A Neural Network with Hebbian-like Adaptation Rules Learning
Visuomotor Coordination of a PUMA Robot

Thomas Martinetz' and Klaus Schulten?

tSiemens AG, Corporate Research and Development
Otto-Hahn-Ring 6, W-8000 Munich 83, Germany

! Beckman Institute and Department of Physics
University of Illinois, Urbana-Champaign, 11 61801, USA

Abstract—A hybrid neural network algo-
rithm which employs superpositions of linear
mappings is presented, and its application to
the task of learning the end effector position-
ing of a robot arm is described. The learning
and the control of the positioning is accom-
plished by the network solely through visual
input from a pair of cameras. In addition to
the learning of the a priori unknown input-
output relation from target locations seen by
the cameras to corresponding joint angles, the
network provides the robot with the ability
to perform feedback-guided corrective move-
ments. This allows one to divide the position-
ing movement into an initial, open-loop con-
trolled positioning and subsequent feedback-
guided corrections, a divison which resembles
the strategy for fast goal-directed arm move-
ments of humans. For the robot arm which we
employed, a PUMA 560, the neural network
algorithm achieves a final positioning error of
about 1.3 mm, the lower bound given by the
finite resolution of the cameras. Because of
the feedback loops, the LMS error correction
rules for the weights of the network have the
form of Hebbian learning rules, except that
instead of the product of the pre- and post-
synaptic excitation, it is the product of their
time derivatives that determines the adjust-
ment.

0-7803-0999-5/93/$03.00 ©1993 IEEE

I. INTRODUCTION

Robot arm systems which are capable of learning
their task autonomously by observing their own trial
movements will play an important role in future ap-
plications. A number of adaptive movement control
schemes based on artificial neural networks and deal-
ing with a variety of different movement tasks have
been proposed in recent years [1-3]. One of these neu-
ral network approaches which, in particular, has been
developed for visuomotor coordination of a robot arm
is based on Kohonen’s topology conserving feature
map [4-6].

In this paper we present a modified version of the
neural network algorithm introduced in [5, 6] and
report about the results we obtained with an im-
plementation on a PUMA 560 robot arm. Instead
of Kohonen’s feature map algorithm (7] for repre-
senting the task space we now employ the so-called
“neural-gas” algorithm which has been introduced re-
cently [8]. Instead of an external lattice structure
to which the neural units are assigned, the “neural-
gas” network employs a “neighborhood-ranking” of
the units within the task space for forming the rep-
resentation. This allows a more flexible adaptation to
topologically intricately structured task spaces since
no a priori given lattice which has to match the
task space structure is required [8]. At the same
time, the “neighborhood-ranking” provides informa-
tion about neural units which are tuned to similar

820

Fig. 1: The PUMA 560. In our experiments the end effec-
tor was marked by a small light bulb at its end to make
it easily identifiable by the vision system.

tasks and, therefore, the output values of which may
be adapted similarly, corresponding to the concerted
adaptation of neighboring units within a Kohonen
lattice. Another modification compared to the algo-
rithms in [5, 6] concerns the use of the local linear
mappings learned by the neural network to generate
its output values. These local linear mappings enable
the robot arm to perform feedback-guided corrective
movements. We will show that by performing a whole
sequence of these corrective movements the adapta-
tion rules for the weights of the network take on a
form similar to Hebb’s learning rule [9].

II. THE TASK AND THE CONFIGURATION OF THE
ROBOT SYSTEM

In Fig. 1 we see the robot arm, a commercially avail-
able PUMA 560. The task of the robot arm is to
position its end effector to visually designated tar-
get objects which during the learning phase are ran-
domly chosen within the work space in front of the
robot. Since we are interested in the problems in-
volved in learning the robot control task and not
in the problems of image segmentation and object
recognition, we choose as the target object a small
light bulb which can easily be identified by the vi-

821

Image
preprocessing

Joint servo-
electronic

Fig. 2: The set-up of the robot system. The image prepro-
cessing board of each camera provides a two-dimensional
vector i, the coordinates of the image of the target object
on the camera’s image plane. Both vectors @ are combined
into a four-dimensional vector u which is the input of the
neural network. The output of the neural net is a three-
dimensional vector 3, each component of which specifies
the angle of one of the three joints of the robot.

sion system. Neither the geometry of the robot arm
nor the position of the two cameras which provide the
visual information about the target object’s location
are known a priori. The robot can rotate around
the vertical axes and move its upper and lower arm.
Since the wrist is fixed, the robot arm has three de-
grees of freedom. Figure 2 shows a sketch of the
configuration. Two CCD cameras with a resolution
of 560 x 480 pixels, respectively, observe the work
space. Each camera has attached to it an image pre-
processing board (ICS-400, Androx Inc.) which ex-
tracts the pixel coordinates i of the image of the tar-
get object on the camera’s image plane. The result-
ing pair of two-dimensional coordinates are combined
to a four-dimensional vector u = (i, @z), the input
signal for the neural network which is simulated on
a SUN 4/370. For a more detailed description of the
set-up see {10].

The robot arm’s movement for approaching the
presented target object consists of two phases, com-
parable to fast goal-directed arm movements of hu-
mans [11]. The first phase is an open-loop controlled
gross positioning of the end effector, whereas in the

second phase visual feedback is used to perform the
fine positioning. The visual feedback which is pro-
vided by the cameras consists of information about
the deviation of the current end effector position from
its target location.

By using the pixel coordinates u = (4, #2) of the
two images of the target object the neural network
controller generates its first output §(Zp), a set of
three joint angle values which are fed into the servo-
controllers of the robot arm and lead to the gross po-
sitioning of the end effector (the neural network con-
troller and how it generates the output is explained in
the next section). The resulting end effector location
is observed by the cameras which yield its pixel coor-
dinates, a four-dimensional vector vo. The residual
deviation u — v from the desired target location is
used to perform the first feedback-guided corrective
movement. For this purpose the sum u + (u — vo)
instead of u is taken as input for the neural network
which leads to a second output #(¢;) and a second
end effector location v;.

Taking u+ (u—vyg) as the input for the first correc-
tive movement corresponds to reaching for a virtual
target which was shifted from the real target location
u by the residual distance u — vp the end effector
still has to move. Reaching for this virtually modi-
fied target location leads to a correction of the previ-
ous positioning movement. After the first corrective
movement the residual error becomes u— v; and the
virtual target is shifted to u+(u—vg)+(u—v;) which
is the input for the second corrective movement, etc.
The described feedback loop can be performed sev-
eral times. We interrupt the positioning process af-
ter the fourth corrective movement and continue the
training by presenting the target object at another
location.

III. THE ARCHITECTURE OF THE NEURAL
NETWORK

Figure 3 shows the architecture of the neural network
employed. The network consists of three linear out-
put units [, [= 1,2, 3, one for each joint of the robot
arm (only one output unit, depicted as a square, is
shown in Fig. 3). Each output unit has N input
lines, each of which receives the same input, either
the current target location u or the current virtual
target location u+u—vp+... + u—v;_;. To each

822

Fig. 3: The architecture of the neural network. The neu-
ral units n = 1, ..., N which are depicted as circles gate the
input of the output units ! = 1,2, 3, only one of which is
shown (denoted as square). The input at each of the N in-
put lines of output unit ! are either the image coordinates
u of the current target location or the image coordinates
u+u-vg+..+u-—v;_; of the current virtual target
location. The weights a,(,l) € ®* and as,l) € R at each in-
put line define a linear mapping from target locations to
joint angles. The output y{*) is given by the sum over the
contributions from all input lines, i.e., all linear mappings.

input line a “gating” unit n, n = 1, ..., N is connected
{(depicted as circle in Fig. 3). The larger the output
zn, of gating unit n, the more the connected input
line contributes to the output signal y® of output
unit . As we will see below, the output 2, is large
for gating units n with their weight vector w,, close
to the target coordinates u.

The output units function as sigma-pi units [12],

and at each of their N input lines they perform a
weighted sum

a2z, +a% . (z,u) (1)

1=1,23 n=1,...N

over the current input signal u which has been gated
by zn, plus 2, itself. The dot in (1) denotes the dot
product of two vectors. The weights at input line n
of output unit [are denoted by the scalar ag) and
by the four-dimensional vector an). At each of the N
input lines the weights (aﬁ), ag)) determine a linear
mapping from target locations to joint angles. The

final output y*) of output unit ! is given by the sum

N
¥ =3 a2 +a - (z0u) @
n=1

over the contributions from all input lines, i.e., all
linear mappings.

The receptive field of a gating unit n is determined
by its four-dimensional weight vector wy. In the neu-
ral network model presented, the output z, of gating
unit n is given by its “neighborhood-rank” to the
target location u, i.e.,

Zn(u) = e~*n/2

with ky, as the number of gating units m which have
their weight vector w,, closer to u than gating unit
n, i.e., with Jju — wp|| < |lu — wy||. z, is unity for
k» = 0 and decreases monotonically for increasing k,,
with a characteristic decay constant A. Hence, z, is
largest for the gating unit with its weight vector wy,
closest to the target location u, second largest for the
gating unit with its weight vector second closest to
the target location, etc.

Employing a Hebb-rule with a linear decay term
leads to an update rule for the weight vectors wy,
n=1,.., N, of the form

Aw, &« z,u-—z,wy,

x ek (u—wy)

which is the adaptation step of the “neural-gas” net-
work proposed in [8]. Instead of the neighborhood
within an external lattice as in Kohonen’s feature
map algorithm, it is the neighborhood rank of the
weight vector wy, to the target location u which de-
termines the size of the adaptation step. Starting
with a large A which slowly decreases to small values,
the receptive fields of the gating units, determined by
Wwp, become distributed over the relevant parts of the
task space, i.e., those parts where input signals were
located in the past. Compared to Kohonen'’s feature
map which was employed in [5, 6] the “neural-gas”
network adjusts the weights w, more quickly to the
relevant regions of the input space without the need
of prespecifying the topology of an external lattice,
which would require a priori knowledge about the
topological structure of the task space [8].

To perform the first, open-loop controlled position-
ing movement, each of the three linear output units
{ receives the current target location u at each of its
N input lines and generates (see eq.(2))

N
yO(to) = 3 alzn + 2l - (znu)

n=1
N

=Ez,.(a£f)+a.g)-u). 3)
n=1

as output value. Hence, the output is given by a
superposition of linear mappings, with the largest
contribution from the linear mapping which is as-
sociated with the gating unit with its w,, closest to
u (k, = 0), the second largest contribution from the
linear mapping associated with the gating unit with
its wyp, second closest to u (k, = 1), etc. Compared to
[5, 6], we now employ a “soft” instead of a “winner-
take-all” rule for selecting the linear mapping most
specialized for generating the currently required out-
put.

After the gross positioning a number of feedback-
guided corrective movements are performed. For the
i-th of these feedback-guided corrective movements
instead of the target location u the corresponding
virtual target locationu+u—vp+ ... +u—v;_; is
taken as input for generating the output, yielding

N
yO(t:) = > (o) +al) (u+u—-vo +
n=1
e tu—viy))

N
= yOtic) + 3 mald (u-vie)) (4

n=1

for performing the i-th movement step. Through ad-
justments of o and af (3) has to adapt to the
globally nonlinear transformation y*)(u) from pixel
coordinates u of a target location to the correspond-
ing angle at joint {. In addition, as we can see from
1), . z,,as.') has to adapt to the Jacobian matrix
of y®¥(u) at u. In (3) the Jacobian matrix leads to a
significantly higher precision of the open-loop move-
ment than a zero order approximation through ag)
alone, and in (4) it enables the robot to perform the
feedback-guided corrective movements.

822A

IV. THE LEARNING RULES FOR THE QUTPUT
UNITS

Usually the deviations u— v; of the end effector from
the target are small after the open-loop movement
and the subsequent corrections. Therefore, we can
take the small change y¥)(t;) -y (t;_,) generated by
a corrective movement together with the correspond-
ing difference v; — v;_; in the end effector’s camera
coordinates to obtain an improvement of the Jaco-
bian ¥, z,a and through this an adaptation step

for the ag) s. Minimizing the quadratic cost function

1 3
Ci=3 SO () — v (ko)
=1
N
=3 zmald) - (vi — viy))?
n=1

via gradient descent yields for the change of al) with
each corrective movement

AaD(t:) = € - zalyO(ts) — 4O (tiz)

N
=3 zal) - (vi—visy))

n=1
(Vi = viy).

If we denote the input u + (u — vo) + (u — v;) + ...
after having been gated by 2, with

Xn(to) = a4, Xn(t1) = 2a(u +u — vo),
Xn(ti) = zp(u+u—vo+... +u—vi_y),

then we obtain the adaptation rule

2 () = —¢ - [V (ter1) - v (20)]
“[%n(tit1) = 2%a(t:) + Xn(ti-1)] - (5)

To derive an adaptation rule for o we have to
remember that a change in o only effects the gross
positioning and not the corrective movements. The
corrective movements are determined solely by the
a¥s. Since the alls are given already through (5),
an improvement of the gross positionings can only
be achieved by adjusting the ag)s. A cost function
the minimization of which yields adaptation rules for

the as.l)s and leads to improved gross positionings is
given by

C: = [y(l)(ti) - 11(1)(&'—1)]2

2| =

>
=1
3 N 2
> [y(l)(t,') =3zl + aif’xn(ti_l)J .
=1

n=1

DO =

This cost function is determined by the difference
O (%) — y®(ti-1) in the output of the network for
two subsequent movement steps. A minimization of
this difference corresponds to minimizing the size of
the corrective movement steps, which can only be
achieved through improved gross positioning move-
ments. Minimizing the quadratic cost function C,
via gradient descent with respect to i’ yields

Aot =€ - [y0(t) —4yO0ti-1)] -2 (6)

as adjustment for the weights a,(f) at time step ¢;.

If we neglect the discreteness of the time steps t;,
both adaptation rules (5) and (6) can be formulated
by using time derivatives of the presynaptic excita-
tions x, z, and postsynaptic excitation y(‘) of each
output unit , [=1, 2,3, yielding

dg) x gz,

Similar Hebbian-like adaptation rules using time
derivatives of the pre- and postsynaptic excitation
have been proposed for modelling classical condition-
ing (see, e.g., [13]).

V. THE PERFORMANCE

For the training of the robot system we present the
target object at 4,000 different locations within the
work space of the robot, and for each target location
the robot performs one gross positioning and four
subsequent, feedback-guided corrective movements.
The network consists of N = 300 gating units. The
weights wy,, a.(,l) , ag) of the network are initialized at
random.

Figure 4 shows the average positioning error de-
pendent on the number of presented training targets.
The error decreases rapidly in the beginning, and af-
ter only 500 training steps the deviation from the

822B

Positioning Error {mm]

0

1000 2000 3000

Number of Learning Steps

Fig. 4: The average positioning error with the number
of training steps. The five graphs show the error after
the first, open loop, positioning and after each of the four
subsequent corrective movements. After 4,000 learning
steps we increased the last arm segment of the robot by
100 mm to test the network’s adaptive capabilities.

target after the last corrective movement reaches its
minimum value of 1.3 mm which cannot be further
reduced because of the finite resolution of the cam-
eras. Since the work space in front of the robot has a
volume of about 1 m?, the error relative to the range
of the arm is about 0.13%. The positioning error of
the open-loop movement reaches its minimal value of
about 4 cm, i.e., 4%, after 4,000 training steps. At
this point we increase the last arm segment of the
robot by 100 mm to test the network’s adaptive ca-
pabilities. As we can see in Fig. 4, the residual error
after the last corrective movement is not affected by
this change, and with 500 further training steps the
error of the open-loop movement has also regained
its previous value.

ACKNOWLEDGMENT

We would like to thank Jorg Walter who imple-
mented the robot and vision software and Naren-
dra Ahuja who provided the PUMA robot for this
project. This work has been supported by the Beck-
man Institute for Advanced Science and Technology
of the University of Illinois at Urbana-Champaign,
by the Carver Charitable Trust, and by a fellowship
of the Volkswagen Foundation to T.M.

REFERENCES

(1] Kawato M, Furukawa K, Suzuki R (1987) A hi-
erarchical neural-network model for control and
learning of voluntary movements. Biological Cy-
bernetics, 57:169-185.

[2] Kuperstein M, Rubinstein J (1989) Implementa-
tion of an Adaptive Neural Controller for Sensory-
Motor Coordination. IEEE Control Systems Mag-
azine, Vol.9, No.3, pp 25-30.

[3] Mel BW (1987) A Robot that Learns by Doing.
AIP Proceedings 1987, Neural Information Pro-
cessing System Conf., Denver, CO, 1987.

(4] Ritter H, Schulten K (1987) Extending Kohonen’s
self-organizing mapping algorithm to learn ballis-
tic movements. In Eckmiller R and von der Mals-
burg C (Eds), Neural Computers, Springer, Hei-
delberg, pp 393-406.

[5] Ritter H, Martinetz T, Schulten K (1989) Topol-
ogy Conserving Maps for Learning Visuomotor-
Coordination. Neural Networks, 2:159-168.

[6] Martinetz T, Ritter H, Schulten K (1990) Three-
dimensional neural net for learning visuomotor-
coordination of a robot arm. IEEE-Transactions
on Neural Networks 1(1):131-136.

[7) Kohonen T (1984) Self-organization and associa-
tive memory. Springer Series in Information Sci-
ences 8, Heidelberg.

[8] Martinetz T, Schulten K (1991) A “Neural-Gas”
network learns topologies. Proceedings of the
ICANN-91, Helsinki, pp 397-402, Elesevier, Ams-
terdam.

[9] Hebb D (1949) Organization of Behavior. Wiley,
New York.

(10] Walter J, Martinetz T, Schulten K (1991) In-
dustrial robot learns visuomotor coordination by
means of “neural-gas” network. Proceedings of
the ICANN-91, Helsinki, pp 357-364, Elesevier,
Amsterdam.

[11] Keele SW (1981) Behavioral analysis of move-
ment. In: Brooks VB (ed) Handbook of physi-
ology, the nervous system, vol II. Motor control,
Part 2. American Physiol Society, Bethesda, Md,
pp 1391-1414.

[12] Feldman JA, Ballard DH (1982) Connectionist
models and their properties. Cognitive Science,
1982, 6:205-254.

[13] Tesauro G (1990) Neural models of classical con-
ditioning. In: Connectionist Modeling and Brain
Function, eds. Hanson SJ, Olson CR, MIT Press,
Cambridge, pp 74-104.

822C

