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Abstract—A Hebbian adaptation rule with winner-take-all like competition is introduced. It is shown that this
competitive Hebbian rule forms so-called Delaunay triangulations, which play an important role in computational
geomeltry for efficiently solving proximity problems. Given a set of neural units i, i = 1, . . ., N, the synaptic weights
of which can be interpreted as pointers w,, i = 1, . .., N in RP, the competitive Hebbian rule leads to a connectivity
structure between the units i that corresponds to the Delaunay triangulation of the set of pointers w; . Such competitive
Hebbian rule develops connections (Cy > 0) between neural units i, j with neighboring receptive fields (Voronoi
polygons) V,, V;, whereas between all other units i, j no connections evolve (Cy = 0). Combined with a procedure
that distributes the pointers w; over a given feature manifold M, for example, a submanifold M C R°, the competitive
Hebbian rule provides a novel approach to the problem of constructing topology preserving feature maps and rep-
resenting intricately structured manifolds. The competitive Hebbian rule connects only neural units, the receptive
Jields (Voronoi polygons) V,, V; of which are adjacent on the given manifold M. This leads to a connectivity structure
that defines a perfectly topology preserving map and forms a discrete, path preserving representation of M, also in
cases where M has an intricate topology. This makes this novel approach particularly usefil in all applications
where neighborhood relations have to be exploited or the shape and topology of submanifolds have to be taken into

account.
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1. DELAUNAY TRIANGULATION AND
PROXIMITY PROBLEMS

In a number of information processing tasks the prob-
lem that has to be solved efficiently can be reduced to
a geometric problem that deals with the proximity of
points in a metric space. The most prominent example
of such a proximity problem is the nearest-neighbor or,
more generally, the k-nearest-neighbor search: given N
points in a metric space, which is (are) the nearest (k
nearest) neighbor(s) to a new given query point (Duda
& Hart 1973). This best match retrieval has to be per-
formed in classification and interpolation tasks with
applications in areas ranging from speech and image
processing over robotics to efficient storage and transfer
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of data (Makhoul, Roucos, & Gish, 1985; Kohonen,
Mikisara, & Saramiki, 1984; Naylor & Li, 1988; Gray,
1984; Nasrabadi & King, 1988; Nasrabadi & Feng,
1988; Ritter & Schulten, 1986). Another example of
a proximity problem is the construction of the Euclid-
ean minimum spanning tree: given N points in a metric
space, what is the graph of minimum total length whose
vertices are the given points (Kruskal, 1956; Prim,
1957; Dijkstra, 1959). Constructing the Euclidean
minimum spanning tree is a common task in appli-
cations requiring optimally designed networks, for ex-
ample, communication systems that have minimal in-
terconnection length. Other applications of the Euclid-
ean minimum spanning tree are in clustering (Gower
& Ross, 1969; Zahn, 1971), pattern recognition (Os-
teen & Lin, 1974), and in searching for (approximate)
solutions of the traveling salesman problem (Rosen-
krantz, Stearns, & Lewis, 1974). A third example is
the triangulation problem: given N points in a plane,
connect them by nonintersecting straight lines so that
every region inside the convex hull of the N points is a
triangle. The triangulation problem occurs in the finite-
element method (Strang & Fix, 1973) and in function
interpolation on the basis of N data points, where the
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function surface is approximated by a network of tri-
angular facets (George, 1971). A comprehensive over-
view of the above and further proximity problems can
be found in Preparata and Shamos (1985).

A powerful structure from computational geometry
that solves or, at least, yields a starting point for effi-
ciently solving the above and other proximity problems
is the so-called Voronoi diagram and its dual, the De-
launay triangulation. The Voronoi diagram Y of a set
S = {wy, ..., wy} of points w; € R is given by N D-
dimensional polyhedra, the Voronoi polyhedra ¥V,
which are defined as follows: the Voronoi polyhedron
V; of a point w; € S is given by the set of points v €
NP that are closer to w; than to any other w; € S, j #
i, that is,

Vi={(vER||v-wil s lv-willj=1,...,N}
i=11L...,N. (1)

The Voronoi polyhedra provide a complete partitioning
of the embedding space RP, that is, R? = UX, V;. In
the context of winner-take-all type neural networks the
Voronoi polyhedron V; is often called the receptive field
of neural unit i, with w; being the synaptic weight vector
of this neural unit. For all input vectors v € V; the
element i is the best matching unit of the network and
is employed to represent (encode) these input patterns
v. Figure la illustrates the definition of V; by showing
the Voronoi diagram, that is, all the Voronoi polygons,
of a sample set of points in a plane. In %? the Voronoi
diagram forms a graph, the vertices of which are given
by all the v € ? that are simultaneously element of
three Voronoi polygons V;. The edges are given by all
the v € %2 that are simultaneously element of two Vo-
ronoi polygons. The Voronoi diagram as the set of all
Voronoi polyhedra contains all the proximity infor-
mation about the set of points S.

The straight line dual of the Voronoi diagram is the
so-called Delaunay triangulation (Delaunay, 1934). In
a plane, the Delaunay triangulation is obtained if we
connect all pairs w;, w; € S, the Voronoi polygons V;,
V; of which share an edge. In general, for embedding
spaces R? of arbitrary dimension D, the Delaunay
triangulation Dsof a set § = {w,, ..., wy} of points.

FIGURE 1. (a) The Voronoi diagram of a set of points. (b) The
Delaunay triangulation that corresponds to the Voronoi diagram
in (a).
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w; € NP is defined by the graph whose vertices are the
w; and whose adjacency matrix A, A; € {0, 1},i,j =
1, ... N carries the value one iff V; N V; # &. Two
vertices w;, w; are connected by an edge iff their Voronoi
polyhedra V;, V; are adjacent. An illustration of the
planar case is given in Figure 1b, where the Delaunay
triangulation that corresponds to the Voronoi diagram
of Figure la is shown. In a plane, each edge of the
Delaunay triangulation corresponds to an edge of the
Voronoi diagram, and the two corresponding edges are
always perpendicular to each other.

A number of theorems about properties of the Vo-
ronoi diagram and the Delaunay triangulation are
known (see, e.g., Preparata & Shamos, 1985). However,
most of them are valid or at least can be proven only
in the planar case, for D = 2. In higher-dimensional
embedding spaces 2, D > 2, only little is known so
far, One reason is that only for D = 2 the Voronoi
diagram and the Delaunay triangulation are planar
graphs and, therefore, only for D = 2 Euler’s formula
can be applied (Bollobas, 1979). Euler’s formula pro-
vides the important result that in the planar case the
number of edges of the Voronoi diagram as well as of
the Delaunay triangulation does not exceed 3N — 6
and, hence, the Voronoi diagram and the Delaunay
triangulation can be stored in only linear space (linear
in the number of vertices N). Further, due to this result,
both structures are transformable into each other in
only linear time.

Constructing the Delaunay triangulation in a pre-
processing stage yields a starting point for efficiently
solving proximity problems. It can be shown that if the
Delaunay triangulation of a given set of points S is
known, the above stated and other proximity problems
can be solved with at most linearly increasing com-
putational effort. The triangulation problem, for ex-
ample, is obviously already solved with the construction
of the Delaunay triangulation and does not need further
computation.! The computation time needed for find-
ing the Euclidean minimum spanning tree is reduced
significantly because the edges of the Euclidean mini-
mum spanning tree are a subset of the edges of the
Delaunay triangulation (Shamos, 1978). Knowing the
Delaunay triangulation, it only requires @ (N) instead
of O(N log N) time for its construction. The nearest-
neighbor and k-nearest-neighbor search can be per-
forméd in only @ (log N) instead of @(N) time by ex-
ploiting the Delaunay triangulation (Knuth, 1973).

In the following section we will introduce a Hebbian
adaptation rule that, within a network of neural units,
yields interneural connections corresponding to the

-t Solving the triangulation problem by means of the Delaunay
triangulation has advantages particularly in function interpolation.
When a function is approximated piecewise-linear over the facets of
atriangulation, the Delaunay triangulation yields a smaller worst case
error than any other triangulation (Omohundro, 1990).
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Delaunay triangulation. In Section 3 we will explain
the concept of topology preserving feature maps. We
will introduce the term masked Voronoi polyhedron
and show how these masked Voronoi polyhedra provide
a rigorous definition for the terms neighborhood and
topology preserving maps. This leads to induced De-
launay triangulations as the graphical structure that
provides perfect topology preservation. We will show
that the Hebbian adaptation rule of the following sec-
tion forms induced Delaunay triangulations and, hence,
is able to form perfectly topology preserving maps also
of topologically intricately structured manifolds, for
example, of manifolds that are disconnected and/or
piecewise 0-, 1-, 2-, etc., dimensional. In Section 4 we
will show that the induced Delaunay triangulations
provided by the Hebbian adaptation rule yield path
preserving representations and allow one to describe,
classify, and plan paths on manifolds. These induced
Delaunay triangulations, which reflect the topology and,
at the same time, form perfectly topology preserving
maps and path preserving representations of given
manifolds, we call topology representing networks
(TRN). In the last section we will present a compact
algorithm, derived from the Hebbian adaptation rule
of the next section, which constructs TRNs.

2. HEBBIAN ADAPTATION RULE FORMS
DELAUNAY TRIANGULATIONS

In the following we assume a set of neural units i, i =
1, ..., Nthat can develop /ateral connections between
each other. A neural unit connects itself with another
unit by developing a synaptic link to this unit. The
lateral connections are described by a connection
strength matrix C with elements C; € 3. The larger
a matrix element Cj;, the stronger is the synaptic link
from unit i to unit j. Only if C; > 0, we regard neural
unit { as being connected with unit j. If C; = 0, neural
unit / is not connected with unit j. Negative values for
C,; do not arise.

The basic principle that governs the change of in-
terneural connection strength, at least in parts of the
hippocampus (Kelso, Ganong, & Brown, 1986), was
first formulated by Hebb (1949). According to Hebb’s
postulate, a presynaptic unit i increases the strength of
its synaptic link to a postsynaptic unit j if both units
are concurrently active, that is, if both activities do cor-
relate. A variety of quantitative formulations of this
conjunctive mechanism have been proposed, for ex-
ample, for modeling Pavlovian conditioning (Gross-
berg, 1974), motor learning (Marr, 1969), or associa-
tive memory (Palm, 1982; Kohonen, Oja, & Lehtio,
1985). In its simplest mathematical formulation Hebb’s
rule is described by the equation

ACj o y; 0y, (2)
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in which the change of the strength Cj; of the synaptic
link from unit  to unit j is linearly proportional to the
presynaptic activity y; and to the postsynaptic activity
y; (see, e.g., Cooper, 1973). The quantities y;, i = |,
..., N denote the output activities of the neural units.
More realistic and detailed mathematical descriptions
of Hebb’s postulate take temporal aspects and the sto-
chastic nature of the output activities of neurons into
account. Also, it may be necessary to add a decay term
to keep the strength of the synaptic links bounded.

Different neural network models have employed dif-
ferent realizations of Hebb’s postulate, depending on
the adaptation rules required to achieve the desired
information processing task: We will employ the Hebb
rule in a form that incorporates the novel aspect of
competition among the synaptic links. We assume that
to each neural unit / a weight vector w; € R? is assigned.
Further, we assume that each neural uniti,i=1,...,
N receives the same external input patterns v € R2.
The weight vector w; determines the center of the re-
ceptive field of unit / in the sense that with the reception
of an input pattern v the output activity y; of unit / is
the larger the closer its w; is to v. In mathematical terms,
we assume that y; = R(||v — w;|]) is valid, with R(-)
being a positive and continuously monotonically de-
creasing function (e.g., a Gaussian).

If we apply the Hebb rule in the simple form given
by eqn (2), we obtain for the change of the strength of
the lateral connections C;; with the presentation of an
input pattern v

ACj oc R(Jlv = will) - R(llv — w;]l). (3)

Asymptotically, that is, with the sequential presentation
of many input patterns v € 2, the C;j’s are determined
by the integral of eqn (3) over the given pattern distri-
bution P(v). If we assume a pattern distribution that
is homogeneous over 2, we obtain

AC (= @)« [y RCY = wi- RCly = wil) dv. (4)

Hence, employing the Hebb rule in the simple form as
given in eqn ( 2) yields the rather trivial result that each
neural unit / develops connections to all the other units
J # i, with lateral connection strengths C; that are sim-
ply proportional to the overlaps of the receptive fields
R(llv — w;ll) and R(}lv — w;||). The strength of the
synaptic link between two units / and j is simply mono-
tonically and continuously decreasing with the distance
between w; and w;.

As in many systems governed by self-organizing
processes, the connectivity pattern that evolves on the
set of neural units becomes significantly more struc-
tured if we introduce competition. In a winner-take-
all network, for example, the units compete with each
other based on their output activities, which finally leads
to an adaptation only of the weights of the unit with
the highest output activity (see, e.g., Grossberg, 1976).
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Without competition, all the units would behave alike
and no specialization of the units, as it is characteristic
for winner-take-all networks, would evolve.

Analog to the competition among the units in a win-
ner-take-all network we introduce competition among
the synaptic links. Instead of being based on the output
activities of the neural units itself, as in a winner-take-
all network, in our model the competition among the
synaptic links is determined by what we want to call
the correlated output activities Yj;, the correlations of
the output activities of all pairs of pre- and postsynaptic
units. In the quantitative formulation given below, the
correlated output activities are determined by Y; =
¥i* ¥, according to the Hebb rule (2). Keeping the
analogy to winner-take-all networks, with the presen-
tation of an input pattern v we only modify the synaptic
link i — j whose activity Y;; = y; - y; is highest. Instead
of changing the connection strengths Cj; according to
the Hebb rule (2), in the following we will employ a
winner-take-all or competitive version of eqn (2), de-
termined by

viey; if yieyizveny VkI=1,...,N

AClj oC .
0 otherwise.

(5)

We will show that, instead of connecting each unit
with all the other units, the competitive Hebb rule (5)
forms a connectivity structure among the neural units
i,i=1,..., N that corresponds to the Delaunay trian-
gulation of the weight vectors w, .. ., wy. More pre-
cisely, we will show that if we present sequentially input
patterns v with a distribution P(v) that has support (is
nonzero) everywhere on R2, then the elements Cj; of
the connection strength matrix C obey asymptotically

0[Ci(t > 0)]=4; i,j=1,...,N (6)

where 0(-) is the Heavyside step function and where
A are the elements of the-adjacency matrix A of the
Delaunay triangulation of the points w, . .., wy, for
which

Lif VinV;#+ & (V;, V;are adjacent)
0if Vi V;=@ (Vi, V;are not adjacent),
(7

is valid. V;, V; again denote the Voronoi polyhedra of
w;, w;, that is, in a winner-take-all network the receptive
fields of the units i, j.

Before we prove eqn (6), we first show how the com-
petitive Hebb rule for constructing the Delaunay trian-
gulation can be formulated in a very compact algo-
rithm. The correlated activity Y; = y; - y; is highest if
i (or j) denotes the neural unit with the largest output
and j (or i, respectively ) denotes the unit with the sec-
ond largest output. Because Y;; = Y}; is valid, there are
always two winning links, the strengths of which are

i

T". Martinetz and K. Schudten

changed by the same amount, that is, the strength of
the link from i to j as well as of the link from j to i.
Hence, the connection strength matrix Cj;is symmetric,.
and if we say “unit { is connected with unit j,” this
always implies that unit j is also connected with unit
i. Because we are interested in the graph defined by
the connections between the units, and because this
graph is completely determined by the adjacency ma-
trix A; = 6(Cy), in the following algorithm we will not
care about the absolute values of the C;’s, but will only
register whether a Cj; becomes nonzero.

The procedure for constructing the connections be-
tween the units i, j (i, j = 1, ..., N) can now be for-
mulated as follows:

(1) Set all connection strengths Cj; to zero;
(ii) Present an input pattern v € R? with probability
P(v);

- (iii) Determine unit i, for which

lv-well <lv-wil Vvj=1,...,N
and unit {; for which
H"—Wi.ﬂsn"“wj“ vj+10v j=11¢~-’N;

(iv) If Gy, = 0, set C;;, > O, that is, connect igand i,.
If Gy, > 0, leave Cy;,, unchanged. Continue with
(ii).

In Figure 2 algorithm (i)-(iv) is illustrated. Two
units {, j become connected iff their Voronoi polyhedra
Vi, V; are adjacent. To show rigorously that the adja-
cency matrix A; = 6(C;) of the connectivity structure
becomes equivalent to the adjacency matrix of the De-
launay triangulation Dj of the set of points S = (w,,

5

FIGURE 2. lliustration of the update rule for the connections
between the neural units. Each time an input pattern v is pre-
sented within the shaded area, which depicts the Voronoi poly-
gon V, of unit/, a connection from / to the unit j with its weight
vector w, second closest to the input pattern is established.
The numbers 1, ... ., 6 denote the subregions within the shaded
area for which the respective neighboring unit is second closest
to an input signal v € V,. Unit i develops connections only to
those units, the Voronoi polygons of which share an edge with

v its own Voronoi polygon.
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- - » Wx), we introduce the second-order Voronoi poly-
hedra Vi, i,j=1,..., N. The second-order Voronoi
polyhedron Vj is given by all the v € R? for which w;
and w; are the two closest points of S; that is, Vj is
defined by

={vERP|v—wl < lv—wdl Allv-wl
< lv—wdl Vk#i,j}. )

As ¥V, also Vj;forms a convex polyhedron. We see from
eqn (8) that algorithm (i)-(iv) connects two units i,
Jonly if V; # & is valid. We will prove that Vj; # &

is valid iff the corresponding first-order Voronoi poly-

hedra V;, V; are adjacent, that is, iff ¥; N V, ¥ &.
Then, in case [, P(v) dv # 0 holds for each Vj # &,
the connections gcneratcd by algorithm (i)-(iv) form
the Delaunay triangulation of the points w,, . . ., wy.2

THEOREM 1. Fora set S = {w, ..., wy} of points w;

€ R the relation _
NV+ D= Vit D %)

is valid for each pair i, j. V; denotes the first-order
Voronoi polyhedron of point w;, and V; denotes the sec-
ond-order Voronoi polyhedron of the points w;, w;.

Proof If V; N Vj # J is valid, there is a v € RP with
vE V; and v € V}. Then we obtain [lv — w;|| = v —
will < 1v—wd for all w; € S arid, therefore, v € V;,
thatis, Vy # J, is valid. m

If Vi # & is valid, there is a v € R for which the

points w; and w; are the two nearest neighbors. Without

loss of generality we assume that w; is the nearest
neighbor. Because for each u € ¥w; the point w;is either
the nearest or the second nearest neighbor of u, and
for u = v the point w; is closest and for u = w; the point
w; is closest to u, there is a u* € Vw; for which [Ju* —
w;| = [lu* — wll is valid. Hence, we obtain u* € V;
and u* € j» and, therefore, u* € ¥; N V), that is, ¥}
NV;# &, is valid.

In the following we will consider pattern distributions
P(v) that have support not on the entire embedding
space R2, but only on a submanifold M. In these cases,
for some V;# & the integral | v, P(v) dv might vanish,
with the result that the edge i —  will not be established
by the competitive Hebb rule. In these cases, the com-
petitive Hebb rule does not form the entire Delaunay
triangulation, but only subgraphs of it. We will show
that these subgraphs define topology preserving maps.

3. DELAUNAY TRIANGULATION AND
TOPOLOGY PRESERVING MAPS

The definition of the Delaunay triangulation as being
the graph that connects those points Wi, W) that have

2 The following theorem was formulated together with Philippe
Dalger and Bennoit Noél (Dalger et al., 1992).
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adjacent Voronoi polyhedra V;, V; makes this structure
ideally suited for a proximity problem of a different
type than the ones mentioned in the first section,
namely, for the formation of so-called topology pre-
serving feature maps. Topology preserving feature maps
play an important role as components in a variety of
natural as well as artificial neural information pro-
cessing systems (Knudsen, de Lac, & Esterly, 1987;

Kohonen, 1989; Ritter, Martinetz, & Schulten, 1992).
By projecting input patterns onto a network of neural

-units such that similar patterns are projected onto units

adjacent in the network and, vice versa, such that units

‘adjacent in the network code similar patterns, a rep-
‘resentation of the input patterns is achieved that in

postprocessing stages allows one to exploit the similarity
relations of the input patterns. Examples of topology
preserving feature maps in the nervous system are the
retinotopic map in the visual cortex (Hubel & Wiesel,
1974; Blasdel & Salama, 1986), the mapping from the
body surface onto the somatosensory cortex (Kaas et
al., 1979), or the tonotopic maps in the auditory cortex
(Suga & O’Neill, 1979). As components of artificial
neural information processing systems, topology pre-
serving feature maps have been applied successfully in
speech processing (Kohonen et al., 1984; Kohonen,
1990; Naylor & Li, 1988; Brandt, Behme, & Strube,
1991), image processing (Nasrabadi & Feng, 1988),
and robotics (Ritter & Schulten, 1986; Martinetz, Rit-
ter, & Schulten, 1990).

A topology preserving feature map is determined by
a mapping ¢ from a manifold M < R® onto the vertices
(neural units) i, i=1,..., Nof a graph (network) G.
The mapping from M to G is determined by pointers
w; ERP,i=1,..., N attached to the vertices i. A
feature vector v € M is mapped to the vertex i*(v),
the pointer w; e« of which is closest to v; that is, v is
mapped to the vertex i*( v) whose Voronoi polyhedron
Vi«(vy encloses v. The mapping & is completely deter-
mined by the pointer set § = {w,, ..., wy}, and we
can write

Ps:M—> G, VEM— [N(V)EG (10)

where i*(v) is determined by

Wiy = vl < llw; — vl VieG. (11)

The mapping &5 from M to G is neighborhood pre-
serving, if similar feature vectors, that is, v’s that are
close within the manifold M, are mapped to vertices i
that are close within the graph. This requires that
pointers w;, w; that are neighboring on the feature
manifold are assigned to vertices i, j that are adjacent
in the graph.} ‘

The inverse mapping $35' from the graph G onto
the manifold M is determined by

¢G> M, iEG—wWEM (12)
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FIGURE 3. A square-shaped manifold M mapped onto three
difterent graphs G. Each of the graphs consists of nine vertices
1, and the associated pointers w, are distributed regularly over
the square. The three different feature maps are visualized by
marking the pointer positions w; on the manifold M by dots and
connecting by lines those pointer positions w,, w; the cotre-
sponding vertices /, ] of which are adjacent in the graph G. In
(a) the graph is a string that only allows a neighborhood pre-
serving inverse mapping from G to M, but nota neighborhood
preserving mapping from M to G. Adjacent vertices are as-
signed to neighboring locations, but not all the pointers w, that
are neighboring on M belong to adjacent vertices. With this
graphical structure it is not possible to form a topology pre-
serving map of M. in (b) the graph G has a three-dimensional
structure. In this case the mapping from M to G, but not the
inverse mapping from G to M, is neighborhood preserving.
Pointers that are neighboring on M are assigned to adjacent
vertices, but not all the vertices that are adjacent in G are as-
signed to neighboring locations on M. Hence, as in (a), the
given graphical structure does not allow one to form a topology
preserving map of M. Only in (¢c) where the graph G is a square
fattice and matches the topology of M, both the mapping from
M to G and the inverse mapping from G to M are neighborhood
preserving. Only in this case does G form a topology preserving
map of M.

(we assume that all pointers w;, i = 1,..., N, lie on
M). Analog to neighborhood preservation of &,
neighborhood preservation of the inverse mapping
&35! is given if pointers w;, w; of adjacent vertices i, j
are neighboring on the manifold M.

The graph G with its vertices i assigned to the lo-
cations w; forms a topology preserving map of M, if
the mapping @5 from M to G as well as the inverse
mapping ®3! from G to Mis neighborhood preserving.
Only then G forms a map on which adjacent locations
(vertices ) correspond to features neighboring on M and,
vice versa, which represents features neighboring on
M by adjacent locations.

The question arises which type of graph G can pro-
vide a topology preserving map of a given manifold M.
Crucial is G's connectivity structure or topology com-
pared to the topology of M. This is demonstrated sche-

3 At this point we leave the definition of “adjacency of pointers
w; on a manifold M™ to the reader’s intuition, like in most contri-
butions on topology preserving feature maps. A rigorous definition
hased on Vofonoi polyhedra is given in the next section.
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matically in Figure 3. In each of the three cases that
are depicted the manifold M is simply a square, and
the graph G consists of nine vertices i, the associated
pointers w; of which are distributed regularly over the
square-shaped manifold. In Figure 3a the graph G has
a one-dimensional topology and consists of nine vertices
arranged as a string, compared to the two-dimensional
manifold M. In this case G cannot form a topology
preserving map of M. All it can achieve is a neighbor-
hood preserving inverse mapping ¢~' from G to M.
In Figure 3b we have the opposite case. The dimen-
sionality of G is higher than the dimensionality of M.
The result is that a neighborhood preserving mapping
& from M to G is possible, but not a neighborhood
preserving inverse mapping &~! from G to M. Herice,
as in (a), G is not able to form a topology preserving
map of M. In Figure 3c the topology of the graph G is
a square lattice and corresponds to the topology of the
manifold M. Only in this case does G form a topology
preserving map of M; that is, the mapping ® from M
to G as well as the inverse mapping ®~' from G to M
is neighborhood preserving.

A number of neural network models for adaptively
forming topology preserving feature maps have been
proposed (Willshaw & von der Malsburg, 1976; von
der Malsburg & Willshaw, 1977; Takeuchi & Amari,
1979; Kohonen, 1982a, b; Durbin & Mitchison, 1990).
A model that provides a very compact procedure and,
therefore, has found widespread application in artificial
neural information processing systems is Kohonen’s
self-organizing feature map (Kohonen, 1982a, b, 1989,
1990). This algorithm requires that one first chooses
a graph G, usually a one-, two-, or three-dimensional
lattice. In a subsequent adaptation procedure, the
pointers w; are distributed over the given feature man-
ifold M in such a way, that (i) pointers lie only on M,
and (ii) pointers of vertices adjacent in G are assigned
to locations close on M. Hence, Kohonen’s algorithm
tries to form a neighborhood preserving inverse map-
ping &~ from G to M, but not necessarily a neigh-
borhood preserving mapping ® from M to G. To obtain
a topology preserving map, the topological structure of
the preset graph G has to match the topological struc-
ture of the given manifold M.

Figure 4 illustrates three examples of different maps
that evolve with Kohonen’s algorithm, depending on
the degree of mismatch between the topological struc-
ture of the preset graph G and the given manifold M.
In all three examples, the manifold M is a submanifold
of 12, In Figures 4a, b, the manifold M again is a square,
like in Figure 3. In Figure 4c the manifold M is dis-
connected and piecewise one- and two-dimensional. In
Figure 4a the preset graph G is a two-dimensional fattice
and, hence, the topology of the given manifold and the
graph do match. As we can see, in this case Kohonen’s
self-organizing feature map algorithm provides a to-
pology preserving map. In Figure 4b the topology of
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FIGURE 4. Maps of manifolds formed by Kohonen's self-or-
ganizing feature map algorithm. In (a) the graph G, a square
lattice, has a topology that corresponds to the topology of the
square-shaped feature manifold M. Hence, the map that evolves
is topology preserving. in (b) the given manifold M again is a
square; however, this time the graph is a string and does not
correspond topologically to M. With this graph it is not possible
to achieve a topology preserving map, and the Kohonen al-
gorithm can only form a neighborhood preserving inverse
mapping &' from G to M, but not a neighborhood preserving
mapping & from M to G. Part (c) shows an example of very
high topological mismatch between M and G. The given man-
ifold M is disconnected and consists of a two-dimensional (a
rectangle and a square) and a one-dimensional (a line and a
circle) submanifold; the graph G is a square-lattice. Again no
topology preservation is possible. In this case the Kohonen
algorithm neither achieves a neighborhood preserving mapping
& from M to G nor a neighborhood preserving inverse mapping
&' fromG to M.

the given manifold and of the graph do not match. The
graph is a one-dimensional string of vertices, in contrast
to the two-dimensional feature manifold. As shown
schematically in Figure 3a, becausé of this mismatch
topology preservation is not possible, and Kohonen’s
algorithm can only provide a neighborhood preserving
inverse mapping ¢! from G to M. Figure 4c finally
shows an example where the topological structure of
the graph G and the given manifold M mismatch to an
extent that neither a neighborhood preserving inverse
mapping &~ from G to M nor a neighborhood pre-
serving mapping ® from M to G can be achieved by
Kohonen's algorithm. The graph G is again a two-di-
mensional lattice. The given manifold M, however, has
a relatively intricate topological structure. It consists of
a combination of two-dimensional and one-dimen-
sional partially disconnected submanifolds. The two-
dimensional submanifold is formed by a rectangle and
a square. The one-dimensional submanifold consists of
a circle and a connecting line between the rectangle
and the circle. Figure 4c shows that in this case some
vertices that are adjacent in G are assigned to locations
remote on the manifold M, and, vice versa, feature vec-
tors adjacent on A/ may be mapped onto vertices remote
in G. Obviously, the topology preservation of the map
is highly disturbed.

In Figure 3 we have demonstrated schematically that
topology preserving maps are only possible if the to-
pological structure of the graph G matches the topo-
logical structure of the given manifold M. The Kohonen
algorithm starts from a prespecified graph G. The three

513

examples of Figure 4 demonstrate that Kohonen'’s al-
gorithm tries to form a neighborhood preserving inverse
mapping from G to M and indeed succeeds in con-
structing a topology preserving map, if the topological
structure of the preset graph G matches the topological
structure of the manifold M. In cases, however, where
it is not possible to a priori determine an appropriate
graph G, for example, in cases where the topological
structure of M is not known a priori or is too compli-
cated to be specified, Kohonen’s algorithm necessarily
fails in providing perfectly topology preserving maps.
An application where the topological structure of M
is not known and, at the same time, a perfectly topology

- preserving map of M is essential for optimal perfor-

mance, is in speech recognition as described in Brandt
et al. (1991). In their word recognition scheme each
word is described by a sequence of 19-dimensional fea-
ture vectors, with each feature vector describing the
frequency spectrum at a different time step. Hence, a
word is a trajectory in a 19-dimensional input space,
given typically by a sequence of 40-50 feature vectors.
The feature vectors that occur with the spoken words
form a lower-dimensional submanifold Af within the
19-dimensional input space. By constructing a topology
preserving map of the manifold M, as it was first de-
scribed by Kohonen et al. (1984), each word can be
represented by a trajectory within the graph G, that is,
by a sequence of active nodes. Interestingly, it turns out
that a classification of the words based on their trajec-
tories in G yields a significantly increased performance
compared to a classification based on their trajectories
on M. To obtain optimal performance in this word
recognition scheme, the topological structure of G has
to match the topology of the feature manifold M. This
manifold, however, has a topological structure that is
complicated and not known. Its average dimension, for
example, seems to lie between two and three (Bauer &
Pawelzik, 1992).

Another application where only a neighborhood
preserving mapping from M to G together with a
neighborhood preserving inverse mapping from G to
M, that is, a perfectly topology preserving map of M,
provides optimal results is in representing and learning
input-output relations with topology preserving maps,
for example, in robotics (Ritter & Schulten, 1986;
Martinetz et al., 1990). For representing input-output
relations, to each vertex i of G an output quantity a; is
assigned. The a;'s determine the output of the map for
a given input vector v. It can be shown that a robust
and fast learning procedure for the a;’s can only be
obtained if the graph G preserves the neighborhood
relations of the input manifold, which then allows a
concerted adaptation of the output quantities of adja-
cent vertices (Ritter et al., 1992). Only if adjacent ver-
tices are assigned to locations neighboring on the input
manifold, the learning process will be successful. The
learning procedure is optimized if, also, all the pointers
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w; that are neighboring on the input manifold corre-
spond to adjacent vertices. This is valid iff the map of
the input manifold is perfectly topology preserving. In
many applications, however, the input manifold is a
submanifold of a high-dimensional input space and may
neither be known a priory nor topologically simple
enough for prespecifying a correspondingly structured
graph.

For the applications described above it would be
highly desirable to have a procedure that adapts the
topology of the graph G to the topology of the given
manifold M or, at least, to have a means by which one
can decide whether a chosen graph is appropriate for
forming a topology preserving map of a given manifold.
An approach of the first kind has been proposed by
Kohonen and coworkers (Kangas, Kohonen, & Laak-
sonen, 1990). The idea of this approach is (i) to de-
termine the minimum spanning tree between the points
w; at different stages of their adaptation process and
(ii) to take the resulting minimum spanning tree as the
graph G that is appropriate at the respective stage. Be-
cause the w;’s at the end of the adaptation procedure
are distributed only over the manifold M, the final
minimum spanning tree will reflect at least some of
the topological properties of M. The definition of the
minimum spanning tree, however, only requires adja-
cent vertices i to be assigned to neighboring locations
w;, not vice versa. Pointers w; that are adjacent on M
might very well belong to remote vertices. Therefore,
except for special cases, this approach is not able to
provide a perfectly topology preserving map. In general,
only the inverse mapping & ! from G to M but not the
mapping ® from M to G will be neighborhood pre-
serving. ‘

Another approach of the first kind has been intro-
duced by Fritzke (1991). His approach employs two-
dimensional, triangular cell structures that are distrib-
uted over the manifold M. By selectively adding and
removing cells, based on a heuristic criterion that takes
a cell’s average description error into account, graph
is formed that resembles the shape of the manifold M.

An approach of the second kind for obtaining an
appropriate graph G has been proposed by Bauer and
Pawelzik (1992). They employ the so-called topo-
graphic product as a means to determine the degree to
which a particular graphical structure is able to preserve
the neighborhood relations of a given manifold. By
testing, for example, one-, two-, or three-dimensional
lattices, one can finally choose the one that preserves
the neighborhood relations best.

In the next section we will introduce a novel ap-
proach to the problem of constructing topology pre-
serving maps, an approach of the first kind based on
the Delaunay triangulation. Because the Delaunay
triangulation connects those vertices i the assigned
pointers w; of which are adjacent by having neighboring
Voronoi polyhedra ¥;, this structure is ideally suited
for this purpose. The approach taken is opposite to that

T. Martinetz and K. Schulten

of Kohonen’s self-organizing feature map. Not the
graph G but the pointers w; are prespecified, for ex-
ample, by using a vector quantization procedure that
distributes them over M. Subsequently, the appropriate
edges between the w;’s are constructed for forming a
graph G that defines a perfectly topology preserving
map of the given manifold M.

3.1. Definition of Topology Preserving Maps

In the previous section the definition of neighborhood
preservation of a mapping & from M to G or of an
inverse mapping ¢! from G to M was, like in most
contributions on topology preserving feature maps, not
rigorous. The problem is that adjacency of vertices i
in a graph G is clearly defined, a proper definition for
adjacency of pointers w; on M, however, is not obvious.
This is why the definition of neighborhood preservation
of feature maps has usually been left to the reader’s
intuition. )

An exception is the trivial one-dimensional case.
Obviously, two points w;, w; in R are neighboring if
there is no point w, in between. Expressed in terms of
Voronoi polyhedra, an equivalent definition is: two
points w; ,w;in Rt are neighboring if their Voronoi poly-
hedra are adjacent, that is, if V; N V; # . In these
terms a generalization to higher-dimensional embed-
ding spaces R is straightforward. However, because we
are interested in a definition of neighborhood of points
on a manifold M, we introduce the masked Voronoi
polyhedron. The masked Voronoi polyhedron VM s
the part of V; that is also part of M, that is, Vﬁ” ) =
V; N M. The superscript indicates the dependence of
the masked Voronoi polyhedron on the given manifold
M. By using the neighborhood of the masked Voronoi
polyhedra VﬁM’, V; ") instead of the neighborhood of
the Voronoi polyhedra V;, V; for determining neigh-
borhood of points w;, w; on M, we ensure that two
points w;, w; are called adjacent on M only if they do
not belong to disconnected regions of M. This leads to
the following definition:

DEFINITION 1. Let M < RP be a given manifold and S
={w,, ..., wn} beaset of points w, € M. The Voronoi
polyhedra of S are denoted by V;, i =1, ..., N. Two
points w;, w; € M = R are adjacent on M if their
masked Voronoi polyhedra v™ =y, NnM, V}M) =
V, 0\ M are adjacent, that is, if V™ and V™ share
an element v € M or, equivalently, if V" Qv #
& is valid.
Each masked Voronoi polyhedron is a part of the man-
ifold M, and, instead of forming a complete partitioning
of the embedding space R” like the Voronoi polyhedra,
the masked Voronoi polyhedra form a complete
partitioning only of the manifold M, that is, M =
UN, VM s valid.

Analog to the definition of the Delaunay triangu-
lation D, which is based on the Voronoi polyhedra,
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we define the induced Delaunay triangulation D$"
through the masked Voronoi polyhedra:

DEFINITION 2. Let M < R® be a given manifold and S
={w,,...,wy} beasetof, (pomls w; € M. The induced
De[aunay triangulation DM Yof S, given M, is deter-
mined by the graph that connects two eomts w;, W, iff
their masked Voronoi polyhedra V¢ M are ad-
Jjacent, that is, by the graph whose adjacency matrix
A 4;€{0,1},i,j= , N has the property

Ay=1e Vg”’n riMe g (13)

It is clear from the definition that the induced Delaunay
triangulation forms a subgraph of the Dclaunay trian-
gulation.

With these definitions the terms nc1ghborhood pre-
serving mapping, neighborhood preserving inverse
mapping, and topology preserving map can be for-
mulated rigorously:

DEFINITION 3. Let G be a graph (network) with vertices
(neural units) i, i= 1, ..., N and edges (connections)
defined by an adjacency matrzx A, 4; € {0, 1}. Let
M < RP be a given manifold of a D-dzmenszonal
embedding space and S = {w,, ..., wy} be a set of
pointers w; € M each of which is attached to a vertex
i of the graph G. A mapping &5 from M to G, defined
by

bs: M— G,
with i*(v) as the vertex for which v € V,.(,, is valid,
is neighborhood preserving, if pointers w;, w; that are

adjacent on M are assigned to vertices i, j that are ad-
Jjacent in G.

VEMw i*V)EG (14)

DEFINITION 4. Let G be a graph with vertices i, i = 1,
..., N and edges defined by an adjacency matrix A,
A;€ {0, 1}. Let M = R be a given manifold of a D-
dimensional embedding space and S = {w, ..., wy}
be a set of pointers w; € M each of which is attached
to a vertex i of the graph G. The inverse mapping ®3'
Jrom G to M, defined by

&5': G M,

is neighborhood preserving, if vertices i, j that are ad-
Jacent in G are assigned to locations w;, w; that are
neighboring on M.

iEG'_’WIEM, (15)

DEFINITION 5. Let G be a graph with vertices i, i = 1,
... N and edges defined by the adjacency matrix A,
A, € {0, 1}. Let M < RP be a given manifold of a D-
dimensional embedding space and S = {w,, . .., wy}
be a set of pointers w; € M each of which is attached
to a vertex i of the graph G. The graph G with its vertices
i assigned to the locations w; € M forms a perfectly
topology preserving map, iff the mapping ®s from M
to G as well as the inverse mapping ®3' from G to M
is neighborhood preserving.
In Figure 5 the above definitions are illustrated. In Fig-
ure 5a—d the given manifold M, which is disconnected,
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is depicted by the two shaded areas. In Figure 5a the
graph G is the Delaunay triangulation, which connects
points w; that have adjacent Voronoi polygons V;. Ac-
cording to the above definitions the mapping from M
to G is neighborhood preserving, but the inverse map-
ping from G to M we do not consider as being neigh-
borhood preserving. Some vertices that are connected
in the graph are assigned to points that belong to dis-
connected regions of M, that is, are assigned to masked
Voronoi polygons that are not adjacent. In Figure 5b,
G is a subgraph of the Delaunay triangulation in (a)
and defines a neighborhood preserving inverse mapping
from G to M but not a neighborhood preserving map-
ping from M to G. Vertices connected in G are assigned
to masked Voronoi polygons that are adjacent; however,
masked Voronoi polygons that are neighboring are not
necessarily assigned to adjacent vertices. In Figure 5¢
the graph G is the minimum spanning tree of the set
of points w;, as it would be suggested by the approach
of Kangas et al. (1990). The minimum spanning tree
also forms a subgraph of the Delaunay triangulation
in (a). With the minimum spanning tree neither the

FIGURE 5. lllustration of our definition of neighborhood pre-
serving mappings. In the four examples the given manifold M
is disconnected and depicted by the two shaded areas. in (a)
the graph G is the Delaunay triangulation of the pointers w,
(see Figure 1). The resuiting mapping from M to G is neigh-
borhood preserving; however, the mapping from G to M we do
not consider as being neighborhood preserving because some
neighboring vertices belong to masked Voronoi polyhedra that
are not adjacent. in (b) the graph G is a subgraph of the De-
launay triangulation and defines a neighborhood preserving
inverse mapping from G to M, but not a neighborhood pre-
serving mapping from M to G. In (c) the graph G is the minimum
spanning tree for which neither the mapping from M to G nor
the inverse mapping from G to M is neighborhood preserving.
In (d) the graph G is the induced Delaunay triangutation. The
mapping from M to G as well as the mapping from G to M is
neighborhood preserving. Pointers and only pointers the Vo-
ronoi polygons of which are adjacent on M, that is, pointers
the masked Voronoi polygons of which are adjacent, are con-
nected. In this case the graph G forms a perfectly topology
preserving map that reflects the topological structure of the
given manifold M.
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mapping from M to G nor the inverse mapping from
G to M is neighborhood preserving. In Figure 5d the
graph G is the induced Delaunay triangulation of the
set of points w; and isagain a subgraph of the Delaunay
triangulation in (a). With the induced Delaunay trian-
gulation the mapping from M to G as well as the inverse
mapping from G to M is neighborhood preserving. Two
vertices are connected by an edge iff their masked Vo-
ronoi polygons are adjacent. Only in Figure 5d does
the graph G form a perfectly topology preserving map
of the given manifold M.

It is not surprising that the Delaunay triangulation
and the minimum spanning tree in general do not de-
fine a perfectly topology preserving map of M. Both
graphs are determined only by the set of points S=
{wy,...,wn}. The topology of the manifold M influ-
ences both graphical structures only very indirectly.
Only through the condition that each w; lies on M does
the given manifold shape the Delaunay triangulation
or the minimum spanning tree. This is different for the
induced Delaunay triangulation. The induced Delau-
nay triangulation is defined throu%h the adjacency of
the masked Voronoi polyhedra V ,M) =V, N M. Be-
cause each masked Voronoi polyhedron is completely
a part of M, the adjacency of these parts carries im-
mediate information about the topological structure of
the manifold M.

The above considerations and definitions lead to the
following theorem:

THEOREM 2. Let G be a graph (network) with vertices
(neural units)i,i=1,..., N and edges (connections)
defined by an adjacency matrix A, 4; € {0, 1}. Let
M < RP be a given manifold of a D-dimensional
embedding space and S = {wy, ..., wy} be a set of
pointers w; € M each of which is attached to a vertex
i of the graph G. The graph G with its vertices i assigned
10 the locations w; on M forms a perfectly topology pre-
serving map of M, iff the graph G is the induced De-
launay triangulation DM of 8.

Proof. The proof'is straightforward. If G is the induced
Delaunay triangulation .‘ngM ) of S, vertices i, j that are
~adjacentin G (4;= 1 ? are-assigned to masked Voronoi
polyhedra ¥ {*, V™ that are neighborinn% on 1\{1 and,
vice versa, masked Voronoi polyhedra Vf~ ) Vj- ) that
are neighboring on M belong to vertices I, j that are
adjacent in G. Then the mapping ®s from M to G as
well as the inverse mapping ®5' from G to M are
neighborhood preserving, nd, hence, the induced De-
launay triangulation D sM ) of S forms a perfectly to-

_pology preserving map of M.

" Ifthe graph G forms a perfectly topology preserving
map of M, then the mapping ®5 from M to G as well
as the inverse mapping ®5' from G to M are neigh-
borhood preserving. This is valid if vertices i, j that are
adjacent in G (A4; = 1 2 are assigned to masked Voronoi
polyhedra V E-M’, VﬁM that are neighboring on M, and
if masked Voronoi polyhedra v M that are
neighboring on M belong to vertices i, j that are ad-
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jacent in G. According to the definition, G is the in-
duced Delaunay triangulation DM ofS. =

3.2. Competitive Hebbian Rule Forms Perfect
Topology Preserving Maps

The competitive Hebb rule constructs the full De-
launay triangulation of a set of points wy, . . ., Wy only
if each Voronoi polyhedron of second-order V; is, at
least partially, covered by the density distribution P(v).
If we define the manifold M as being the manifold of
R on which P(v) is nonzero, two units i, j become
connected iff V; N M # . Hence, if the manifold M
forms a submanifold that does not cover each Voronoi
polyhedron of second order, the Delaunay triangulation
will evolve only partly. If the distribution of the points
w; is dense on M in a sense we will define below, the
part of the Delaunay triangulation that is formed by
the competitive Hebb rule is the induced Delaunay
triangulation and, hence, provides a perfectly topology
preserving map of M.

DEFINITION 6. Let S = {W,, . . ., wn} be a set of points
w; that are distributed over a given manifold M < RP,
The distribution of the pointsw, EM, i=1,..., Nis
dense on M, if for each v € M the triangle A(v, Wi,
w;,) formed by the point Wi, that is closest to v, the point
w;, that is second closest tov, and v itself lies completely
on M, that is, if D(v, Wi, W, ) S M is valid.

A distribution of points w; is dense on M according
to the above definition, if the distribution is dense com-
pared to the structural details of M. A dense distri-
bution of the points w; resolves the topological structure
of M. If for each sample point v € M there is a closest
point w;, and a second closest point w;, such, that the
triangle A(v, w;,, W;,) lies completely on M, the distri-
bution of the w;’s is dense on M according to Definition
6. If the distribution is homogeneous, the distribution
becomes dense simply by increasing the number Nof
points w;.

With Definition 6 we obtain the main theorem of
this section:

THEOREM 3. Let S = {wy, ..., wy} beaset of points

"w; that are distributed over a given manifold M. If the

distribution of the points w; € M is dense on M, then
the graph G that is formed by the competitive Hebb rule
is the induced Delaunay triangulation DM of S and,
hence, forms a perfectly topology preserving map of M.

Proof. Analog to Theorem | we prove the above theo-
rem by showing that

v A Mt Z eVt D (16)

is valid, with V' = ¥; 0 M as the masked Voronoi
polyhedron of second order.

it V™ A v £ s valid, there is a v € M with
y € V; and v € V;. Then we obtain v —will = llv—
w,-)l < |lv — wl| for all w, € S, and, therefore, v €
Vi Vis valid.
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If VM # & is valid, there is a v* € v with
A(v*, w;, W;) & M, because the distribution of the
pointers wy, ..., Wn is dense on M. For each v €
v the points w; and w; are the two nearest neighbors.
Without loss of generality we assume that for v* the
point w; is the nearest neighbor. Because for each u €
v*w; the point w; is either the nearest or the second
nearest neighbor of u, and because for u = v* the point
w; is closest and for u = w; the point w; is closest to u,
there is a u* € v*w; for which Jlu* — will = Jlu* —
w;|| is valid. Hence, we obtain u* € ¥;, u* € ¥}, and
u* € A(v*, wi, W) e M, which yields M N (V; N V)
# (& or, equivalently, My jM '+ . =

With the theorem above we have shown that the -

competitive Hebb rule forms perfectly topology pre-
serving maps, supposed the distribution of the points
w; is dense on the given manifold. In Figures 6 and 7
we show two simulation examples. In Figure 6 the
manifold M consists of a three-dimensional (right par-
allelepiped), a two-dimensional (rectangle), and a one-
dimensional (circle and connecting line) submanifold.
Initially, the pointers w; are distributed randomly within
the space that embeds M, that is, w; € M is not valid
necessarily. To obtain w; € M foreachi,i=1,...,
N the pointers are distributed by employing the neural
gas algorithm. The neural gas algorithm is an efficient,
pattern driven vector quantization procedure and leads
to a homogeneous distribution of the pointers w; on M
(Martinetz & Schulten, 1991; Martinetz, Berkovich, &
Schulten, 1993).

Simultaneously to distributing the pointers the con-
nections are formed. With each presentation of an input
pattern v € M a cycle of the competitive Hebb rule as
well as of the neural gas algorithm is performed. Figure
6 shows the initial state, the network after 5000, 10,000,
15,000, 25,000, and at the final state after 40,000 ad-
aptation steps. The pointers w; change their locations
slowly but permanently and, therefore, pointers that
are neighboring at an early stage of the adaptation pro-
cedure might not be neighboring anymore at a more
advanced stage. Those connections that were formed
in the early stage and are not valid anymore in a later
stage should die out. For that reason the competitive
Hebb rule not only establishes but also refreshes con-
nections. Connections that have not been refreshed for
a while die out and are removed. The algorithm that
results from combining the competitive Hebb rule with
the neural gas algorithm is listed in Section 5.

At the end of the adaptation procedure, after the
random presentation of 40,000 input patterns v € M,
the connectivity structure corresponds to the induced
Delaunay triangulation of the final pointer distribution
and forms a perfectly topology preserving map that re-
flects the dimensionality and topological structure of
the given manifold M.

In Figure 7 the manifold M is a torus. In this sim-
ulation example the pointers were distributed over M
in a preprocessing stage, again by the neural gas algo-
rithm. After having distributed the pointers, the con-
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FIGURE 6. The competitive Hebb rule together with the neural
gas algorithm forming a topology preserving map of a topo-
logically heterogeneously structured manifold. The given man-
ifold M consists of & three-dimensional (right paralielepiped),
a two-dimensional (rectangie), and a one-dimensional {circle
and connecting line) subset. The neural gas algorithm as an
efficient input driven vector quantization procedure distributes
the pointers w, over the manifold M. With each presented pat-
tern v € M the competitive Hebb rule establishes or refreshes
an edge of the induced Delaunay triangulation. Depicted are
the initial state, the network after 5000, 10,000, 15,000, 25,000,
and at the final state after 40,000 adaptation steps (from top
teft to bottom right). At the end of the adaptation procedure
the network (graph) forms a perfectly topology preserving map
that reflects the topological structure and the dimensionality
of the manifold M.

nectivity structure is formed by the competitive Hebb
rule. In contrast to the simulation example shown in
Figure 6, the pointers stay fixed at their locations while
the connections are formed. Therefore, each connection
is definite and does not have to be refreshed. Depicted
is the final result. Again, as in Figure 6, the connectivity
structure forms a perfectly topology preserving map
and reflects the dimensionality and topological structure

of the manifold M.

4. COMPETITIVE HEBBIAN RULE FORMS
PATH PRESERVING REPRESENTATIONS
OF MANIFOLDS

If the distribution of the set S of points w; is dense on

the given manifold M, the competitive Hebb rule forms

the induced Delaunay triangulation D ) and, hence,
a perfectly topology preserving map of M, as stated in
Theorem 3. If the distribution of the points w; is dense

. . M
on M, the induced Delaunay triangulation DL has
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FIGURE 7. A topology preserving map of a torus, formed by
the competitive Hebb rule. The pointers, the locations of which
are marked by the large dots, were distributed over the given
manifold M, that is, the torus, by the neural gas algorithmina
preprocessing stage. Then the pointers stay fixed and the
edges are formed by the competitive Hebb rule. The small dots
depict already presented elements of M. The few edges of the
induced Delaunay triangulation that are still missing have small
masked Voronoi polyhedra of second order and would emerge
if further input patterns were presented.

the additional property that each edge W,w; < NP of
.‘D(s" /) lies completely on M. The union of all edges

Mg = {vE RP|v E w;w; with 4; = 1} 17

is a subset of M, that is, Ms € M is valid. This property
makes the competitive Hebb rule suited for forming
path preserving representations of given manifolds M.
With the following theorem we show that M reflects
the topology and forms a path preserving representation
of M in the sense that two points w;, w; are connected
by a sequence of edges W; W, WaW, .« -« » W, W; Of M5,
iff the points w;, w; can be connected by a path on M.

THEOREM 4. Let S be a set of points w; that are dis-
tributed densely over a given manifold M, and let A
denote the elements of the adjacenﬂz matrix A of the
induced Delaunay triangulation DM The union of all
edges of the induced Delaunay triangulation is denoted
by

Mg = {vE RP|v E W,W; with A; = 1}. (18)

My forms a path preserving representation of M in the
sense that two points w;, w; of M are connected within
M, iff they can be connected within M.

Proof. From Ms<c M it follows directly that two points
w;. w; that are connected within M can also be con-
nected within M. _

“The union of all Voronoi polyhedra V; forms the
embedding space R°, that is, U, Vi = NP, Therefore,
a path P(w;, w;) € M that connects the points w;, W;
runs through a sequence Vi = Vi, Vi, Vipy . - Vip=
V; of L + 1 neighboring Voronoi polyhedra; that is,
there is a sequence of Voronoi polyhedra Vi, ...,
Vi. Lz 1, with Vio = Vi, Vi = Vj, for which ¥;_, N
VN P(w;, w;) #  for each {=1,...,L.From P(w;,
w)) € Mand V,_ OV, 0 P(w;, w;) # & foreach [ =
1, ..., L follows V‘Ms n Vf-,M’ # f foreach | = 1,

i1
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..., L. Hence, there is a sequence of edges W;, Wy,
Wi Wips < v o Wi, Wi within My that connects w; and
w;,, B

’ Each path P(w;, w;) on the manifold M between
two points w;, w; € M can be mapped onto a best
matching path P'(w;, ;) wit~hin Mg, and, vice versa,
each path P(w;, w;) within M is also a path between
w; and w; on M. The path preserving representation
M; of the manifold M not only yields a discretization
of M, but also a discretization of the set of all paths on
M. This allows the representation, classification, and
planning of paths on M.

Figure 8 shows an example. In this computer sim-
ulation a “mouse” explores its environment that con-
sists of the square area with a number of obstacles in
it. While exploring the obstacle-free area by random
walk, the “mouse” establishes a path preserving rep-
resentation Mg (which always is a perfectly topology
preserving map) of its environment by employing the
competitive Hebb rule. At each time step the “mouse’s”
current location v, a two-dimensional vector, forms the
input signal for the network. The pointers w; attached
to the units (vertices) of a network (graph) are distrib-
uted over the given manifold M, that is, the obstacle-
free area (again by employing the neural gas algorithm).
The procedure for distributing the pointers and si-
multaneously forming the connections is the same as
the one employed in Figure 6 and is described in Section
5. The neural gas algorithm leads to a homogeneous
distribution of the pointers w; on M. Because the num-
ber of vertices is sufficient for obtaining a dense distri-
bution, at the end of the exploration procedure the
connectivity structure of the network (graph) corre-
sponds to the induced Delaunay triangulation that de-
fines both a perfectly topology preserving map and a
path preserving representation M of the obstacle-free
area M. Firstly, each edge W;w; of the connectivity
structure, that is, of the path preserving representation
Mj, lies completely within M, that is, within the ob-
stacle-free area. Secondly, any pair of points w;, w; is
connected within Ms by a sequence of edges W;Wy,
WiWh . . . , W, W), iff the points w;, w;can be connected
by a path on M, that is, a path through the obstacle- .
free area. Thjrdly, if a path between two points w;, W;
is short on Ms, it is also short on M. Because of these
properties of the path preserving representation Mg,
the network forms a representation or map of the ob-
stacle-free area that can be employed by the “mouse”
for planning short paths to target locations, as depicted
in Figure 8.

5. TOPOLOGY REPRESENTING
NETWORK (TRN)

This section presents the algorithm that has been em-
ployed in the computer simulations of Figures 6 and
8. This algorithm combines the neural gas algorithm
(Martinetz & Schulten, 1991; Martinetz et al., 1993),
for distributing the pointers w;, with the competitive
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FIGURE 8. A “mouse” (lower left comer) and the discrete, path preserving representation of the environment it has formed by
employing the competitive Hebb rule together with the neural gas algorithm. The dark areas are obstacles the “mouse" had to
circumvent while exploring its environment by random walk. Successive positions of the “mouse” formed the input patterns for
the network. The distribution of the pointer positions w,, which are marked as dots, is dense. Hence, the connectivity structure that
is formed by the competitive Hebb rule corresponds to the induced Delaunay triangulation and defines both a perfectly topology
preserving map and a path preserving representation M of the given manitold M, that is, the obstacle-tree area.* The path preserving
representation M; reflects the topology of the obstacle-free area and enables the “mouse” to plan short paths to target locations,

for example, the location marked by the circle.

Hebb rule, for forming the connections. Simultaneously
to distributing homogeneously the pointers w; over the
manifold M, the following procedure forms the induced
Delaunay triangulation of the pointer distribution.
Based on the results of the previous section we call this
procedure together with the resulting network topology
representing network or TRN.

Given is a manifold M c R? and a set of neural
units i, i = 1, ..., N. To each unit i a pointer w; €
NP is attached. The N X N connection strength matrix

C, C; € R§, describes the connections between the
units /, j. If C;;> 0, thereisa connection i — j between
unit i and unit j, and if C; = 0, there is no connection
between i and j. Each connection i — j has an age /;

“ A few edges are still missing because the corresponding masked
Voronoi polygons of second order have a small volume and, therefore,
have not been hit yet by an input pattern. Notice that the “mousc”
has a nonvanishing volume and, therefore, is not able to walk through
very narrow openings.
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that is the number of adaptation steps { the connection
already exists without having been refreshed. If the age
of a connection exceeds its lifetime T, the connection
is removed. Connections have to die out because point-
ers that are neighboring at an early stage of the adap-
tation procedure might not be neighboring anymore
at a more advanced stage. However, a connection does
not die out if it is regularly refreshed by the competitive
Hebb rule. This yields the following algorithm (Mar-
tinetz & Schulten, 1991):
(i) assign initial values to the pointers w; € RPi=
1, ..., Nand set all connection strengths Cj; to
Zero;
(ii) select an input pattern v € M with equal prob-
ability for each v;
(iii) for each unit i determine the number k; of units
j with
v = wil < v = wi

by, for example, determining the sequence (o,
ila ey iN—l) with

v = wall <lv=will <. <lv=wal;

(iv) perform an adaptation step of the pointers w;
according to the neural gas algorithm by setting

wie = wid + gre MMy —w), i=1,..., N,

(v) if Ciyy, = 0, set Cigiy > 0 and f;; = 0, that is,
connect ip and i. If C,'o,-' > 0, set Ligh = 0, that
is, refresh connection fo— 15
(vi) increase the age of all connections of io by setting
tioj = tl'oj + 1 for allj with Cioj> 0;
(vii) remove those connections of unit i the age of
which exceeds T by setting Cjp; = 0 for all j with
C,; > 0and ;> T continue with (ii).
In the simulations of Figures 6 and 8 the parameter
), the step size ¢, and the lifetime T were dependent on
the number of adaptatidn steps ! already performed.
This time dependence had the same form for all three
parameters and was g(¢) = £ (&//&i )!/tmax [ for example,
) = )\,-()\//A,)'/"""] with \; = 0.2N, A= 001,¢ =
0.3,¢=005T; = 0.IN, Ty = 2N, and [max = 200N.
In the simulation of Figure 6 the number N of pointers
w; was 200, and in the simulation of Figure 8 the num-
ber N was 500.

6. SUMMARY AND CONCLUSION

We showed that formal neural units i form connectivity
structures corresponding to Delaunay triangulations,
if the Hebb rule together with competition among the
connections is employed. Each neural unit / has to have
a localized receptive field within the feature space M.
By sequentially presenting patterns v € M and each
time connecting those two units , j that have the highest
correlated output activity y; - j, the Delaunay trian-
gulation Dg of the receptive field centers W; evolves.
Delaunay triangulations play an important role in 2
variety of information processing tasks. These tasks
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range from speech and image processing to robot con-
trol and the efficient storage and transfer of data. We
demonstrated that the Delaunay triangulation with its
significant role for information processing can be es-
tablished by a self-organizing neural network: a set of
formal neural units with lateral connections formed by
an input driven, Hebbian learning rule.

In many information processing tasks, neighborhood
and topological relations between patterns have to be
exploited. Topology preserving maps provide pattern
representations that are suitable for these tasks. To-
pology preserving maps can be found in various parts
of the nervous system, and as artificial neural network
models they have found widespread application (see,
e.g., Kohonen, 1990). Existing models of topology pre-
serving maps, however, are not able to provide perfect
neighborhood and topology preservation if the topo-
logical structure of the pattern manifold is not known
a priori or is intricate and not simply one-, two-, three-
dimensional etc. In fact, the most common approaches
choose a priori a graph that represents topological re-
lationships, for example, a two-dimensional grid, and
seek then the best match to the given pattern manifold.
The approach presented in this paper rather determines
such a graph, namely, an induced Delaunay triangu-
ation, through matching to the given pattern manifold.
This promises significant improvements in all appli-
cations where perfectly topology preserving pattern
representations are essential but cannot be achieved
with predetermined graphs.

In a first part of this paper we showed how the terms
neighborhood preserving mapping and topology pre-
serving map can be defined rigorously based on Voronoi
polyhedra. For defining these two terms, we introduced
masked Voronoi polyhedra and induced Delaunay
triangulations. Both the masked Voronoi polyhedra and
the induced Delaunay triangulation of a set of points
depend on the shape of the given feature manifold M.
We showed that the induced Delaunay triangulation
DY as a particular subgraph of the full Delaunay
triangulation Ds is a graph that forms a perfectly to-
pology preserving map of the manifold M.Ina second
part of this paper we demonstrated through computer

" simulations and proved that the competitive Hebb rule

forms induced Delaunay triangulations and, hence,
yields perfectly topology preserving maps of feature
manifolds. Necessary is a distribution of the receptive
field centers w; of the neural units 7 that is dense enough
to resolve the shape of the manifold M. If the manifold
M < RP fills the embedding space RP completely, then
the competitive Hebb rule forms the full Delaunay
triangulation Dsasa perfectly topology preserving map
of M. If M is only a submanifold of R2, then the com-
petitive Hebb rule forms a subgraph of D, that is, the
induced Delaunay triangulation DY, as a perfectly
topology preserving map of M.

In applications to control problems each unit i of
the network can be mapped into a space of elements
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a; that specify control actions; for example, g; is a vector
of parameters that specifies an affine map to generate
particular postures of a robot arm (Ritter & Schulten,
1986; Martinetz et al., 1990; Ritter et al., 1992; Walter
& Schulten, 1992; Hesselroth et al., 1993). The graph
G defined by the induced Delaunay triangulation forms
a perfectly topology preserving map of the manifold Af
of input patterns v that designate control tasks, for ex-
ample, which designate desired arm postures. G allows
one to determine the units that are assigned to adjacent
parts of the state space M. G allows one to identify all
the units that have to adapt to similar control tasks,
specified by elements a; that are close to each other in
a respective metric space. This identification enables
the network to perform cooperative learning by adapt-
ing concertedly those units that are connected within
the graph G. Cooperative learning leads to a significant
increase of the learning rate and to a significant im-
provement of the robustness of the learning procedure
for the elements a; (Ritter et al., 1992; Walter & Schul-
ten, 1992; Hesselroth et al., 1993 ). In some applications
the cooperation between adjacent units is even neces-
sary for convergence (Martinetz & Schulten, 1992).
The induced Delaunay triangulation as a perfectly to-
pology preserving map allows one to exploit optimally
the advantages of cooperative learning and cooperative
execution,

When the receptive fields are dense enough to resolve
the shape of the given manifold M, the competitive
Hebb rule forms a graph G that not only defines a
perfectly topology preserving map, but in addition can
be taken as a discrete, path preserving model or rep-
resentation of M. The graph G corresponds to a par-
ticular induced Delaunay triangulation, each edge of
which lies within the manifold. As a skeleton-like model
of M, the graph G not only provides a discrete repre-
sentation of all elements of M, but also a discrete rep-
resentation of all paths on M. We presented a compact
algorithm that combines the competitive Hebb rule
with an input driven vector quantization procedure,
that is, the neural gas algorithm (Martinetz & Schulten,
1991; Martinetz et al., 1993), for adaptively forming
induced Delaunay triangulations G as perfectly topol-
ogy preserving maps and discrete, path preserving rep-
resentations of given manifolds M. Such a graph G
together with the procedure that forms G we call fo-
pology representing network (TRN).

Applications in which models or representations of
manifolds play an important role are in clustering, sys-
tem analysis, and process control. In clustering, em-
ploying the TRN allows one to determine which parts
of a given pattern manifold are separated and, hence,
form different clusters. This is a novel approach to the
problem of clustering. In system analysis, the TRN as
a model of the submanifold that is formed by all pos-
sible states of a system yields information about the
inner degrees of freedom of the system in different parts
of the state space. In process control, employing the
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TRN for modeling the submanifold of all allowed states
of a plant allows one to check whether a given state lies
at the border or even outside the submanifold of all
allowed states and, hence, is faulty or at least close to
becoming critical (see also Kasslin, Kangas, & Simula,
1992).

Each path on the given manifold M is represented
by the best matching path within the TRN, and each
path through the TRN is a path on M. Furthermore,
paths that are short within the TRN are also short on
the manifold M. This allows the description, classifi-
cation, and planning of paths. An application is in
speech recognition (Brandt et al., 1991), as we men-
tioned already in Section 3. Other applications are in
trajectory formation of robot arms or in process con-
trol, where plants have to be taken from one state to
another by going through allowed regions of the state
space.

We finally like to comment on a possible analogy
between the TRN graph and the architecture of bio-
logical neural networks. The analogy identifies the ver-
tices of the graph G with neurons of a layer M’, the
pattern manifold M with a layer of receptive neurons,
the mapping from M onto the vertices of G with neural
projections from M to M’, the Voronoi polyhedra with
receptive fields of the neurons of M’, and, finally, the
edges of the graph G with lateral connections within
the layer M'". From this analogy one can derive the con-
clusion that lateral connections within a neural network
can serve to represent the neighborhood and topological
relations between features detected in a sensory layer
or between tasks executed in a motor layer, etc., and
allow the brain to process typical sequences of features
or motions by following the paths that are established
by these lateral connections.
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