffort approach to handle the sparsity in
the available sequences for each case. If available, the T1w and/or DWI sequences are used in
addition to the FLAIR imaging information, which led to the requirement of training multiple
dependent classifiers. I.e. a specialized classifier is trained on all cases with FLAIR sequences
(n = 37) and employed to segmented FLAIR-only test cases (n = 16); a FLAIR+T1w classifier is
trained on all corresponding cases (n = 21) and employed to segment cases with a FLAIR and a
T1w sequence available (n = 7); the same applies to FLAIR+T1w+DWI (n = 14 for both, train-
ing and testing). The results obtained with this besteffort configuration are given in Table 3.

Table 2. Flair scenario.

Classifier DM [0, 1] HD (mm) ASSD (mm) Prec. [0, 1] Rec. [0, 1] Cases Traintime

100 Nearest Neighbors 0.54**± 0.20 36.52± 22.4 7.07**± 4.25 0.82 0.45 34/37 5s

10 Nearest Neighbors 0.56**± 0.20 36.47± 25.1 6.58*± 4.01 0.82 0.46 35/37 5s

5 Nearest Neighbors 0.58**± 0.18 39.72*± 27.4 6.80*± 4.35 0.79 0.51 36/37 5s

AdaBoost 0.60*± 0.19 39.28*± 27.3 7.42*± 6.77 0.70 0.61 35/37 7m

Extra Trees 0.64**± 0.19 29.49± 18.5 5.29± 3.94 0.84 0.57 35/37 3m

Gaussian Naive Bayes 0.48**± 0.22 69.86**± 26.7 14.82**± 8.16 0.44 0.78 36/37 1s

Generalized Linear Model 0.44**± 0.25 38.77*± 21.3 8.54**± 5.76 0.87 0.34 32/37 2m

Gradient Boosting 0.63**± 0.18 32.72± 23.2 5.93± 5.28 0.72 0.62 35/37 12h

Random Decision Forest 0.67± 0.18 28.16± 20.7 4.89± 3.63 0.82 0.62 35/37 6m

Convolutional Neural Network 0.67± 0.18 29.64± 24.6 5.04± 5.28 0.77 0.64 35/37 2h

doi:10.1371/journal.pone.0145118.t002
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In both tables, the best-performing method for each evaluation measure is marked in bold.
Significant differences to this best-performing method computed with student’s paired t-test
are marked with a star (�) for a confidence interval of 95% (p< 0.05) and two stars (��) for a
confidence interval of 99% (p< 0.01). Nominal p-values are reported without correction for
multiplicity. Note that the tunedET were exempt from the selection of the best-performing
method, as they were tuned for performance. The full results for each classifier and case can be
found in S1 File. It should be noted that some methods failed completely for certain cases (i.e.
achieved a DM of 0). The corresponding datasets were excluded from the calculation of the
average values for all methods to enable a direct and fair comparison.

The inter-observer differences between the two expert segmentations are given in Table 4.
To assess each methods dependency on the ground truth, Table 5 shows respective cross

validations for selected evaluation measures.
Visual results for a rather simple case are presented in Fig 2, and for a more complicated

dataset with other white matter hyperintensities present in Fig 3
Case-wise results for all methods can be found in S1 File on the Evaluation Dataset and be

used to reconstruct the means and statistical significancies.
To evaluate the different algorithms theoretical optimal performance optained by threshol-

ing the a-posteriori class probability maps, Fig 4 shows the Receiver Operating Characteristic
(ROC) curves. These have been obtained for both evaluation scnearios on the GTG ground
truth set. Some associated Area Under Curve (AUC) values for the besteffort-scenario are:
tunedET = .97, RDF = .97, GLM = .96, ET = .95, AdaBoost = .95, GB = .91, 100NN = .89

Discussion

Method-specific interpretation
Overall, the results revealed that the RDF classifier consistently and significantly outperformed
all other non-tuned classifiers for all ground truth sets and scenarios. Adding their relatively

Table 3. Besteffort scenario.

Classifier DM [0, 1] HD (mm) ASSD (mm) Prec. [0, 1] Rec. [0, 1] Cases

100 Nearest Neighbor 0.61**± 0.21 38.10**± 26.5 6.10**± 4.03 0.82 0.55 34/37

10 Nearest Neighbor 0.63**± 0.21 35.85**± 26.1 5.62**± 3.96 0.82 0.56 36/37

5 Nearest Neighbor 0.63**± 0.19 38.68**± 28.6 6.00**± 4.40 0.78 0.59 36/37

AdaBoost 0.69± 0.16 32.65*± 25.5 5.60± 5.84 0.73 0.68 34/37

Extra Trees 0.70**± 0.19 23.18± 15.4 3.98**± 3.56 0.85 0.64 35/37

Gaussian Naive Bayes 0.54**± 0.20 71.48**± 22.9 12.01**± 5.36 0.47 0.82 36/37

Generalized Linear Model 0.55**± 0.27 32.44**± 23.8 6.38**± 5.77 0.90 0.47 34/37

Gradient Boosting 0.68**± 0.17 25.83± 19.0 3.95± 2.89 0.79 0.65 35/37

Random Decision Forest 0.72± 0.17 22.35± 15.8 3.67± 3.35 0.84 0.68 35/37

tuned Extra Trees 0.73*± 0.18 21.48± 12.0 3.49± 2.76 0.84 0.69 35/37

doi:10.1371/journal.pone.0145118.t003

Table 4. Inter-observer score.

DM [0, 1] HD (mm) ASSD (mm) Prec. [0, 1] Rec. [0, 1]

0.80 15.79 2.03 0.73 0.911

GTG vs. GTL

doi:10.1371/journal.pone.0145118.t004

Comparison of Stroke Lesion Segmentation Methods

PLOS ONE | DOI:10.1371/journal.pone.0145118 December 16, 2015 9 / 16



fast training times, RDF classifiers can, hence, be considered the best candidate for further
method development as well as the baseline other classification-based lesion segmentations
should be compared with.

The ET classifier performed similar well and stable, but also increases the bias considerably,
as indicated by the high precision values. The forest related GB classifier led to the overall
third-best results. However, the excessively long training times of this classification method
render it unsuitable for rapid development and testing. The results of AdaBoost, the last in the
group of ensemble methods, showed a clear upward step from mono- to multi-spectral input
data. This might be attributed to the better outlier avoidance in the besteffort pre-processing.

The simple kNN classifiers led to the best results among the non-ensemble classifiers evalu-
ated in this study. While fast to train, they showed an overly high precision at the cost of recall,
hinting towards complicated decision borders for the classification problem. Next are the GLM
results, that appear to fail finding a linear decision border in the flair scenario, which is a
known drawback of this classifier. However, the results of the GLM classifier showed an
impressive gain when employing multi-spectral data, as a higher dimensional feature space
enables more flexibility regarding the border placement. GNB, the simple and parameter-free
classifier, scores last and clearly leads to an over-segmentation of the lesions. All of these find-
ings are supported by the visual evaluation (see Figs 2 and 3).

The CNNs perform nearly head to head with the RDFs, but care must be taken interpreting
the results, as they were not obtained using the same feature set. Rather, the comparison must

Table 5. Dependency on training ground-truth.

GTG7!GTG GTG7!GTL GTL7!GTL GTL7!GTG

Classifier DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm)

Generalized Linear Model 0.55 6.38 0.58 5.77 0.57 5.84 0.52 6.66

Random Decision Forest 0.72 3.67 0.72 3.46 0.72 3.31 0.69 3.92

tuned Extra Trees 0.73 3.49 0.72 3.28 0.73 3.21 0.70 3.81

Results for selected methods on different combination of training and testing ground truth sets in besteffort scenario.

doi:10.1371/journal.pone.0145118.t005

Fig 2. Results for case 21. Slice 21 with besteffort scenario trained on GTG. (a) ground-truth (GTG). (b)
100NN. (c) 10NN. (d) 5NN. (e) AdaBoost. (f) ET. (g) GNB. (h) GLM. (i) GB. (j) RDF.

doi:10.1371/journal.pone.0145118.g002
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be conducted in terms of potential. The results for the tuned ETs give an idea of the expectable
gain for the ensemble methods, which is significant (at p< 0.05), but clearly limited. The CNN
method, on the other hand, is highly configurable, which, taken together with the intrinsic fea-
ture detection, may bare high potential for even better multi-spectral segmentation results.
Drawbacks are the black-box character, the difficult parameter tuning, the high system require-
ments and of course the large training times.

The ROC curves (Fig 4) of the tested algorithms and their associated AUC values provide a
measure for each method’s performance for the ideal cut-point of the a-posteriori class proba-
bility maps. The results supports above observations that the ensemble methods perform gen-
erally better. An exception is the GLM, whose curve is simmilar to the AdaBoost approach. For
an ideal cut-point of the a-posteriori class probability maps, the GLM would rate directly after
the RDF and tunedET, on the same level as AdaBoost and the ET algorithms. For the flair-sce-
nario, they fall behind the ET.

Failed cases
For some of the cases, at least one classifier failed to produce valid results (i.e. a DM>0). These
were excluded from the computation of the evaluation measure means in Tables 2 and 3, and
are shown in Figs 5 and 6.

The cases 09, 11 and 41 posed problems to the GLM, which might be attributed to their
unusual high (case 11) respectively low (cases 09 and 41) hyperintensities inside the lesion
area. In general, the linear model of the GLM did not adapt well to the complexity of the task
and produced with n = 5 the largest number of failed cases, followed by the 100NN approach
(n = 3), while all others did not fail in more than n = 2 cases.

Most notably among the failed cases are 37 and 44. For 37, all methods failed to produce a
valid segmentation. Taking a look at the ground truth (Fig 6(a)), we observe a small lesion in
the superior regions of only minor hyperintensity. A typical failed segmentation, as displayed
in Fig 6(b), assumed the lesion to be among the numerous periventricular white matter hyper-
intensities. For case 44, some methods managed to segment part of the lesion (Fig 6(d)), but

Fig 3. Results for case 04. Slice 30 with besteffort scenario trained on GTG. Note the presence of other
white matter hyperintensities. (a) ground-truth (GTG). (b) 100NN. (c) 5NN. (d) AdaBoost. (e) ET. (f) GNB. (g)
GLM. (h) GB. (i) RDF. (j) tunedET.

doi:10.1371/journal.pone.0145118.g003
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the maximum DM value reached has been 0.21. This lesion is very small, periventricular and of
low hyperintensity.

For both cases, only the FLAIR sequence has been available, missing potentially relevant
information from the other MRI sequences which might have facilitated the segmentation task.

Fig 4. ROC curves for both evaluation scenarios computed over the GTG ground truth. (a) besteffort
scenario. (b) flair scenario.

doi:10.1371/journal.pone.0145118.g004

Fig 5. Cases failed by at least one classifier. (a) 09/24 ground-truth (GTG). (b) 11/29 ground-truth (GTG).
(c) 39/36 ground-truth (GTG). (d) 41/24 ground-truth (GTG).

doi:10.1371/journal.pone.0145118.g005

Fig 6. Worst two cases. See text for description. (a) 37/44 ground-truth (GTG). (b) 37/32 tunedET. (c) 44/24
ground-truth (GTG). (d) 44/24 CNN.

doi:10.1371/journal.pone.0145118.g006
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Visual interpretation
With an average DM of 0.80 over all the different methods tested, case 36 can be considered an
easy case with a standard deviation as low as 0.07. Fig 7 depicts its ground truth as well as the
best and worst result obtained.

The image displays a single, large and homogeneously hyperintense lesion. Differences
between the methods stem mainly from classifier specific tendencies, such as the over-segmen-
tation of the GNB.

Another case to take a close look at is 18, for which the largest standard deviation over all
methods has been obtained (DM = 0.55±0.31). As can be seen in Fig 8, the lesion is clearly out-
lined and strongly hyperintense, hence the task should be an easy one.

And such it seems when looking at the DM results of the CNN (0.85) and the 5NN respec-
tively 10NN classifiers (both 0.81). Most other methods performed acceptably with values
around 0.60. But on the lower end, we have the GNB (0.16), AdaBoost (0.08) and the GLM
(0.00). These failures might be attributed to the unusual high intensity values inside the lesion
paired with the low extrapolation and generalization abilities of the latter methods.

Under the besteffort approach, when the T1 and DWI sequences are equally considered, the
inter-method standard deviation for case 18 drops to 0.09, signaling greater agreement. In gen-
eral, when comparing the besteffort to the flair scenario, we reach the conclusion that it is better
to use all available information than only the least common denominator.

Inter-observer variability
The inter-observer differences (Table 4) are relatively high, which underlines the difficulties
associated with this segmentation task and emphasizes the need for an automatic and, above

Fig 7. Best overall case 36 and the worst (GNB, DM = 0.61) as well as best (ET, DM = 0.86) result
obtained over all methods. (a) 36/27 ground-truth (GTG). (b) 36/27 GNB. (c) 36/27 ET.

doi:10.1371/journal.pone.0145118.g007

Fig 8. Case with low agreement betweenmethods in flair scenario. (a) 18/28 ground-truth (GTG). (b) 18/
28 AdaBoost. (c) 18/28 CNN. (d) 18/28 ET.

doi:10.1371/journal.pone.0145118.g008
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all, reproducible segmentation method. Precision and recall reveal the GTL ground truth set to
contain consistently smaller lesion masks. However, the manual segmentation is still superior
compared to the automatic segmentation as there was no complete disagreement between the
raters (i.e. a DM value of 0) for any of the datasets used in this study.

The methods ranking order is stable for all ground-truth sets and scenarios, i.e. all of them
adapt well to the underlying model. Using one ground truth set as training and the other as
testing did not lead to considerable performance differences. Therefore, it may be argued that
all direct comparisons of the methods used in this study are sound, independently of the
ground truth set employed.

Comparison with results from literature
The overall best segmentation results were achieved by the tuned Extra Tree forests. The quan-
titative results of this method as well as the un-tuned ET, RDF and CNN accuracies, are supe-
rior compared to all previously reported results in literature. Wilke et al. [5] reported a DM of
0.60 for their semi-automatic and 0.49 for their automatic approach. Hevia-Montiel et al. [33]
reported 0.54±0.18 and Seghier et al. [3] even 0.64±0.10, with only eight real cases used for
evaluation. Mitra et al. [6] achieved an average DM of 0.60±0.13 and ASSD of 3.06±3.17 mm
with RDFs. However, it should be noted that these comparisons are not truly valid, as different
datasets and different ground truth segmentations were used for evaluation. Regrettably, no
publicly available dataset existed to compare follow-up ischemic stroke lesion segmentation
methods before 2015.

Characteristics of ischemic stroke lesion segmentation
The results of this study enable us to make some assumptions about the nature of the ischemic
stroke lesion segmentation problem. First, the rather low inter-observer agreement demonstrates
the difficulty of the segmentation problem. Considering the subsequent uncertainty in the ground
truth lesion masks, the training set can be expected to be noisy and outlier-ridden, an observation
which is supported by the low performance of the noise sensitive AdaBoost classifier.

The results of the GLM classifier dispute the existence of a linear separation border between
lesion and other tissue, even in the multi-spectral case. Hence, the classification problem can
be considered non-linear. The employed features seem to be neither completely dependent nor
completely independent, in which cases one would have expected better GNB results [15]. Fur-
thermore, the comparably poor results obtained for the kNNs show that the different features
are not equally important, one of the main kNN assumptions.

Finally, the good performance of the RDF classifier hint towards a high variance and low
bias of the problem, although not unbalanced enough to justify the use of the ET classifier.

To sum up, the ischemic stroke lesion classification problem is clearly a difficult one with
many challenging characteristics.

Supporting Information
S1 File. Detailed evaluation results. Case by case results of the leave-one-out cross-validation
on all 37 cases with varying MRI sequences over all classifiers.
(ZIP)
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