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A “Neural-Gas” Network Learns Topologies
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A neural network algorithm for vector quantization of topologically arbitrarily struc-
tured manifolds of input signals is presented and applied to a data manifold M which
consists of subsets of different dimensionalities. In addition to the quantization of M
each neural unit 3, = 1,..., N of the network A develops connections, described by
Cij € {0,1}, to those neural units j with adjacent receptive fields. The resulting con-
nectivity matrix C,'j describes asymptotically the neighborhood relationships among
the input data of the quantized manifold and defines a graph which reflects the often
a priori unknown dimensionality and topological structure of the data manifold M.

1. Introduction

Vector quantization as a technique for data compression is widely used in technical applica-
tions [1-5] and is also assumed to be an important principle employed by biological information
processing systems. Several approaches based on neural network models have been proposed
which are capable of adaptively quantizing a given set of input data [6-11].

Vector quantization techniques encode a manifold of data, e.g., a submanifold M C R™,
by employing a finite set A of reference (or “codebook”) vectors w; € R™i=1,..,N. A data
vector v € M is described by the best-matching or “winning” reference vector W of A, for which
a distortion measure d(V,W;), e.g., the square error [iv —w; ||2, is minimal. This procedure
divides the manifold M in a number of subregions

Mj={veM||lv-w;ll < liv—will Vi},

. so-called Voronoi polygons, out of which each data vector V is now described by the corresponding
reference vector wj. If the probability distribution of data vectors over the manifold M can be
described by P(V), the average reconstruction error is determined by [ dvP(v)d(v, wi(v)) and
has to be minimized by an optimal choice of the reference vectors ;. In the neural network models
for vector quantization the adaptation process for the synaptic weights w; of the neural units can
be interpreted as the construction of reference vectors. The synaptic weights W; determine the
input stimuli neural unit i is tuned to by defining a receptive field which corresponds to the
Voronoi polygon determined by W;. Each time an input stimulus is presented, the best-matching
element j of the array A of neural units with flv —w;ll = r'!élg ||v — w;|| represents the input.

A neural network model widely used for vector quantization is Kohonen’s self-organizing
feature map [10, 11]. In Kohonen’s model each neural unit has certain neighborhood relations to
all the other neural units, defining a topology on the array A of formal neurons. In addition to
the quantization of the manifold M of data vectors Kohonen’s self-organizing feature map yields a
topographic mapping from M to the array A. Neural units which are neighbors within the given
topology of the network modify their synaptic weights in a concerted way, which adapts their w; to
values which are close on the manifold of input data. This topology conserving mapping captures
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the similarity relationships among the represented input data by providing additional information
about the neighborhood relations between the reference vectors w;. This additional information
is highly desirable in several applications, including path planning and obstacle avoidance [12},
visuomotor control [13, 14], speech processing [1], and might also play an important role in tasks
involving more abstract “semantic” features pertaining to language and higher processing levels
[15]. To obtain optimal results concerning the conservation of the topology of the mapping as well
as the optimal utilization of all neural units, the topology of the employed network has to match
the topology of the manifold of data which is represented. This requires prior knowledge about
the topological structure of the manifold M, which is not always available or might be difficult
to obtain if the topological structure of M is very heterogeneous, e.g., composed of subsets of
different effective dimensions or disjunct and highly fractured.

For this reason, it is desirable to employ a more flexible network capable of (i) quantizing
topologically heterogeneously structured manifolds and (ii) learning the similarity relationships
among the input signals without the necessity of prespecifying a network topology. One approach,
suggested by Kohonen and his co-workers, is to readjust the topology of the employed network at
different stages during the learning procedure, based on the minimal spanning tree between the
reference vectors w; [16].

2. The “Neural-Gas” Network

In the approach we present here the synaptic weights w; are adapted independently of any
topological arrangement of the neural units within the neural net. Instead, the adaptation steps
are affected by the topological arrangement of the receptive fields within the input space. Since
the synaptic weight changes Aw; are not determined by the arrangement of the neural units
within a topologically prestructured lattice, but by the relative distances between the neural units
within the input space, we chose the name “neural-gas” network.

Information about the arrangement of the receptive fields within the input space is implicitly
given by the set of distortions Dy = {|lv —w;l|,i= 1,..., N} associated with each v. Each
time an input signal Vv is presented, the ordering of the elements of the set Dy determines the
adjustment of the synaptic weights w;. The resulting adaptation rule can be described as a
«winner-take-most” instead of a “winner-take-all” rule. Simultaneously, neural units ¢,7 with
receptive fields M;, M. i adjacent on the manifold M develop connections between each other,
which is described by setting the matrix element C,'j from zero to one. The resulting connectivity
matrix C,'j at the end of the learning procedure represents the similarity, i.e., the neighborhood
relationships, among the input data. )

A presented input signal V is received by each neural unit i and induces “excitations” fj(Dy)
which depend on the set of distortions Dy. Assuming a Hebb-like rule with an additional memory
decay term, the coincidence of presynaptic input v and postsynaptic excitation f; changes w; by

Aw; = € fi(Dy) - (v — w;). (1)

The step size € € [0,1] describes the overall extend of the modification and f;(Dv) € [0,1]
accounts for the topological arrangement of the w; within the input space. The excitation fj(Dv)
depends on the number k of neural units which are excited more strongly than neural unit ¢ itself
and is largest for the neural unit ¢ = g for which

v —w; || = min||]v — w;||.
Iv = wigll = min v = ;]

By i1 we denote the neural unit with its w;, second closest to v, and ig, k = 0,..., N — 1 is the
neural unit for which there are k units j of the array A with [[v —w;|| < |lv —wj, || If we denote
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Fig.1: Illustration of the up-
date rules for the connections
of the network. Each time
an input signal is presented
within the shaded area, which
depicts the receptive field
(Voronoi polygon) M; of neu-
ral unit ¢, a connection from
¢ to the neural unit which
is second closest to the in-
put signal is established. The
numbers 1,...,6 denote the
subregions within the shaded
area for which the corre-
spondingly numbered neigh-
boring neural units are sec-
ond closest to an input signal
v € M;. Neural unit  only
develops connections to neu-
ral units the receptive fields of
which share common borders
with its own receptive field.

5

the number k associated with each neural unit i by k;, then f;(Dy) is given by a function f(k;)
which is unity for k; = 0 and decays to zero with increasing k;. In the simulations described below
we chose f(k;) = e~Fi/X with A determining the number of neural units significantly changing
their synaptic weights with each adaptation step. Then, the adaptation step (1) for the w; is
determined by

—k;/A

ne

wi¥ = wold 4 . ¢ (v — wildy, (2)

To capture the neighborhood relitionships between the reference vectors w; each time an
input stimulus is presented we establish a connection between the neural unit i, which had its
W; closest to v, and the neural unit ], which had its w; second closest to the input signal. The
creation of this connection is described by setting the matrix element Cipiy from zero to one.

Each connection i —j has an “age” t;;. When the age of connection i —j exceeds a prespecified
lifetime T, it is removed, i.e., C','j is set to zero. If the connection ¢y — i1 the algorithm tries to
establish exists already, its lifetime tigi, is set to zero and the connection “ages” again. There
are two ways to update the age of the connections. One way would be to set the age of each
connection equal to the number of learning steps passed since it was established. This requires
a synchronous update of the age of all connections with each adaptation step. The second and
less time consuming way is to increase with each incoming input stimulus only the age of the
connections of neural unit 79 which was closest to the input stimulus. Since both ways are
equivalent on average as long as the probability of a neural unit ¢ to be the “winner” is equal
for each ¢ of the network A, we chose the asynchronous and faster update rule for the presented
algorithm.

In Fig.l we show schematically which of the neural units are connected by the introduced
adaptation rule. The neural unit denoted by ¢ is the “winner” for input signals presented within
the shaded area, the receptive field or Voronoi polygon of neuron i. The numbers 1,...,6 denote
the neural units which are second closest to input signals appearing within the correspondingly
numbered subregions of the grey shaped area. Only to the neural units 1, ...,6 the receptive fields
of which share common borders with its own receptive field neural unit develops connections.
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The “neural-gas” algorithm for vector quantization and learning of topological relations can
now be summarized by the following steps:
0. Assign initial values to the weights w; € R™ and set all Cjj to zero.
1. Select an input vector V of the input manifold M.

2. For each unit i determine the number k; of neural units j with
v —will < llv — will
by, e.g., determining the sequence (305315 s iN—1) Of neural units with
v = Wighl < IV = Wiy [l < oo < IV = Wipy_y [l
3. Perform an adaptation step for the weights according to

whev = wild 4 e ekilAv —wild), i=1,.,N.

4. If Cigiy = 0, set Cigiy = 1 and tigi, = 0. If Cigiy = 1, set tigiy = 0.

5. Increase the age of all connections of ig by setting tigj = tig; 1 for all j with Cipj = 1.

6. Remove all connections of i which exceeded their lifetime by setting Cjgj = 0 for all j with

Cipj =1 and ti; > T. Continue with 1.

Step 2 of determining k; for each neural unit i is the most time consuming part of this algorithm
and, on a sequential computer, corresponds to sorting the distances |lv — will which goes with
N logg N. However, the synaptic change Aw; for neural units with their kj >> ) is neglectable,
which for small A allows us to “cut off” the sorting at a k with k << N. In a parallelized form
the computational time of the algorithm only increases with logg N. Note, that each neural unit
only has to know how many but not which of the other neural units are more closely tuned to the
input signal.

3. Result of a Simulation and Discussion

In Fig.2, we show the result of a computer simulation of the described algorithm. The neural
net consisted of an array of N = 200 units. The manifold M from which the input vectors were
randomly chosen consisted of a combination of a three-dimensional, a two-dimensional, and a one-
dimensional submanifold. This topological structure of M was chosen to test the capability of
the “neural-gas” algorithm ‘to map the array A of neural units onto manifolds with heterogeneous
and therefore hardly prespecifiable topologies.

We show the initial state, the result after 5000, after 10000, after 15000, after 25000, and
the final state after 40000 adaptation steps. The initial values for the synaptic weights Wi were
chosen randomly from a right parallelepiped in which the manifold M was embedded (top left).
The “snapshot” after 5 000 adaptation steps (center left) shows the neural net during the first stage
of the simulation. Neural units the receptive fields of which were adjacent initially and therefore
became connected still might drastically change there assigned locations within the input space
and might drift apart with further adaptation steps. The corresponding connections then are no
longer refreshed and are removed when their age exceeds their lifetime T.

After 10000 adaptation steps (bottom left), a few connections between neural units with non-
neighboring receptive fields still exist. With further adjustment steps (top right, center right) the
neural network adapts more and more to the underlying data manifold M, and at the end of the
learning procedure after 40000 adaptation steps (bottom right), only neural units with adjacent
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Fig.2: The “neural gas” network quantizing a topologically heterogeneously structured input
data manifold. The data manifold consists of a three-dimensional (right parallelepiped), a two-
dimensional (rectangle), and a one-dimensional (circle and connecting line) subset. The dots mark
the centers of the receptive fields M; determined by the formal synaptic weights w;. Connections
between neural units i, j, i.e., Cij = 1, are indicated by connecting lines between the locations w;
and w;. Depicted are the initial state, the network after 5000, 10000, 15000, 25 000, and at the
final state after 40 000 adaptation steps (from top left to bottom right) At the end of the adapta-
tion procedure the connections between the neural units reflect the topological structure and the

corresponding dimensionality of the data madnifold.
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receptive fields established and maintained their connections. Within the one-dimensional subsets
of M each neural unit developed two connections, except the unit which accounts for the bifurca-
tion at the location where the line encounters the circle. This unit deéveloped three connections.
Within the two-dimensional area each neural unit on average established about six (Delaunay
triangulation), and within the three-dimensional region each unit tended to develop fourteen con-
nections, corresponding to the average number of neural units with neighboring receptive fields.

As we see in Fig.2, the “neural-gas” algorithm quantized the manifold M by distributing
the receptive fields of all the 200 neural units homogeneously over the relevant parts of the input
space. At the end of the learning procedure, the graph determined by the connections C',-J- matches
the topology of M and can be regarded as a map which describes the topological structure of
the represented manifold. This was achieved without the use of any prior knowledge about the
topological structure of M. For a fixed dimensionality, each neural unit gains asymptotically
the same number of connections, independent of the number N of neural units employed in
the network. Hence, the number of non-vanishing elements of the connectivity matrix Cj; and,
therefore, the amount of memory necessary for running the “neural-gas” algorithm increases linear
with the number of neural units.

In the described simulation the parameter A, the step size ¢, and the lifetime T" were dependent
on the number of already performed adaptation steps t. This time dependence had the same form
for all three parameters and was determined by g(t) = g,'(gf/g,')t/t"‘" with A; = 30, Ay = 0.01,
€ = 0.3, e = 0.05, T; = 20, Ty = 200, and tmaz = 40000.
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