Computers Elect. Engng Vol. 19, No. 4, pp. 315-332, 1993 0045-7906/93 $6.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1993 Pergamon Press Ltd

A NEURAL NETWORK FOR ROBOT CONTROL:
COOPERATION BETWEEN NEURAL UNITS AS
A REQUIREMENT FOR LEARNING

THOMAS MARTINETZ and KLAUS SCHULTENT

Beckman-Institute and Department of Physics, University of Illinois at Urbana-Champaign,
405 North Matthews Ave, Urbana, IL 61801, U.S.A.

(Received 5 December 1990; accepted in final revised form 15 October 1991)

Abstract—We present a self-organizing neural network for learning visuo-motor coordination and
describe its application to the task of learning the end effector positioning of a simulated, three-jointed
robot arm. In contrast to a neural network algorithm that we introduced earlier in Refs [1,2] (Martinetz
et al., IEEE Trans Neural Networks 1, 131, 1990; Ritter et al., Neural Networks 2, 159, 1989) we now
employ visual feedback which enables the robot arm to position its end effector with an accuracy of about
5% of the size of the workspace after only 100 learning steps and with a final accuracy of about 0.06%
after 6000 learning steps. Learning proceeds without the need for an external teacher by a sequence of
trial movements using input signals from a pair of cameras. The use of visual feedback enables the robot
arm not only to adapt to slowly occurring miscalibrations, but also to compensate for sudden changes
in its geometry, e.g. when picking up a tool. The results of a simulation and a mathematical analysis of
the learning procedure show that cooperation between neural units during the course of learning,
incorporated in the network, is essential for the robot arm system to succeed in learning.

1. INTRODUCTION

Motion control is one of the oldest tasks biological organisms have to solve in order to be able
to survive. Most of the biological motor control systems which emerged during evolution still
outperform today’s robot control mechanisms in many respects, including flexibility, velocity and
especially their learning capability: Therefore, we have good reason to assume that ‘valuable
knowledge can be gained by elucidating the control principles employed by biological organisms.

One of the few generally recognized organizational principles found in the nervous system of
many organisms is the formation of so-called topology conserving mappings from input stimuli
onto parts of the cortex. The most prominent examples are the topology conserving mapping from
the retina to the visual cortex [3] and the mapping from the body surface to the somatosensory
cortex [4]. Through these topology conserving mappings input stimuli from adjacent receptors of
the retina or the body surface excite neighboring neural units on the corresponding cortex. Another
kind of topology conserving mapping can be found in the motor cortex, where adjacent neural units

-tend to code similar limb configurations and similar movements. These mappings, also called
topology conserving or topographic feature maps, are not fixed, but develop after birth by receiving
input stimuli from the corresponding sensory system. In addition, these maps are able to adapt,
if unforeseen changes occur in the sensory system [5].

Several approaches which mimic the formation and the adaptability of these topology conserving
feature maps have been suggested [6-11]. One prominent model is Kohonen’s feature map
algorithm [9,10] which captures only the most essential properties of the formation of such maps
for the benefit of remaining computationally tractable. This model can be extended for the purpose
of learning input—output relations [12,13], which.then can be applied to control, i.e. robot control
tasks [1,2,12-16]. We will demonstrate how this extended version of Kohonen’s feature map is able
to learn the task of end effector positioning up to a very high precision. The learning rule we employ
is an improved version of the adaptation schemc introduced earlier in Refs [1,2). The new learning
rule and the new control scheme for generating the arm movements incorporate an additional visual
feedback mechanism which both accelerates the learning process and leads to a higher accuracy.

tTo whom all correspondence should be sent.

315

316 THoMAS MARTINETZ and KLAUS SCHULTEN

The network now achieves an accuracy three times higher than in Ref. [1] with only a fifth of the
training steps needed before.

A number of different robot control schemes based on neural network models have been
developed [17-21]. One important approach which also employs topographic maps is the neural
network model proposed by Kuperstein [17,18]. In Kupersteins model, however, these maps are
fixed and do not develop with the course of learning, which requires more prior knowledge about
the structure of the set of input data the network has to process. In addition, the use of fixed maps
do not provide an automatic increase in the resolution of the representation of those movements
which have been trained more frequently. In the model we will describe here the topology
conserving maps develop with the course of learning and adapt to the structural features of the
set of input data through Kohonen’s feature map algorithm. Kohonen’s feature map algorithm also
provides a finer representation and, therefore, a higher accuracy of movements which have been
trained more frequently.

2. KOHONEN’S FEATURE MAP ALGORITHM AND ITS EXTENSION

Figure | presents a computer graphic of the simulated robot system which has to learn to position
its end effector to visually designated target locations. The robot system consists of a robot arm
with three degrees of freedom and a pair of cameras providing the spatial information about the

Fig. I. Computer graphic of the simulated robot arm system. Depicted are the robot arm, the two cameras
and the workspace.

Neural network for robot control 317

Fig. 2. Sketch of the robot system. The two 2-D camera coordinates #; and i#, of the target object are

combined to a 4-D vector u which is fed as an input signal to a 3-D lattice of neural units. The selected

neural unit s which is responsible for the current input u provides a vector y, and a Jacobian matrix A,

which determine the network’s output 3. Through the joint angle controllers j generates joint angles
. which lead the end effector to the target.

location of the object the robot arm reaches for. For each trial movement, the target
location is chosen randomly within the depicted workspace. Figure 2 illustrates the con-
figuration of the robot system more schematically. Each target within the 3-D workspace
corresponds to a pair of 2-D coordinates, namely the locations of the two images of the object
on the focal planes of the two cameras. We assume some form of visual preprocessing which
is able to reduce the two images from the cameras to a pair of “retinal” coordinates #,,#%,. In
general this is not an easy task, but since we do not want to address issues of early vision in this
paper, we assume the target object to be specific enough to be identifiable in front of the
background.

Both “retinal” locations #, #, are combined to a 4-D vector u which then carries implicitly
the visual information necessary for the network to extract the spatial position of the object.
To be able to position its end effector correctly, the nétwork has to know the transformation

(u) from “retinal” locations u to the required input y = (j,, y,, »;) for the joint angle con-
" trollers which generate joint angles 8= [6,(y,), 0,(32), 65(»3)] to lead the end effector to the
desired target location. This transfqrmatlon depends on the position of the cameras relative
to the workspace, the cameras’ imaging characteristics, the relation between the joint
angle controllers’ input and the resulting joint angles, and the geometry of the arm. None of
these properties is known a priori and the neural network has to adapt to them in the course of -
learning.

The 4-D vector u of the “retinal” locations forms the input signal for a neural network which
consists of neural units arranged within a 3-D grid (see Fig. 2). To produce the appropriate output
values 7, the 3-D grid of neural units r works as a “winner-take-all” network. Each neural unit
r is responsible for a small subset F, (its “receptive field”) of the 4-D input space U. The input
space U consists of all possible “retinal” coordinates u. If u € F,, neural unit r wins and determines
the output . To specify the subsets F,, a vector w, € U which can be interpreted as synaptic weights
are assigned to each neural unit r. The vectors w, are chosen as pairs w, = (W, , W) of two compon-
ent vectors Wy, , W,,. Vector #, is a 2-D location on the “retina” of camera i, i = 1, 2. Therefore,
each neural unit is “binocular” and “looks” essentially at two small spots centered at w,; and W,,
on the two camera “retinas”. The subset F,< U for which neural unit s is responsible consists of

318 THOMAS MARTINETZ and KLAUS SCHULTEN

all input signals u which are closer to w, than to any other w,, r#s and can be described
mathematically by:

F={ueUllw—ul <|w —u| vi}. (1)

To enable the neural network to provide the required output y for the joint angle controllers,
in addition to w, we assign to each neural unit r a vector j, and a 3 x 4 matrix A,. The neural unit
s which is responsible for the current input u produces the output by using its j,, A, as the first
two terms of a Taylor expansion of the transformation j(u), which yields:

=D+ AQ—w,) @

The vector j, and the matrix A, have to be learned by the neural net and at the end of the course
of learning have to approximate the exact transformation p(u) over the small subset F, of input
signals u for which neural unit s is responsible. Initially, all w,s, s and A,s are chosen randomly.
The learning task of the neural network is to iteratively adjust the w,s, j,s and A,s in such a way
that the control law j(u) is approximated as accurately as possible.

2.1. The learning procedure for the receptive fields

First, the learning algorithm has to efficiently distribute the receptive fields F, over the input space
U. Since the workspace from which the target locations are chosen is 3-D, input signals u only
appear within a 3-D submanifold W of the 4-D input space U. Therefore, the learning procedure
should assign the formal synaptic weights w, which determine the receptive fields F, only to this
relevant subpart of U. The location of the submanifold W depends on the position of the cameras
relative to the workspace and the cameras® imaging characteristics which are both not known a
priori. To find W and to assign the receptive fields F, only to this submanifold we employ
Kohonen’s algorithm for the formation of topology conserving feature maps for the adjustment
of the w,s [9,10].

The adaptation step for the w,s, which is performed each time a target object is presented, is
determined by:

WY = wo + eh (u — wold) for all r, 3)

with s denoting the neural unit which had its w, closest to the input signal u. Essential here is a
topological arrangement of the neural units. Each neural unit r occupies a position r in the 3-D
lattice, and the coefficient 4, is taken to be a unimodal function of Gaussian shape, depending on
the lattice distance |r —s| and with a maximum at r =s (to remove the amblgulty in the scaling
of ¢, we require the normalization A, = 1). Hence, neighboring neural units in the lattice ‘share
adaptation steps and become tuned to similar inputs u. Neural units which are adjacent in the lattice
will assign their receptive fields, and centers of Wthh are determined by the w,s, to locations which
are close within the space of input signals U, '

In addition to forming the topology conserving mapping, the adaptation step (3) will assign the
w,s only to parts of the input space where input signals occurred. This ensures that the receptive
fields F, will be distributed only over the relevant 3-D submanifold W of the 4-D input space U.
The process of finding the relevant submanifold W is illustrated schematically in Fig. 3. By
presenting an input signal u within the submanifold W the neural units move their w, towards u
with the result that after several adaptation steps (3) all the w,s are located only within the relevant
submanifold W.

Related to the property of assigning the w,s only to relevant parts of the input space, it can be
shown that the size of the subsets F, decreases with an increasing density of input stimuli [10,22].
Hence, in areas of the input space where input signals occur more frequently the density of receptive
field centers w, is higher, which results in a highér resolution of the representation of the input space
in these regions. This property causes the network to learn most accurately those positioning
movements which were practiced most frequently.

2.2. The learning procedure for the output values

After neural unit 8, which is responsible for the current target locatlon has been selected, the
positioning of the end effector is carried out in two phases: (i) a gross-positioning movement; and

Neural network for robot control 319

Ws

U

Fig. 3. The 3-D neural net assigning its neural units to the relevant 3-D submanifold W of the 4-D input
space U. The neural unit s and its neighbors in the lattice move the centers w, of their receptive fields
towards the location u of the presented target object.

(ii) a subsequent fine-movement which is usually only a small correction. For the gross-positioning
movement the network employs the linear expansion (2) of j(u) around w, to generate:

Ji=p+ Au—w), ‘ @

as input for the joint angle controllers. The position of the end effector on both camera “retinas”
after this gross-movement is denoted by the 4-D vector v, which is usually already close to the 4-D
“retinal” target location u. Then, a subsequent fine-movement is carried out. This fine-movement
is based on the visual feedback given through v, and employs the Jacobian matrix A, to reduce the
residual error u — v, by adjusting the network’s output according to the linear correction:

Ay =A@ —v). (&)

The correction Ay = j;— y, with j; as the final output is usually sufficient to compensate very
precisely for the error of the gross-movement. A further decrement of the residual positioning error
can be achieved by repeating the corrective fine movement (5) several times.

The result of the corrective fine-movement is used to obtain an improved estimate A* for the
Jacobian matrix A,. The improved estimate A* is determined via a Widrow-Hoff-type error
correction rule [23] which minimizes the quadratic error:

E ={Ay — A, Av), ©

by using steepest descent, with Av = v;— v, and v; as the final position of the end effector seen by
cameras 1 and 2. Together with (5) we obtain for A*:

A*=A+0-A@-V)AY, ™

with & as the step size of the adaptation step (7). For § we choose its optimal value 6 = 1/]|Av|.

If we denote by A(w,) the correct Jacobian associated with w, and by j(w,) the correct zero-order
term, then the relation j(w,) — 7; = A(w,)(w, — v,) is valid (to linear order). This yields an expression
for j(w,) which at the same time determines an improved estimate j* for the adaptation of the

320 THOMAS MARTINETZ and KLAUS SCHULTEN

zero-order terms ,. Since after a number of learning steps (7) A(w,) & A,, we obtain together with
(4) and (5):

F=p+Ay
=¥+ 1 — i @®
The improved estimates * and A* are not only used to improve the output values 7, and A,
of the selected neural unit s, but also to adjust the output values of the neural units neighboring

s within the 3-D lattice. For this purpose we apply an adaptation step of the same form we
employed for the adjustment of the weights w,, yielding:

3 — pold /‘/ Hk __ 4,0ld
y:‘w_yr +€hrs(y yr) } forallr,

9
Ar = A% 4 ¢'hj, (A% — A¢) ®

with A as Gaussian determining the spatial decrease of the learning step within the 3-D lattice
and ¢’ as a scaling factor for the overall size of the adaptation steps.

The application of an adaptation step of the form used in Kohonen’s algorithm for the formation
of topology conserving maps forces the output values of neural units which are adjacent within
the 3-D grid [which, because of (3), also means adjacent within the input space] to adapt to values
which are close within the output space. The output space consists of all 3-D vectors j and all 3 x 4
matrices A, respectively. This topologically correct mapping also with respect to the output space
enforces a smoothness constraint on the output values, which is desirable, since we know that the
transformation j(u) which has to be learned is continuous. The “spreading” of the adjustment of
J, and A; to all neural units neighboring s provides an enormous increase in the speed of
convergence of the learning algorithm and also results in a higher stability of the adaptation
process. In a subsequent section we will show that the cooperation between neighboring neural
units, introduced by (9), is even essential for the neural network to succeed in learning at all.

As we can see, the adaptation rules (7), (8) and (9) do not require any explicit information about
joint angles at any time during the positioning movement. Information provided only by the
cameras is sufficient for the presented adaptation process, which makes the described neural
network algorithm applicable to robot arms which lack sensory systems for the measurement of
joint angles.

3. RESULTS OF A SIMULATION

In the following, we describe a simulation of the learning process of the robot system. During
this simulation, we chose target locations from a workspace the size of which was 1.0 x 0.57 x 0.33
units. The robot arm segments, beginning at the base, had the lengths 0.14 x 0.44 and 0.47 units,
respectively, and the lattice of neural units consisted of 7 x 12 x 4 elements. The function h, was
taken to be the Gaussian:

hy = expl— ¥ — s|¥/26%(1)], (10)

as was hj. The step sizes ¢, ¢’ and the widths ¢, ¢’ all had the same time dependence
g(t) = g,(g;/g;)""==, with t as the number of already performed learning steps and t,,,, = 10,000. The
parameter values were chosen as ¢,=1, ¢=0.005, ¢; =0.9, ¢/ =0.5, 6,=3, 6;=0.1, 6/ =2 and
o;=0.05. For the relation 8(%) = [0,(»,), 0,(3;), 0,(»;)] between the input j for the joint angle
controllers and the resulting joint angles 8, we chose 8 = j. The only necessary condition for 8(7)
is the existence of its inverse. As long as 8(j) is smooth enough, the positioning accuracy obtained
does not depend on the exact form of 8(y).

Figures 4-6 show the result of the simulation. Figure 4 presents the state of the mapping r— w,
initially, after 2000, and after 6000 learning steps, respectively. We show the state after 6000
learning steps as the final result, since the residual positioning error at this stage of the learning
procedure has already decreased to its minimal value and the network does not change significantly
anymore.

Each node r of the lattice is mapped to a location W,, on the “retina” of camera 1 (left column)
and a location W,, on the “retina” of camera 2 (right column) with w, = (W, , w,). Locations
associated with lattice neighbors are connected by lines to visualize the lattice topology. Initially,

Neural network for robot control 321

BESRS %

Fig. 4. The “retinal” locations w, = (W,,, W,,) projected on the focal plane of camera 1 (left column) and
camera 2 (right column). Depicted are the initial state (top), the lattice after 2000 (center) and after 6000
adaptation steps (bottom).

322 THOMAS MARTINETZ and KLAUS SCHULTEN

Fig. 5. The end effector locations (cross marks) generated by 7,, as seen from camera 1 (left column) and

camera 2 (right column). Their deviations from the required values #,, and W,,, respectively, are indicated

by appended lines. Depicted are the initial state (top), the lattice after 2000 (center) and after 6000
adaptation steps (bottom).

Neural network for robot control 323

B e o

Fig. 6. The development of the Jacobian mattices A,. The Jacobians are visualized by showing the result
of small test movements parallel to each of the three ‘borders of the workspace. Again, we show the initial
state (top), the lattice after 2000 (center) and after 6000 adaptation steps (bottom).

324 THOMAS MARTINETZ and KLAUS SCHULTEN

the vectors W, and W, are distributed randomly in the image plane of their camera. This provides
a homogeneous random distribution of the w,s over the 4-D input space, and the corresponding
image of the lattice is highly irregular (top). After only 2000 learning steps the initial distribution
has retracted to the relevant 3-D subspace which corresponds to the workspace (center). Finally
(bottom), a very regular distribution of the nodes has emerged, indicating a good representation
of the workspace through the w,s.

To visualize the adaptation process of the zero-order terms j,, we show in Fig. 5 the mismatches
between intended target positions and actually achieved end effector locations which occur with
the gross-movement (4) for the special subset of visual inputs u = w,. Each end effector position,
after setting the joint angles through , [the linear term A,(u—w,) in (4) vanishes for u = w,], is
indicated by a cross mark, and the associated positioning error of the end effector is indicated by
an appended line segment. The initial values of j, are chosen randomly (with the only restriction
being that the resulting end effector positions should lie in the space in front of the robot) and
consequently the errors are very large for the initial state (top). However, after 2000 learning steps
all errors have markedly decreased (center), until finally (6000 steps, bottom) mismatches are no
longer visible.

The special subset of target locations u=w, was chosen to visualize the accuracy of the
zero-order terms j, of the Taylor expansion (2). In general, during operation, the target objects
may be located anywhere in the work space and need not coincide with one of the discretization
points w,. The deviation from the closest discretization point w, is taken into account by the
first-order term A (u — w,) of the Taylor expansion (2). As the Jacobian matrices A, cannot easily
be visualized directly, we instead show for each location j, the reaction of the end effector to three
pairwise orthogonal test movements. These test movements are of equal length and directed parallel
to the borders of the workspace. If the A, s are correct, the end effector will trace out patterns in
the shape of little “tripods”, thereby testing each A, along the three orthogonal space directions.
The gradual convergence of these three test movements, as seen from both cameras, is shown in
Fig. 6. The Jacobian matrices are initialized by assigning a random value from the interval [— 10,10]
independently to each element of A,. Therefore, the initial test movements are very poor (top).

40 -

301

20 1

Positioning error (%)

10 1

0 T ' v I .
0 2000 4000 6000 - 8000 10000
Number of learning steps '

Fig. 7. The average positioning error vs the number of performed learning steps. o denotes the initial
range of cooperation between neural units. With cooperation (o} = 2), the positioning error decreases very
rapidly against zero, whereas without cooperation (¢} = 0) a significant residual error remains at the end
of the learning procedure. After 7000 trials the geometry of the robot arm was changed. For ¢/ = 2, the
robot has regained its previous accuracy of 0.06% after a few hundred additional adaptation steps.

Neural network -for robot control 325

However, after 2000 iterations the accuracy of the test movements has improved significantly
(center) and after 6000 learning steps, they are traced out very accurately (bottom).

In Fig. 7 we plotted the average positioning error vs the number of learning steps (the graph
corresponding to o} = 2). The error decreases rapidly in the beginning and reaches 5% of the length
of the workspace already after 100 trial movements. After 6000 iterations, the positioning error
has decreased to its final residual value of 0.06%. If the lengths of the arm segments of the robot
were given in meters, the robot arm system would have accomplished a positioning accuracy of
several tenths of a millimeter.

After 6000 learning steps the robot has learned the required task and is able to perform accurate
positioning movements. However, during performance, the measure of the joint angles, the limbs
and the positions of the cameras may become miscalibrated. Therefore, the neural network must
be able to permanently readjust its weights w,, 7, and A,. To demonstrate this capability of the
neural network, after 7000 trials we increased the length of the last arm segment by about 10%
of the robot’s dimensions, a situation which could result from connecting different tools to a robot’s
end effector. As we see from Fig. 7, the increase in the positioning error caused by this perturbation
decreases with further trial movements until the robot has regained its previous accuracy. As we
can also see in Fig. 7, the 10% change in the length of the last arm segment caused an increase
in the positioning error of only 1.2%. The error increase -of only 1.2 instead of 10% is due to the
feedback guided fine-movement which tries to reduce the-actual distance u — v, remaining after the
preceding gross-movement. This corrective fine-movement enables the robot system to compensate
immediately for sudden and unexpected changes in the geometry of the arm.

The described simulation was performed on a Silicon Graphics 4D/320 VGX. The CPU time
needed for the whole training, with 10,000 trial movements, was about 300s.

4. COOPERATION BETWEEN NEURAL UNITS AS REQUIREMENT
' FOR LEARNING

In Fig. 7 we also show the development of the positioning error in the case that the range ¢’
of the neighborhood function A} is equal to zero, which corresponds to [= §, with 8 as the
Kronecker-delta. For g’ =0 the cooperation between adjacent neural units introduced by (9) is
“switched off””, since now only the weights of neural unit s which was selected for providing the
output are adjusted. As we see in Fig. 7, in the noncooperating case the robot arm system is not
able to reduce the positioning error to'a reasonable degree. The residual error for ¢’ = 0 was still
about 10% of the length of the workspace at the end of the course of learning.

As has been demonstrated in Refs [2,13], for thé noncooperating case, only a.subset of the neural
units is able to adapt their output j;, A, to the required values, whereas all the other units which
happened to be initialized with less appropriate starting values do not converge properly. We will
show mathematically for the 1-D version of the presented algorithm, that by *“‘switching on” the
cooperation, i.e. by setting ¢’ > 0, the neural units which did not converge without cooperation
are enabled to adjust their output values properly as well. We will show that, with cooperation,
the probability of the neural net to learn as desired increases exponentially to one with the size
of the network. v

For our mathematical analysis of the behavior of the learning process we look at a small subset
of adjacent lattice nodes (neural units). Since the transformation j(u) which the network has to
learn is continuous, we can assume that within a sufficiently small subset of adjacent nodes r, the
Jacobians A, all have to adapt to the same matrix: Ay. The required vectors 3¢ for the zero order
terms ,, however, may still differ from unit to unit in the following analysis. We also assume that
the receptive fields determined by w, are already learned properly and do not change anymore.
Then, we only have to examine the adaptation of the output elements y, and A,.

By 7%= j(w,) and A, = A(w,) we denote the correct zero-order term and the correct Jacobian
matrix associated with each w,. Since the relation j° — j, = Ay(w, —v,) is valid on the small subset
of units, the adaptation step (8), together with (4) and (5), leads to j* = j if A, = A,. Therefore,
if the selectéd neural unit s was able to adapt its Jacobian A, to the correct -matrix A, then its
zero order term y, will also converge to the required value. Hence, in the following we only have

326 THOMAS MARTINETZ and KLAUS SCHULTEN

to consider the learning process of the Jacobians A,. As long as they are learned properly, the zero
order terms y, will also adapt as required.

The adaptation step for the improved estimate A* is given by the gradient of (6) and can be
written as:

A*=A,+0 - (A) — A, AVAVT, (11)

with Ay = y;— ¥, as the change in the network’s output caused by the fine-movement. Locally, the
expression Ay = A, Av with Av = v;— v, is valid, which yields together with the fine-movement (5):

Av=Ag'A(u—v), ; (12)
assuming that the inverse of A, exists. If in (11) we substitute (12) for Av and (5) for Ay, we obtain:
A*=A,+0 A1 —AF'A) (u—v)(— V) AJ(AT)". 13)

Substituting (13) for A* in the adaptation step (9), and introducing B, = A;'A, — 1 with 1 as the
identity matrix, yields:

AB,= —¢’6h},(B,+ 1)B,(u—v)(a—v)'(B,+ D"+ ¢'h,(B,—B,), (14

as the change of B, with an adaptation step.

In the following we assume the step size ¢’ to be small which allows us to average the adaptation
step (14) over many u € F, while the matrices B,, B, are quasi-constant. In addition, by keeping ¢’
small B, is changing smoothly in time which may then be described by:

B, = — 6h,(B,+ 1)B,{(u—v,))u—v) (B, + D) + h; (B, — B,), 15)

with {(u—v;)(u —v,)") as the matrix (u — v;)(u — v,)T averaged over many target locations ue F,.
We presume the directions of.the vectors u—v, to be distributed isotropically, which yields
{(u—v,)m—v,)">ocl. If we consider the modification of B, not only for input signals ue F, but
averaged over all possible u, we finally obtain for the time development of B,:

B=-9- Z hy(B,+ 1)B,(B,+)"+ 3 h (B, —B,), (16)

with X, denoting the sum over all neural units.

We will discuss the time development of B, for two different cases: (1) ¢’ = 0 which corresponds
to the non-cooperating case with 4}, = d,, and (i) 6’ > 0 for which the cooperative learning between
the neural units is “switched on”. We will limit the discussion to the case where the vectors y, are
1-D and the Jacobians A,, in the following denoted by a,, are scalars. We will see that the properties
of the 1-D version of the learning algorithm are in qualitative agreement with the behavior observed
in Section 3 when simulating the higher-dimensional version of the algorithm. This allows us to
presume that, by reducing the dimensionality, the principal behavior of the learning algorithm is
left unchanged and, therefore, our mathematical analysis will reflect the main features of the
adaptation process. :

4.1. Learning without cooperation
For the 1-D case and with A =, equation (16) reduces to:

= —8 by(b+ 1) an

The time development of each b, now correspohds to a gradient descent in a potential of the form:
b“ 2b} b?

Vo) =+ 45 (18)

and is equivalent to the instructive picture of a pointlike mass moving overdamped in the potential
given by (18). Figure 8 illustrates the form of this potential. We can discern that at b, =0 the
potential ¥ (b,) exhibits a global minimum which corresponds to the required final value g, for the
Jacobian a,. However, at b, = — 1 the potential V() has also a local minimum which corresponds
to a, = 0. Since the change of b, in this potential is overdamped, neural units with initial values

Neural network for robot control 327

[l 'l (]
L) . L] - ¥ L L) ¥

-1 0 b -1 0 b -1 0

Flg 8. Illustratlon of the potential V' (,) and the convergence for two different initial conditions. The time

development corresponds to an overdamped motion of a pointlike mass. For starting values b, < — 1 the

mass remains at the local minimum which corresponds to the wrong value g, = 0. For mmal values

b,> — 1, however, the output b, converges to the required value at the global minimum at b, = 0 which
corresponds to a, = a,.

c..w!

b.(ty) < — 1[a, (%) < 0] are not able to adapt their output properly since their b,s remain at the local
minimum at b, = — 1. Neural units which had their Jacobians initialized within the range
b.(ty) > — 1[a.(t,) > 0] will learn properly. Their b,s are attracted by the global minimum and will
finally converge to the required value b, = 0. If P(a,) describes the probability distribution of the
initial values a,(¢,) and:

P, = f ® P(a)da, (19)
(1]

denotes the probability of a neural unit to have its output assigned to positive starting values, the
fraction N - Py of the neural units will converge properly, whereas the rest N - (1 — P,) of the units
are not able to learn the required Jacobians. This result corresponds to the observation that for
simulations with ¢’ = 0 the output of only a fraction of the neural units adapt as required [2,13].

The above result is valid for N —oo. For finite Ns there is still a small chance that all the a,s
are initialized with positive starting values, however, this chance decreases exponentially to zero
with N. Since the probability of a neural unit to be initialized with a,(z,) > 0 is P,, the probability
W(N) of a system with N neural units to converge completely to the required state, i.e. each unit

.adapts its output to g, = q,, is determined by:

W(N) = PY. | 20)

4.2. Learning with cooperation

If we increase ¢’ to ¢’ > 0 the cooperation between the neural units is “switched on.” We will
study the case of a small range of neighborhood cooperation and a small step size, i.e. 6’ <1 and
0 < 1. Then we may write (16) as:

by= =08 b(b+ 1} —0h" ¥ b(b,+ 12—k ¥ b,(b,+ 1P~ -
{8 (KON

+h Y (by=b)+h?* Y B,—b)+ - (21)
@ >

with h’ = exp(—1/26"?) [see (10)] and {s) denoting a summation over all nearest neighbors and
{{s)) denoting a summation over all next nearest neighbors-of r. Since ¢’ <1 and § < 1, we may

328 THOMAS MARTINETZ and KLAUS SCHULTEN

N
N

-1 0 b

Fig. 9. Illustration of cooperative learning. The term describing the cooperation between neural units is
equivalent to a harmonic coupling between the pointlike masses moving in the potential V(b,). Due to
this coupling represented by the springs, point-masses which remain at the local minimum at b, = — 1 are
pulled or pushed towards the global minimum and, therefore, may reach the required value b, = 0 as well.

neglect the terms in (21) of higher order in 4’, 8 or products of them. This yields for the time
development of b,:

by=—38 b (b, +12+h"-Y (b,—b,), (22)
s>
which can be interpreted mathematically as adding the coupling term 4’ - 2(b, — b,) to the time
development of b, without cooperation. The time development of b, described by (22) corresponds
again to an overdamped motion of a pointlike mass in the potential ¥'(b,), however, the additional
harmonic coupling 4’ - (b, — b,) among nearest neighbors in the lattice adds spring-like connections
between the point-masses. For three neural units the new situation is illustrated in Fig. 9. Without
cooperation each point-mass moved by itself within the potential ¥(b,) without any interaction
with its neighbors. As depicted in Fig. 9, with the additional spring-like connections, point-masses
which “got stuck” at the local minimum at b, = — 1 are pulled or pushed towards the desired global
minimum by their neighboring point-masses. Hence, one expects the percentage of neural units,
which are able to adapt their output to the required values, to increase by the additional coupling
between the units.
If we multiply both sides of (22) by b, and sum the result over all neural units r, we obtain:

Zb,b',= -0 -Zb}(b,+ 1)2+h’-ZZ(b,b,——b3). (23)
r r r (s>

Denoting 1/N Z,b2 by (b2), equation (23) is equivalent to:

. 2 h’ :

@ =-25pb,+17-LT 5 6,- b2 (24
N r N r {s)

Equation (24) shows that the mean square value {b}) never increases since the right-hand side of

(24) is never positive. If we look at the phase space which is defined by the N -dimensional space

of all possible values of the b,s, <b?) =0 is valid only for:

b=0 Vr and b =-—1 Vr (25)

At these two points in the phase space, holds b, = 0 for each r and, therefore, (25) describes the
only two fixpoints of the dynamics of the adaptation process.

Condition (25) together with (24) allows us to determine the probability W(N) of the network
to succeed in learning for the cooperating case, too. For this purpose we assume > #’. Then we

Neural network for robot control 329

may approximate the time development (22) of the output by neglecting the term 4’ - X, (b, — b,)
as long as b,(b, + 1)? is not close to zero. Hence, each neural unit first modifies its b, as in the
non-cooperating case determined by (17), until it has adapted its Jacobian either to the local
minimum at b, = — 1 or to the global minimum at the required value b, = 0. At this point in time,
the terms b,(b, + 1) are zero and the coupling h’ - =, (b, — b,) starts to contribute to the time
development of b,, which forces the whole network to converge to either of the two fixpoints
determined by (25).

If we denote by M the number of neural units which have already adapted their Jacobians to
the required value b, = 0 at the time when the coupling starts to affect the time development, we
obtain:

W N—-M
for the mean square value {(b?) at this point in time, which is smaller than one for M # 0. Since
the mean square value (b?) always decreases until, because of (25), it reaches either (62> =0 or
{b?> =1 as a final value, the neural network converges to the required state, i.e. all the neural units
adapt their output to b, =0, if M #0.

The probability of M being zero, i.e. the probability for all the neural units to have adapted their
output to the local minimum at b, = — 1 when the coupling term starts to contribute to the time
development, is equal to the probability of initializing all the g, s with values a, < 0. The probability
of initializing the output a, of one neural unit with a value a, <0 is given by 1 — P,. Hence, for
a network of N cooperating neural units the probability W(N) of adapting completely to the
required state, i.e. each unit adapts its output to a, = a,, is given by:

WN)=1—-(1—=Py)", 27)

which, in contrast to the noncooperating case, converges exponentially to one with an increasing
number of neural units N.

In Fig. 10 we compare the analytical results for W(N) with the results obtained through
Monte-Carlo simulations of the learning process. For the comparison we simulated the adaptation

1.0

Learning probability W(N)

0.0 v v v v ————
1 2 3 4 5 6 7 8

Number of neural units N

Fig. 10. The probability W(N) of a neural net of N units to completely succeed in learning, i.e. the output

a, of each neural unit converges to a, = a,, The dot marks show the result obtained through a Monte-Carlo

simulation of the learning process, and the two graphs show the result of our mathematical analysis. The

predicted exponential decay of W(N) for ¢’ =0 and exponential increase for ¢’ >0 is in very good
agreement with the actual behavior of the learning process.

CAEE 19/4—F

330 THOMAS MARTINETZ and KLAUS SCHULTEN

steps (7), (8) and (9) for ay, one-dimensional and with A, being a scalar. As in our mathematical
analysis, the w,s were fixed and each 4, had to adapt to the same a,. The N neural units were
arranged in a linear chain and the range ¢’ of the neighborhood cooperation as well as the step
sizes 6 and ¢’ were kept constant during the simulation. For q,, ¢’, § and ¢’ we chose the values
a,=1,0"=0.2,6 =0.1 and ¢’ =0.5. For the initialization we assigned to each a, a random value
from the interval [—2,2], which yields P, =0.5.

As we can see in Fig. 10, the analytical results and the results of the Monte-Carlo simulations
are in very good agreement. For ¢’ = 0 the probability W (N) decreases exponentially to zero with
the size N of the network, whereas for 6’ > 0, i.e., for 6" = 0.2 in the simulations, the probability
of the network succeeding in learning increases exponentially to one with its size. This shows very
clearly the significant influence of the cooperation between neural units on the learning process.
For a neural network consisting of a large number of units the cooperation is essential for the
system to succeed in learning.

5. SUMMARY

We described a self-organizing neural network model based on Kohonen’s feature map
which is capable of learning input-output relations, i.e. the input-output transformation
from camera coordinates of a visually designated target object to appropriate joint angles for
the positioning of a robot arm’s end effector. The described robot system, together with the
neural network which consists of neural units arranged in a 3-D lattice, learns to position its
end effector to target objects by performing a number of trial movements. Each trial
movement consists of an open-loop gross positioning and a subsequent corrective fine-movement
which is generated by employing visual feedback. The learning of the end effector positioning
is achieved without the need for an external teacher. For the adaptation of the network only
information provided by a pair of cameras is necessary, which makes the network
algorithm applicable to robot arms without joint angle sensors. The positioning error of the
robot arm decreases very rapidly within the first few hundred trials and in the described
simulation reaches a residual final value of 0.06% of the length of the workspace after 6000 learning
steps.

By increasing the length of one of the robot arm’s segments at a final stage of the learning
procedure we tested the capability of the neural network to adapt to changes in the robot system’s
geometry, which may result from worn-out joints, picking up, e.g. a tool, or changes in the camera
positions. After a slight immediate increase in the robot system’s positioning error the accuracy
returned to its previous value through an additional number of trial movements. The slight increase
in the positioning error of 1.2% was much less than the additional error which one would expect
from a 10% change in the length of the robot arm’s last segment. This discrepancy is due to a visual
feedback mechanism incorporated in the control of the positioning movement which enables the
robot system to react to changes in its configuration immediately. After several further adaptation
steps the network had readjusted the quantities w,, y,, A, and the previous accuracy was completely
regained.

We investigated the cooperative learning of the output values which is incorporated in the
network through an adaptation step which adjusts the output of adjacent neural units in a
concerted way. The concerted modification forces neighboring neural units to adapt to similar
output values, which is desirable, since the a priori unknown input-output transformation is
continuous. The concerted adjustment of the output values not only yields a significant increase
in the speed of convergence, but, as the result of a simulation and a mathematical analysis showed,
is even necessary for the network to succeed in learning at all.

A mathematical analysis and Monte-Carlo simulations of the 1-D version of the learning
procedure showed that cooperation in the adjustment of the output values causes the probability
of the network to learn properly to increase to one with the number of employed neural units.
Without cooperation only a subset of the neural units, namely those which happened to be
initialized properly, are able to adapt their output to the required values. The behavior of the
learning algorithm in the non-cooperating as well as in the cooperating version could be illustrated

Neural network for robot control 331

by pointing out the mechanical analogy to an overdamped motion of a pointlike mass in a potential
with a local and a global minimum. In this analogy cooperation between neural units corresponds
to a harmonic coupling, i.e. to connecting the pointlike masses by springs, which causes masses
which “got stuck” at the local minimum to be “pushed” or “pulled” towards the global minimum,
until they reach their required final values as well.

The significant effect of the cooperative learning in the described neural network suggests the
assumption that the utilization of clusters of cortical neurons dedicated to the same task not only
serves the purpose of robustness against failures of single units, but eventually is even necessary
for neural systems to exhibit learning capabilities at all. This interesting aspect of supporting
learning through lateral interaction between computing elements might have a valuable impact on
distributed processes in general.

Acknowledgements—The authors would like to thank Helge Ritter for many valuable discussions. This work has been
supported by the National Science Foundation under Grant DIR-90-15561, by the German Ministry of Science and
Technology (ITR-8800-G9) and by a fellowship from the Volkswagen Foundation to TM.

REFERENCES

1. T. Martinetz, H. Ritter and K. Schulten, Three-dimensional neural net for learning visuomotor-coordination of a
robot arm. JEEE-Trans. Neural Networks 1, 131-136 (1990).

2. H. Ritter, T. Martinetz and K. Schulten, Topology conserving maps for learning visuomotor-coordination. Neural
Networks 2, 159-168 (1989).

3. D. Whitteridge, Projection of optic pathways to the visual cortex. In Visual Centers in the Brain (R. Jung, Ed.).
Springer, Berlin. Handbook of Sensory Physiology, Vol. VII/3B, pp. 247-268 (1973).

4. J. H. Kaas, R. J. Nelson, M. Sur, C. S. Lin and M. M. Merzenich, Multiple representations of the body within the
primary somatosensory cortex of primates. Science 204, 521-523.

5. J. H. Kaas, M. M. Merzenich and H. P. Killackey (1983) The reorganization of somatosensory cortex following
peripheral nerve damage in adult and developing mammals. Annl/ Rev. Neurosci. 6, 325-356 (1983).

6. D. J. Willshaw and C. von der Malsburg, How patterned neural connections can be set up by self-organization. Proc.
R. Soc. Lond. B-194, 431-445 (1976).

7. C. von der Malsburg and D. J. Willshaw, How to label nerve cells so that they can interconnect in an ordered fashion.
Proc. Natl Acad. Sci. U.S.A. 74, 5176-5178 (1977).

8. A. Takeuchi and S. Amari, Formation of topographic maps and columnar microstructures. Biol. Cybernet. 35, 6372
(1979).

9. T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybernet. 43, 59-69
(1982).

10. T. Kohonen, Self-organization and associative memory. Springer Series in Information Sciences 8. Heidelberg
(1984).

11. K. J. Overton and M. A. Arbib, The branch arrow model of the formation of retino-tectal connections. Biol.
Cybernet. 45, 157-175 (1982).

12. H. Ritter and K. Schulten, Topology conserving mappings for learning motor tasks. In Neural Networks for
Computing (3. S. Denker, Ed.), AIP Conf. Proc. 151, Snowbird, Utah, pp. 376-380 (1986).

13. H. Ritter and K. Schulten, Extending Kohonen’s self-organizing mapping algorithm to learn ballistic movements. In
Neural Computers, pp. 393-406. Springer, Heidelberg (1987).

14. D. H. Graf and W. R. LaLonde, A neural controlled for collision-free movement of general robot manipulators. In
IEEE Int. Conf. on Neural Networks, San Diego, pp. 77-84 (1988).

15. T. Martinetz, H. Ritter and K. Schulten, Learning of visuomotor coordination of a robot arm with redundant degrees
of freedom. In Proc. Int. Conf. on Parallel Processing in Neural Systems and Computers, Diisseldorf 1990 (ICNC-90)
(R. Eckmiller, G. Hartmann, G. Hauske, Eds), North-Holland, Amsterdam (1990), pp. 431-434; and in Proc. Third
Int Symp. on Robotics and Manufacturing, Vancouver, (ISRAM-90), pp. 521-526 (1990).

16. T. Martinetz and K. Schulten, Hierarchical neural net for learning control of a robot’s arm and gripper. IJJCNN-90,
Conf. Proc., San Diego, Vol.Ill, pp. 747-752 (1990).

17. M. Kuperstein, Neural model of adaptive hand-eye coordination for single postures. Science 239, 1308-1311
(1988).

18. M. Kuperstein and J. Rubinstein, Implementation of an adaptive neural controller for sensory-motor coordination.
IEEE Control Syst. Mag. 9, 25-30 (1989).

19. S. H. Lane, D. A. Handelman and J. J. Gelfand, A neural network computational map approach to reflexive motor
control. Proc. 1988 IEEE Conf. on Intelligent Control (1988).

20. B. W. Mel, A robot that learns by doing. AIP Proc. 1987, Neural Information Processing System Conf., Denver, CO
(1987).

21. W. T. Miller, Real-time application of neural networks for sensor-based control of robots with vision. IEEE Trans.
Syst. Man. Cybernet. 19, 825-831 (1989).

22. H. Ritter and K. Schulten, On the stationary state of Kohonen’s self-organizing sensory mapping. Biol. Cybernet. 54,
99-106 (1986).

23. B. Widrow and M. E. Hoff, Adaptive switching circuits. WESCON Conv. Record, Part IV, pp. 96104 (1960).

332 THOMAS MARTINETZ and KLAUS SCHULTEN

AUTHORS’ BIOGRAPHIES

Thomas Martinetz—Thomas Martinetz studied Physics and Mathematics and received his Diploma degree in physics at
the Technical University of Munich in 1988. He i1s a fellow of the Volkswagen Foundation and is currently with the
Department of Physics and the Beckman Institute for Advanced Science and Technology at the University of lllinois at
Urbana-Champaign. He has coauthored one book and published several articles on neural networks.

Klaus Schulten—Klaus Schulten received his Diploma degree in physics at the University of Miinster, Germany in 1969
and his Ph.D. in chemical physics at Harvard University in 1974. In 1980 he became Professor for theoretical physics at
the Technical University of Munich. In 1988 he moved to the University of Illinois at Urbana-Champaign where he is
Professor of physics, chemistry and biophysics, and a member of the new Beckman Institute.

