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Three-Dimensional Neural Net for Learning
Visuomotor. Coordination of a Robot Arm

THOMAS M. MARTINETZ, HELGE J. RITTER, anp KLAUS J. SCHULTEN

Abstract—An extension of Kohonen’s self-organizing mapping al-
gorithm together with an error-correction scheme based on the Wid-
row~Hoff learning rule is applied to develop a learning algorithm for
the visuomotor coordination of a simulated robot arm. Learning oc-
curs by a sequence of trial movements without the need of an external
teacher. Using input signals from a pair of cameras, the ‘‘closed’’ ro-
bot arm system is able to reduce its positioning error to about 0.3 per-
cent of the linear dimensions of its work space. This is achieved by
choosing the connectivity of a 3D-lattice between the units of the neural
net.

I. INTRODUCTION

ONTROL of their limbs is one of the oldest tasks

biological organisms had to solve in order to survive
successfully. Therefore we have good reason to assume
that much will be gained by elucidating the principles of
biological motor control systems, which still outperform
by far today’s robot control algorithms [1].

Only recently, topology conserving maps have been
recognized as important for the generation of output for
motor control [2] and theoretical approaches using topol-
ogy conserving maps for robot control have been pro-
posed [3]-[12]. One important contribution using topol-
ogy conserving maps for visuomotor coordination is
Kuperstein’s model [6]-[9]. The model, which already has
been implemented and tested on a real robot arm system
[8], learns during a training phase control of a robot arm
with five degrees of freedom (four joints and a parallel
Jaw gripper) so that subsequently it can successfully reach
for visually presented objects of cylindrical shape. This
is achieved through the use of a set of topographic maps
that represent the location of the target object and hold
the adaptive weights determining the output to the arm
actuators. However, in Kuperstein’s model, each topo-
graphic map is only one dimensional and has a fixed to-
pographic ordering, which is imposed initially. Only the
output weights can adapt during the learning process. As
a consequence, for the design of the system the range of
the expected input values must be known beforehand and
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adaptive changes in the resolution of the neural popula-
tion required for control are not possible. Furthermore, as
the maps are one dimensional and their outputs for each
actuator are summed linearly, they can approximate only
a restricted class of control laws accurately (cf. Section
vI).

In this paper we want to present an approach which can
overcome both problems by using a network architecture
which is an extension of Kohonen’s model for the for-
mation of topographically correct feature maps [13]-[15].
In this model, the ordering and the resolution of the to-
pographic map evolve during learning by adjusting a layer
of input weights determining the distribution of neuronal
units over the task space, thereby overcoming the problem
of fixed resolution. For the adaptation of the output
weights we use an error-correction scheme based on the
Widrow-Hoff learning rule for adaptive linear elements
{16]. In addition, we use a network with a three-dimen-
sional topology matched to the work space. This elimi-
nates the restrictions arising from the additive coupling of
several one-dimensional maps. In addition, the 3D-lat-
tice-topology-conserving map allows many neighboring
units to cooperate during learning, which greatly contrib-
utes to the efficiency and robustness of the algorithm.

In the following, we will present a simulation study of
this approach for the control of a robot arm with three
joints, shown in Fig. 1. The arm is controlled by an array
of neural units, which receives its input from a pair of
cameras observing the arm. The task consists of learning
to position the end effector (manipulator) of the arm at a
specified object location within the work space in front of
the robot arm, i.e., to learn the kinematic visyomotor co-
ordination between camera output and desired end effec-
tor location. To achieve this goal, the system learns a
mapping between a (sensory) input space and a (motor)
output space by establishing a topology-conserving map
on an array of neuronal units. The map is learned from a
sequence of trial movements of the robot arm, which are
observed by cameras and used to gradually improve the
map. These trial movements try to position the end effec-
tor of the arm at different target locations within the work
space. An essential aspect is the ‘‘closedness’’ of the
whole system, observing its own reactions and learning
from them. As a consequence, much of the detailed *‘in-
terfacing’’ to the outside world (e.g., input signals from
cameras and output signals to joint motors) can be left to
the adaptive capabilities of the internal map.

1045-9227/90/0300-0131$01.00 © 1990 IEEE



132 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 1. NO. 1. MARCH 1990

Fig. |. The simulated robot system. Two cameras observe the robot arm
to the right of the work space whose borders arc indicated schematically
by lines. Each camera provides a picture for a visual preprocessing unit,
which extracts the *‘retinal’* coordinates &, i, of the object the manip-
ulator of the robot arm will reach for. The **retinal"” coordinates of both
cameras_are grouped to a four-dimensional vector u_= (i, #,) which

is fed as input to a 3D-lattice of neurons. The output 8,, A, of the ncuron
with the array vector w, which matches the sensory input u best is used
to specify the desired joint angles of the robot arm.

I1. THE MODEL

Each target object the robot arm reaches for is seen by
cameras 1 and 2. As we do not want to address issues of
early vision, we assume some form of visual preprocess-
ing which is able to reduce the images of both cameras to
a pair of *‘retinal’’ coordinates #,, &, of the target object.
Such preprocessing can, e.g., be realized by simple con-
volution and thresholding operations, provided that there
is a single target object of high contrast. This is also the
approach taken in Kuperstein’s implementation.

We group both two-dimensional coordinates &, and i,
to a four-dimensional vector u which then carries implic-
itly the whole information necessary to determine the po-
sition of the target. To be able to position its manipulator
correctly the robot system has to know the transformation
6 (u) from *‘retina’’ locations u to angles 6 of the three-
joint arm. This transformation depends on both the ge-
ometry of the robot arm and the positions of both cameras
relative to the work space and will be learned automati-
cally by the learning procedure described below.

The control law is adaptively represented by a *‘win-
ner-take-all’’ network of formal neurons [17}], receiving
the sensory input u in parallel. Each neuron r is ‘‘respon-
sible’’ for some small subset (its ‘‘receptive field’’) F, of
the four-dimensional input space U. U consists of the sub-
set of all possible ‘‘retinal’’ coordinates u = (&, ;).
Whenever u € F,, neuron r wins and determines the out-
put. In the nervous system, the output will be specified
by the average behavior of a localized subpopulation
comprising many simultaneously active neurons with
overlapping receptive fields [18]. In our model the subsets
F, are nonoverlapping and a single formal neuron sum-
marizes the average behavior of the localized population.
To specify for each neuron r the subset F,, a vector w, €

U is associated with each neuron. The vectors w, are cho-
sen as pairs w, = (w,,, w,,) of two component vectors
Wi, W,2. W,; is a two-dimensional location on the ‘‘ret-
ina’’ of camera i, i = 1, 2. Therefore each neuron is *‘bi-
nocular’’ and ‘‘looks’’ essentially at two small spots cen-
tered at w,; and w,, on the two camera ‘‘retinas.’’

To specify the required output, a vector 8, together with
a 3 X 4 matrix A, are associated with each neuron in ad-
dition to w,. The system produces the joint angles
6 (u) = (6, 6,, 6;) by using 8, and A, to specify the first
two terms of a Taylor expansion of 8 (u), i.e.,

a(u) = 65 + As(u - ws)- (l)

At the end of the learning procedure, this Taylor expan-
sion shall approximate the exact transformation 6 (u) over
the small compact subset of inputs u neuron s is respon-
sible for. These subsets F; are defined to be the subsets of
U, which consists of all points which are closer to w; than
to any other w,, r # s, i.e.,

F,={ueU||w —u| < |w, —ulvr}. (2)

Initially, w, and ((7, A), = (5,, A, ) are assigned ran-
domly, and the learning task is to gradually adjust them
in such a way that the required control law 6 (u) is ap-
proximated as accurately as possible. This is achieved in
the following way.

III. THE LEARNING PROCEDURE

The objects the robot arm will reach for are presented
at different, randomly chosen locations within the work
space. For each sensory input u induced by an object, the
network output specified by (8, A), is used to effect an
actual position, which during learning will be subject to
some error. Using an error-correction rule of Widrow-
Hoff-type, this error is used to obtain an improved estimate
(8*, A*) of what the correct output should have been (the
details are given in the subsequent sections). Then for all
neurons the following adaptation step is made

wiY = w4 eh, (u — wp (3)
(6, A)" = (8, A) + en((6, A) - (8, 4),").
(4)

Here s = s(u) denotes the neuron selected by input u, €
and ¢’ scale the overall size and h,, and h;; determine the
spatial variation of the adaptation steps.

If h,, = h}; = 6, the system is equivalent to a percep-
tron. However, an essential ingredient here is a topolog-
ical arrangement of the neurons. Each neuron r is consid-
ered as occupying a position r in a lattice, normally a two-
dimensional sheet, and the coefficients h,,, h, are taken
to be unimodal functions of Gaussian shape, depending
on the lattice distance || r — s| and with a maximum at r
= s (to remove the ambiguity in the scaling and € and €',
we require the normalization h, = hg = 1). Hence,
neighboring neurons in the sheet share adaptation steps
for the same input and get tuned to similar inputs u. Ko-
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honen was the first to recognize this property for the for-
mation of abstract sensory maps onto normally two-di-
mensional sheets analogous to the sensory maps found in
the brain [13]-[15]. Our algorithm extends his method by
associating with each formal neuron a second piece of
data, the output quantity ( 0 A),. Hence in this case, there
are two topology conserving maps, a map between the
input space U and the neural net, and a map between the
output space, defined by (6, A), and the net. Both maps
develop simultaneously and therefore get matched in such
a way as to approximate the desired mput—output rela-
tionship 6 (u). The resulting representation is an adaptive
discretization, which adjusts its resolution dynamically to
the range and the probability density of the required con-
trol actions 6 (u) by allocating neurons only to those re-
gions of U actually required for representing the control
law 6 (u).

In the present case, these regions form a submanifold
of the input space spanned by the camera signals u. As
each point of this submanifold corresponds to a target lo-
cation in the three-dimensional work space of the robot,
the submanifold is also three dimensional. The effect of
(3) and (4) is to adaptively distribute the values w, asso-
ciated with the neurons r over this submanifold, and
choosing their density distribution and therefore the res-
olution of the representation according to the probability
density of the movements occurring during training.

As lattice neighbors share their adaptation steps in (3)
and (4), this process will be particularly efficient, if the
topology of the lattice matches the topology of the sub-
manifold. Therefore, we choose the topology of a 3
D-lattice of 7 X 12 X 4 units for the arrangement of the
neurons. The three dlmensnonahty is not directly sug-
gested from the situation in the cortex, where the neurons
are geometrically arranged in a more sheet-like fashion;
however, the geometric arrangement of the neurons need
not necessarily reflect the topology inherent in the con-
nectivity among the neurons. If one is willing to accept a
fraction of long-distance connections among neurons,
higher dimensional topologies can be implemented with
two-dimensional geometric arrangements of neurons as
well. The presence of axon bundles in the brain running
over longer distances might well be indicative of such un-
derlying higher dimensional wiring topologies.

1V. THE ERROR-CORRECTION RULE

In the absence of any further information, stdrtmg val-
ues for w, and 0,, A, may be chosen randomly. It is the
task of the learning algorithm to adjust these to their cor-
rect final values. Each learning step involves execution of
a trial movement of the end effector to some randomly
designated target location. The camera output u for this
target location selects a neuron s ‘‘looking’’ at u, i.e. u
€ F,, for determining the movement. From the actual out-
come of the movement we derive an improved estimate
(6+, A*) for ( Bv, A,) and perform an adjustment accord-
ing to (3) and (4). To obtain 6* and A*, the following
strategy is used. First the array generates motor output for
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a ‘‘gross movement,’’ which results from setting the joint
angles to the values , associated with the selected neu-
ron. This brings the end effector to a location in the vi-
cinity of the desired target point. The “‘retinal’’ coordi-
nates of the end effector after this gross movement are
denoted by v;. The gross movement is followed by a “‘fine
movement’’ by switching on the linear correction term in
(1). This moves the “‘retinal’’ coordinates of the end ef-
fector to their final pesition v, leaving a final error of u
— vy between desired and achieved end effector position
in the visual field of the cameras. From u, v;, and v,
provided by the cameras by observing the robot arm dur-
mg the performance of its task, the neural network deter-
mines improved estimates of 6*, A* by using the error
correction rules

0* = 6, + A,(u — vr), (5)
A* = A, + "vf— v,'l_z
- A (u — w, -—vf+v-)(v,—v,-)r. (6)

The first equation can be recognized as a linear error cor-
rection rule for the discretization values 0 At the end of
the leamning procedure, when A; = A with A™ as the
exact Jacobi-matrix at x = p; of the transformation 0=

) (x) between the four-dimensional ‘‘retinal’’ coordi-
nates of the target object and the related joint angles, A, (u
— vy) gives the accurate direction of steepest descent for
the correction of 0 as long as u — vy is small. The mo-
tivation for the second equation is more obvious, if it is
written as

A* = A, + ||av|” (7)

where Av = v, — v; and A6 = A;(u — w,) are the
changes in the ‘“‘retinal’’ coordinates of the end effector
and the related joint angles during the fine movement
phase. In this form (6) can be recognized as an error-cor-
rection rule of Widrow-Hoff-type for the Jacobians A,.
The prefactor || Av || =2 determines the size of the adapta-
tion step.

As we see in (5) and (6), our robot system only needs
information provided by the cameras during the robot’s
positioning movement. Thus it is able to attain its leaming
goal without the need for any kind of external ‘‘teacher.”’

- (A6 — A,Av)A0"

V. SIMULATION RESULTS

In the following simulation we chose target locations
from the work space, which is indicated by lines in Fig.
1. The size of the work space is 0.7 x 0.4 X 0.2 units
and the robot arm segments, beginning at the base, have
lengths of 0.5, 0.4, and 0.4 units, respectively. Function
h,s was taken to be the Gaussian

by = exp (= |Ir - s|*/20%(1)) (8)

and hj, likewise. Parameters ¢, ¢’ and the widths o, o’ all
had the same time dependence p (1) = p;( p;/p;) )/tmex with
t as the number of the already performed learning steps
and t,,, = 30 000. The parameter values were chosen as
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Fig. 2. The *‘retinal’" locations w,, the neurons get tuned to from the view
of camera 2. The robot arm and the work space are indicated schemati-
cally by lines. The leftmost picture shows the initial state after chosing
w, randomly. In the rightmost picture at the top we see the state after
6000 learning steps, and the third picture shows the locations the ele-
ments of the 3D-lattice are assigned to after 30 000 iterations.

follows: ¢; = 1, ¢, = 0.005, ¢/ = 1, ¢f = 0.7, g; = 2.5,
or = 0.1, o/ = 1.5, and o7 = 0.05.

Figs. 2 and 3 show the results of the simulation from
the view of camera 2. Fig. 2 shows the state of the map-
ping r — w, relevant to camera 2 initially, after 6000 and
after 30 000 learning steps, respectively. Each node r of
the lattice is mapped to a location w,, (w, = (W,;, Wy))
in the image plane of camera 2. Values associated with
lattice neighbors are connected by lines to visualize the
lattice topology. Initially, the vectors w,; and w,, were
distributed randomly in the image plane of their camera.
This provided a homogeneous random distribution of the
values w, over the four-dimensional input space and the
corresponding image of the lattice is highly irregular (left
diagram). After only 6000 learning steps the initial dis-
tribution has retracted to the relevant three-dimensional
subspace corresponding to the work space (top right). Fi-
nally (bottom right) a very regular distribution of the nodes
has emerged, indicating a good representation of the work
space by the discretization points w,.

To visualize the performance of the gross movements,
i.e., the values of the zero-order terms of the Taylor ex-
pansion (1), we show in the leftmost pictures of Fig. 3
the mismatches between intended target positions and ac-
tually achieved end effector locations which occur for the
special subset of visual inputs u = w,. Each end effector
position after adjusting the joint angles by using 6, is in-
dicated by a cross mark, and the associated positioning
error of the end effector is indicated by an appended line
segment. The initial values of 8, were chosen randomly
(with the only restriction that the resulting end effector

Fig. 3. The performance of the output at the start, after 6000 and after
30 000 trial movements. The leftmost pictures show the end effector lo-
cations v; (cross marks) resulting from visual input 4 = w, (i.e., joint
angles are @,), together with their deviation (appended line) from the
target locations associated with 8,. The rightmost pictures visualize A,
by showing the reaction of the end effector to small test movements par-
allel to the borders of the work space.

positions should lie in the space in front of the robot) and
consequently the errors are very large for the initial state
(topmost left). However, after 6000 learning steps all er-
rors have markedly decreased (center), until finally
(30 000 steps, bottom ) mismatches are no longer visible.

The special subset of target locations 4 = w, was cho-
sen to visualize the accuracy of the zero-order terms 6, of
the Taylor expansion (1). In general, during operation,
the target objects may be located anywhere in the work
space and need not coincide with one of the discretization
points w,. The deviations from the discretization points
are taken into account by the first-order terms A, (u — w, )
of the Taylor expansion (1). As the 3 X 4 Jacobians A,
cannot easily be visualized directly, we instead show for
each location @, the reaction of the end effector to three
pairwise orthogonal test movements. These test move-
ments are of equal length and directed parallel to the bor-
ders of the work space. If A, is correct, the end effector
will trace out little ‘‘three-legged’’ patterns, testing A,
along the three orthogonal space directions. The gradual
convergence of these three test movements, as seen from
camera 2, are shown in the rightmost pictures. The initial
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Fig. 4. Average positioning error véersus the number of learning steps. The
error decreases rapidly to a final value of 1.7 X 10~* units after 30 000
learning steps. .

Jacobians were chosen by assigning a random value from
the interval [ —20, 20] independently to each element of
A, . Therefore, the initial test movements are very poor
(Fig. 3, top). However, after 6000 iterations the accuracy
of the test movements has significantly improved (Fig. 3,
center), and after 30 000 learning steps, they are traced
out very accurately (Fig. 3, bottom).

In Fig. 4 we have plotted the average positioning error
versus the number of learning steps. The error decreases
very rapidly to a final value of 1.7 - 1073 units after
30 000 iterations. At this stage the robot has learned the
required task and is able to perform accurate positioning
movements. However, during performance, the measure
of the joint angles, the limbs and the positions of the cam-
eras may become miscalibrated. Therefore, the neural
network must be able to permanently readjust its formal
synaptic strengths w,, 8, and A, . This is possible as long
as the plasticity of the network, i.e., the sizes of the ad-
aptation steps after each positioning movement, described
by the parameters ¢ and €', are kept at small but nonvan-
ishing values. In our simulation the final values of ¢ and
¢’ were chosen to 0.005 and 0.7, respectively, which
guarantees a permanent adaptability to unforeseen changes
in the behavior of the robot arm system during perfor-
mance. '

V1. DiscussioN

We have shown that an extension of Kohonen'’s algo-
rithm for the formation of topologically correct feature
maps together with an error-correction rule of Widrow-
Hoff-type is able to learn the control of robot arm move-
ments by using only the input signals of two cameras. The
basic idea is to use an input ‘and an output map evolving
simultaneously on the same sheet of neurons, thereby au-
tomatically matching corresponding input-output pairs in
a topology-preserving fashion. This approach allows ro-
bust and flexible learning of continuous input-output re-
lations from a sequence of examples. We applied our
method to learn the required transformations for visuo-
motor coordination of a three-link robot arm.

This approach differs from previous approaches to

neural robot control, such as, e.g., [11], [12] in that it
makes explicit use of a topographically organized map, a
biologically important form of network organization. It
differs in several important aspects from a related, earlier
approach by Kuperstein, also based on topographic maps
for the control of a robot arm [6]-[9). The first difference
is the use of a single, three-dimensional map instead of a
set of additively coupled, one-dimensional maps in [9].
This has an important bearing on the class of input-output
transformations which can be implemented accurately. In
Kuperstein’s work each map processes only a single var-
iable. As a consequence, each of the outputs a,, to the
actuators is necessarily of the form (cf. [9]):

an = Fi(x,) + F(xg) + F3(y.) + Fy(yz)
+ Fs(x, — xg) + Fe(y — yr) (9)

where x;, y., Xz, yg are the (Cartesian) coordinates of the
target in the image plane of the left and right stereo cam-
era respectively, and F, . .. F, are functions for which
the system can learn essentially arbitrary (apart from
smoothness constraints) realizations. In our approach,
each unit becomes responsible for a small subset of input
values i; = (x,, y,) and il, = (xp, ¥Yg) and can associate
an output value F(x;, y;, xz, yg) with this subset which
can (again apart from smoothness constraints) be inde-
pendent from the values associated with any of the other
subsets. Hence, arbitrary correlations between the four
arguments x;, y;, Xg, ¥z can be implemented, whereas the
more restricted form (9) is biased towards functions that
can be decomposed into a sum of independent contribu-
tions, each depending on a single coordinate value or one
of the “‘disparities’” x, — xg, y, — yg only, and may en-
counter problems if the control function requires correla-
tions between two or more variables, such as, e.g., the
product x; - y,. If one wishes to make no prior assump-
tions about the system, the relevance of such correlations
is difficult to anticipate and may vary with details of the
chosen implementation, such as, e.g., geometry of the
robot arm or positioning of the cameras. In this case our
less biased scheme seems more desirable. This increased
flexibility, however, comes at a price. Having to assign
units to a higher (here three) dimensional space would
require a significantly higher number of units for a density
of spacing that is comparable to that in six one-dimen-
sional maps. The use of the interpolation matrices A, by-
passes this problem and allows the achievement of a high
degree of accuracy with a moderate total number of adapt-
able weights (1680 output weights per degree of freedom
+ 1344 input weights in the present simulation).

The second major difference is the use of a map with
an adaptable topographic ordering, in contrast to the fixed
ordering in Kuperstein’s model. This allows the map not
only to adapt its outputs, but also to adapt to the range of
its input signals, thereby eliminating any need for match-
ing the system by hand to the range of the sensory signals
to be processed. For instance, if the environment requires
positioning the stereo cameras closer together, reduced
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values of the observed stereo disparities will result. The
corresponding reduction in stereo sensitivity of the system
can then partly be counterbalanced by the adaptive capa-
bilities of the input map. The plasticity of the input map
also allows the system to make adaptive changes in the
resolution of the represented control law. Frequently re-
quired movements become automatically represented at a
higher resolution than less frequent movements. This be-
havior is reminiscent of biological motor systems, where
frequently practiced movements also become more accu-
rate.

For low dimensional spaces, the method may also offer
an interesting alternative to backpropagation [19]. In con-
trast to backpropagation, a localized representation of the
mapping is learned. This avoids the development of *‘hid-
den units,’” which is usually a slow process. The cost of
training many independent units is kept small by imposing
a topology among the units so that this topology matches
the topology of the work space and each learning step is
spread over a subset of neighboring units. Initially, the
subsets are chosen large, resulting in rapid leaming of the
coarse mapping. As learning progresses, the size of the
subsets is gradually reduced to refine the mapping more
and more locally. This strategy allows efficient and ac-
curate training of many units and should facilitate scaling
up the system to a higher number of nodes for further
improved accuracy.
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