Hierarchical Neural Net for Learning Control

of a Robot’s Arm and Gripper

Thomas M. MARTINETZ and Klaus J. SCHULTEN

Beckman Institute and Department of Physics
University of Illinois at Urbana-Champaign
405 North Mathews Ave., Urbana, IL 61801, USA

Abstract: We introduce a hierarchical neural network structure capable of learning the control of a robot’s
arm and gripper. Based on Kohonen’s algorithm for the formation of topologically correct feature maps and
on an extension of the algorithm for learning of output signals, a simulated robot arm system learns the
task of grasping a cylinder. The network architecture is that of a 3-dimensional cubic lattice in which is
nested at each lattice node a 2-dimensional square lattice. The robot learns without supervision to position
its arm and to properly orient its gripper by observing its own trial movements. In our simulation, the error
in positioning the manipulator after training was 0.3% of the robot’s dimension, and the residual error in
orienting the gripper was 3.8°. Due to cooperation between neighboring neurons during the training phase,
less than two trial movements per neuron were sufficient to learn the required control tasks.
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1. Introduction

In many motor tasks a hierarchical order of basic movements can be recognized. For example, in the
comparatively simple task of grasping a cylinder by a robot arm, two hierarchically ordered movements are
required. First, the gripper has to be positioned in the vicinity of the object by a proper posture of the whole
arm. Second, the gripper needs to be oriented relative to the object such that the object can be grasped.
This subsequent movement depends not only on the object’s orientation in space, but also on the posture of
the arm to which the gripper is attached. In contrast to other biologically inspired neural network models [1],
which solve the task of grasping an elongated object by treating both of these movements in a homogenously
structured network, we employ a neural network structure which reflects the intrinsic hierarchy of the two
underlying movements.

The simplest approach would be to control the positioning movement and the subsequent orientation of
the gripper independently. This approach is sufficient only as long as the object is presented in a workspace
which is small compared to the dimensions of the robot arm, for instance, if the object is always located
in a small region of the visual field. In this case the different arm postures, which correspond to different
target locations, do not vary over a broad range and can be approximated as being constant, with the result,
that the required movements to orient the gripper depend only on the object’s orientation. In this case,
two separate neural network controllers, one for the positioning movement and one for the orientation of the
manipulator, are sufficient.

This is no longer valid for the situation we are considering. In Fig.1 we show the robot arm with
the gripper and two cameras which provide the visual information. The workspace, which is indicated
schematically in Fig.1, has an extent which requires a broad range of arm postures in order to reach all
possible object locations. To account for the dependence of gripper orientations on arm postures we employ
a hierarchical neural network structure which consists of a main net for the control of the arm posture, and
several subnets, which learn to coordinate the subsequently performed orientation of the gripper at different
areas of the workspace. :

In Section 2, we describe the adaptation scheme used by the main neural net to learn the arm positioning
movement, and we introduce an adjustment rule for the joint angles of the robot arm, based on a feedback
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Fig.1: Model of the simulated robot. The
arm has three degrees of freedom. The
gripper is able to move within the verti-
cal plane and around its own axis. The
two cameras provide the visual informa-
tion necessary for the neural network con-
troller to perform the required movement
and to adapt to the robot’s characteristics.

loop, which is able to reduce the residual positioning error to an arbitrary small value. In Section 3, the
subnets for the gripper orientation and their hierarchical arrangement within the main net is described. In
this section, we also explain the hierarchically organized cooperation between neurons, which leads to the
very high training efficiency which requires less than two learning steps per neuron. In the last section we
present the results of our simulation.

2. Neural Net for Arm Posture

For each trial movement of the robot we present a cylinder at a randomly chosen location within the
workspace and with a random orientation of its axis. The neural network controller then has to process two
kinds of input signals, one for the positioning subtask, i.e. for adopting a proper arm posture, and one for
the orientation of the gripper. In Fig.2, we depict schematically the images of the cylinder seen by the two
cameras. The image coordinates of the center of the bars as seen through camera 1 and camera 2 are denoted
by uz1,uy1 and ugg, uy2, respectively, and the size of each bar along the x- and y-axis is denoted by zz1,z41
and zz9,y2. As decribed in more detail in our previous work [2,3], uz1, uy1 and ug2,uyp can be combined
to form a four-dimensional vector u which carries the information about the spatial location of the cylinder.
In a similar way, z51, 241 and zz9, 242 can be used by the neural network to infer the cylinder’s orientation.

In this section we explain briefly the coordination and the learning of the positioning movement. The
cylinder is presented at randomly chosen locations within the workspace. All the resulting input signals u
serve to attempt an arm posture which positions the gripper in front of the object to be grasped. The inputs
u form a three-dimensional submanifold within the four-dimensional input space, and, therefore, we use a
neural net of a three-dimensional topology to represent this submanifold. By employing Kohonen’s algorithm
for the formation of topologically correct feature maps [4], a topographic mapping between the relevant part
of the input space and the three-dimensional neural net develops during learning. This mapping can be seen
as a discretization of the three-dimensional submanifold of input signals, attributing to each node of the 3-D
Kohonen net a position wg. The transformation 5(11) between the target location u and the required three
joint angles § of the arm can be linearized in the vicinity of each discretization point and be presented by a
vector 0 together with a tensor Ag.

To each discretization point ws corresponds a formal neuron s of the Kohonen-network; the neuron
associates a location wg within the four-dimensional input space with a three-dimensional vector fg of joint
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camera 1 camera 2 Fig.2: Schematic view of the cylinder in
camera 1 and camera 2. The center of each
bar, the projection of the cylinder onto

Uy2 —x—;‘ the focal plane of camera 1 and camera
y

Xy 2, is denoted by its coordinates ugy,uyy

Uyy Xy1 and ugy,uy2, respectively. The informa-
tion about the orientation of the cylinder

*x1 is provided by the the size of each bar in

the = and y direction of each focal plane,
i.e. by 251,241 and z42, 242.

Ux1 Uy

angles and a 3 x 4 matrix Ag. Angles 0_; and matrices Ag are used to position the end effector in front of
the object. The discretization occurs in a topologically ordered manner, meaning that neighboring neurons
of the Kohonen-network are associated with neighboring subsets of the input space [2,3].

After a cylinder has been presented to the robot and the center location u abstracted, it is determined
which neuron is currently responsible for the arm positioning. This neuron s is identified by the condition
that the input u is closer to the discretization point wg than to any other wy, r # s. The positioning of
the end effector consists then of two phases. In a primary gross positioning phase the robot joints assume
the angles which are given by the components of the three-dimensional vector fs. The position of the end
effector in the “retinas” of both cameras after this gross movement will be denoted by a four-dimensional
vector v;, which is already close to the four-dimensional retinal target location u. In a secondary correction
step we now use the linear correction

Al = Ag(u—v;) (1)

for a corrective joint movement (see also [5]). Here Ag is the Jacobian of the transformation f(u) at the
discretization point s, and Af s usually sufficient to correct the error of the gross movement very precisely
[5]. The final position of the gripper is seen by the cameras at alocation v¢. In departing from the procedure
adopted in [2,3] we iterate the correction several times, in case the error is still too large for the desired
purpose. This is done by taking the new difference u — vf/ between the last movement and the target, and
correcting the joint angles again by using the Jacobian As. One obtains Al = Agu—v ) for the second
correction and so forth. In our simulation, described in more detail in Section 4, this correction was carried
out three times per trial movement.

Each trial is accompanied by an improvement of é.s and Ag. For this purpose we use a linear error
correction rule of the Widrow-Hoff-type [6], leading to improved estimates [5]

A*= Ag+|[Av||72 . Ag(u — vy)AvT, (2

0* = 05 + As(ws — ;). (3)

Because of the topologically correct assignment of the neurons to the inputs, adjacent elements of the three-
dimensional grid have to adjust to similar output values, and, therefore, §* and A* are used to improve the
output values in a whole neighborhood of s. This neighborhood is defined by a function ks which is unity
at r = s and decays to zero as r deviates from s. The resulting adjustments are

AT = A% + ches(A” - ADY), 4

T = G244 4 ehes (6 — 5219, (5)

This cooperation between neighboring neurons during the training phase provides an enormous increase in
speed and stability of the convergence of the learning algorithm [2].
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Fig.3: The hierarchical neural net ar-
chitecture. To each element of the
three-dimensional arm posture control
=tz net a two-dimensional subnet is as-
signed. If s is the element of the three-
Y dimensional net selected to control the
i positioning of the arm, the assigned
] subnet Sg gets activated to coordinate
the orientation of the gripper.

N

3. Neural Nets for Gripper Orientation

To be able to extract the orientation of the cylinder in order to orient the gripper, the neural network
controller uses X = norm(zz1, Ty1, Ty2, Ty2) as its input signal. Since one needs only information on the
orientation of the cylinder and not on its length, the four-dimensional vector (251, 241, £52, Ty2) needs to be
known only in regard to its orientation.

The gripper orientation is defined by two angles denoted by the 2-dimensional vector q; For the same
orientation of the cylinder but different arm postures, the neural network controller has to produce different
pairs of angles for the orientation of the gripper. Because of this “coupling” between arm posture and gripper
orientation, two seperate networks for each movement are not sufficient in case high accuracy is required.
A possible network structure which accounts for this “coupling” is shown in Fig.3. To each element s
of the three-dimensional (arm posture control) neural net we assign a small subnet Ss for controlling the
orientation of the gripper within the small area of the workspace, for which element s is responsible. To learn
the transformation ¢s(X) from input signals X to the required angles ¢ of the manipulator, each subnet Ss
uses the same learning scheme already employed for the positioning movements. Again, Kohonen’s vector
quantization algorithm [4] forms a topologically correct mapping from the input space X of input signals x
to the subnet Sg, and adaptation steps of the same form as used for the positioning movement are employed
to learn the required output values.

For the discretization of the space X of input signals X we choose nets of a two-dimensional topology
because the orientation of the cylinder has two degrees of freedom, and, therefore, the relevant submanifold
of actual input signals X is two-dimensional. For the control of the two angles of the gripper, we assign to
each element q of subnet Ss a two-dimensional vector ¢qs for the gross orientation of the gripper and a
tensor Byg of dimension 2 x 4 for subsequent corrective fine movements. After the selection of element s,
vector $qs and tensor Bgs of the discretization point q which is closest to the input X are chosen to perform
the orientation of the gripper.

For learning the output values $qs and Bgg, adaptation steps of the same form already used for 6-; and
Ag are employed. First, by a steepest descent learning rule of the Widrow-Hoff type (see Eq. (2) and (3))
improved estimates d_;* and B* are determined. Since the elements of subnet Sg are again assigned to the
input space X in a topologically correct manner, the result can be used to adapt the output values in a
whole neighborhood of neuron q (see eq. (4) and (5)). Additionally, because the subnets are also arranged
in a topologically correct way within the three-dimensional grid, the learning success of neuron g may also
be “spread” to neighboring subnets. Adjacent subnets have to learn similar transformations ¢s(X), and,
therefore, may benefit from sharing adjustments of $qs and Bgs. This hierarchical cooperation between
neurons within a subnet and between subnets in the main net can be expressed mathematically by

BIEY = B + chrsdgpq(B* — BY), (6)
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The tensor hys defines the range of cooperation between subnets and was already used to determine the
neighborhood in the adaptation steps (4) and (5). The second tensor gpq describes the neighborhood
between units within each subnet and is of the same form as hys, namely unity at p = q and vanishing
as the distance between p and q increases. The factors ¢ and § scale the size of the adaptation steps and
decrease as learning proceeds [2,3].

This hierarchical cooperation between the neurons and between the subnets leads to a significant acceler-
ation of the learning process. Since each neuron within the employed network structure has many neighbors
with which it can share adjustment steps, it is sufficient for the neural net to perform less than two learning
steps per neuron to obtain the simulation results described in the next section. Although the number of
neurons for learning the control of the orientation of the gripper in addition to arm positioning is 25 times as
high as the number of neurons for arm positioning alone [3,5], the total number of required trial movements
does not increase when the gripper capability is added to the arm.

4. Simulation Results

In this last section we describe the results of our simulation. We used a three-dimensional lattice of
7 x 12 x 4 elements for arm positioning and subnets of 5 x 5 elements for gripper orientation. The initial
output values 05, As, ¢sq, Bsq as well as the initial discretizations wg and wgqs were chosen at random.

Figure 5 shows the performance errors for arm positioning and for gripper orientation as a function of
the number of performed trial movements. After only 1000 learning steps the positioning error has already
decreased below 1.2% of the dimensions of the workspace, and the deviation of the orientation of the gripper
relative to the axis of the cylinder is already lower than 6.8°. After 10000 trial movements, the positioning
error and the orientation error have decreased to 0.3% and 3.8°, respectively. As we can recognize in Fig.5,
both errors are very close to their final values after only 5000 learning steps. The rapid decay of both errors
is mainly due to the corrective fine movements, which are performed three times after each gross positioning.
The Jacobians Ag and Bsq are adapting to values close to their final ones already after several hundred
learning steps. This leads to fine movements which are able to correct possible bad gross positionings already
at the beginning of the learning procedure.

II - 751



Fig.6: Successive
arm postures of
a successful trial
to grasp the cy-
linder.
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To demonstrate the final result, we show in Fig.6 successive frames of one successful trial to grasp the
cylinder. It is possible to discern the gross arm positioning and the successive fine movements. Simultanously,
the orientation of the gripper is adjusted, which enables the robot to grasp the object.

Acknowledgement

The authors would like to thank Helge Ritter for many fruitful discussions. This work has been supported
by the University of Illinois and by a fellowship of the Volkswagen Foundation to T.M..

References
[1] Kuperstein M., Rubinstein J. (1989) Implementation of an Adaptive Neural Controller for Sensory-Motor Coor-
dination. IEEE Control Systems Magazine, Vol.9, No.3, pp. 25-30.

[2] Ritter H., Martinetz T., Schulten K. (1988) Topology-Conserving Maps for Learning Visuomotor-Coordination.
Neural Networks 2, pp. 159-168.

[3] Martinetz T., Ritter H., Schulten K. (1989) 3D-Neural Net for Learning Visuomotor-Coordination of a Robot
arm. IJCNN-89, Conference Proceedings, Washington 1989, Vol.I1:351-356.

f4] Kohonen T. (1982) Self-organized Formation of Topologically Correct Feature Maps. Biological Cybernetics
43:59-69.

[5] Martinetz T., Ritter H., Schulten K. (1990) Learning of Visuomotor Coordination of a Robot Arm with Redundant
Degrees of Freedom. ICNC-90, Conference Proceedings, Diisseldorf 1990, (in press)

[6] Widrow B., Hoff M.E. (1960) Adaptive switching circuits, WESCON Convention Record, part IV pp.
96-104.

II - 752



